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Background. Lung adenocarcinoma (LUAD) is a major cause for global cancer-related deaths. Research reports demonstrate that
lymph node metastasis (LNM) is pertinent to the survival rate of LUAD patients, and crux lies in the lack of biomarkers that could
distinguish patients with LNM. We aimed to verify the LNM-related prognostic biomarkers in LUAD. Methods. We firstly
accessed the expression data of mRNA from The Cancer Genome Atlas (TCGA) database and then obtained samples with
LNM (N+) and without LNM (N-). Differential expression analysis was conducted to acquire differentially expressed genes
(DEGs). Univariate-LASSO-multivariate Cox regression analyses were performed on DEGs to build a risk model and obtain
optimal genes. Afterwards, effectiveness and independence of risk model were assessed based on TCGA-LUAD and GSE31210
datasets. Moreover, a nomogram was established combining clinical factors and riskscores. Nomogram performance was
measured by calibration curves. The infiltration abundance of immune cells was scored with CIBERSORT to explore the
differences between high- and low-risk groups. Lastly, gene set enrichment analysis (GSEA) was used to investigate differences
in immune features between the two risk groups. Results. Nine optimal feature genes closely related to LNM in LUAD were
identified to construct a risk model. Prognostic ability of the risk model was verified in independent databases. Patients were
classified into high- and low-risk groups in accordance with their median riskscores. CIBERSORT score displayed differences
in immune cell infiltration like T cells CD4 memory resting between high/low-risk groups. LNM-related genes may also be
closely relevant to immune features. Additionally, GSEA indicated that differential genes in the two risk groups were enriched
in genes related to immune cells. Conclusion. This research built a risk model including nine optimal feature genes, which may
be potential biomarkers for LUAD.

1. Introduction

Lung cancer is the leading cause of cancer death globally,
with adenocarcinoma as the most prevalent histologic type
[1]. Recent decades have witnessed great progress in cancer
treatment; however, the prognosis of patients with lung
adenocarcinoma (LUAD) still fails to be satisfying [2]. Stud-
ies demonstrated that lymph node metastasis (LNM) is
pertinent to the survival rate of LUAD patients [3, 4]. As
reported, the 5-year survival of LUAD patients with LNM
is only 26-53%, while the survival rate of LUAD patients
without LNM is more than 95% [5, 6]. Therefore, it is urgent
to predict prognostic biomarkers that are related to LNM

occurrence in LUAD and to identify patients with high
mortality risk in advance.

The establishment and improvement of many databases
further promote our understanding of disease genomic alter-
ations, including identifying biomarkers related to tumor
diagnosis and prognosis. For instance, Fu et al. [7] analyzed
CEP55 expression in LUAD and lung squamous cell carci-
noma (LUSC) by using The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) databases and vali-
dated by receiver operating characteristic (ROC) curves
and univariate and multivariate Cox regression analyses.
Ma et al. [8] screened survival related key genes by random
survival forest based on TCGA-LUAD database, KM
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survival curve, and C-index method, and we validated the
performance of these genes in GEO database, in which 13
genes as the prognostic biomarkers of LUAD were first
reported. Zhang et al. [9] obtained sample cases based on
TCGA database, and Cox regression analysis screened the
signature genes and constructed the model, which finally
yielded the correlation between a 9-gene signaling and gly-
colysis, and provided a new biomarker for LUAD patient’s
poor prognosis and metastasis. The above studies presented
that abnormally expressed genes can act as prognostic or
diagnostic biomarkers of LUAD. Nevertheless, rare was
researched on LNM-related differentially expressed genes
(DEGs) as prognostic biomarkers of LUAD.

Here, LUAD samples with orwithout LNMwere obtained
through TCGA database, which were subjected to differential
expression analysis. Enrichment analysis was conducted on
the acquired differential genes, and a risk model was built
through regression analyses. Besides, immune infiltration
abundance of LUAD samples was scored to unravel the corre-
lation between immune infiltration and riskscores. The results
may provide an effective prognostic tool for LUAD patients
and assist doctors in identifying patients with high risk of
mortality to increase their survival rate.

2. Materials and Methods

2.1. Data Source and Preprocessing. Firstly, mRNA data were
accessed from TCGA (https://portal.gdc.cancer.gov/) data-
base along with clinical data (Supplementary Table 1).
Samples followed for more than 30 days were screened as
the training set, including 330 non-LNM samples (N-) and
171 LNM samples (N+). LUAD gene expression data
(tumor: 226) of GSE31210 (GPL570) were downloaded
from GEO along with clinical information (Supplementary
Table 2) as the validation set.

2.2. Differential Expression Analysis. This step was aimed at
recognizing differentially expressed genes (DEGs) between
LNM samples (N+) and non-LNM samples (N-). To that
end, “edgeR” package [10] was applied to undertake differ-
ential expression analysis on N+ samples relative to N- sam-
ples. The screening threshold value was ∣logFC∣ > 1 and
FDR < 0:0510 [10].

2.3. Differential Gene Enrichment Analyses. For better
understanding of biological processes that DEGs may partic-
ipate, “clusterProfiler” package [11] was employed to per-
form Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses. padjust <0.05 andq
value <0.05 were considered statistically significant [11].

2.4. Construction of the Risk Model. Univariate Cox regres-
sion analysis was performed on DEGs with “survival” pack-
age (p < 0:001) [12]. To avoid overfitting of the statistical
model, LASSO regression analysis was conducted on genes
screened by univariate analysis by using “glmnet” package
[13]. Penalty parameter “lambda” was selected by cross val-
idation method. Genes with strong correlation were
removed to reduce model complexity (maxit = 5000) [14].
Multivariate Cox regression analysis was undertaken on

LASSO regression analysis-screened genes by using “sur-
vival” package [15] to build a risk model and obtain optimal
genes. Riskscore was calculated as follows:

Riskscore = 〠
n

i=1
Coef i × xið Þ: ð1Þ

In this formula, Coef i is the cooperativity coefficient and
xi is the relative gene expression standardized by Z-score.

2.5. Model Assessment. We assessed the validity of the model
in training set and validation set. Riskscores of samples were
calculated according to the formula. Samples were divided into
high- and low-risk groups by median score. Survival analysis
was undertaken with survminer package (https://cran.r-
project.org/web/packages/survminer/index.html). High- and
low-risk groups were further divided by LNM occurrence to
undertake survival analysis. Receiver operator characteristic
(ROC) curve was drawn by using “timeROC” package [16]
to calculate the area under the curve (AUC) values of 1-, 3-,
and 5-year overall survival (OS) [16].

Riskscore was taken as a separate feature in the valida-
tion of the independence of the model. Univariate and mul-
tivariate Cox regression analyses were further conducted
combining clinical data to evaluate the ability of the prog-
nostic risk model to predict patient’s survival status.

2.6. Construction and Evaluation of the Nomogram. A
nomogram was generated by using “rms” package [17] com-
bining clinical information and the risk model so as to pre-
dict the possibility of patient’s 1-, 3-, and 5-year OS [17].
Calibration curves corresponded to 1-, 3-, and 5-year were
plotted to validate the prediction efficacy of the nomogram.

2.7. Immune Analysis of High- and Low-Risk Groups.
CIBERSORT was used to score the abundance of each
immune cells in the training set. To increase the accuracy
of deconvolution results, we only reserved data with CIBER-
SORT p value<0.05 and analyzed differences in the infiltra-
tion abundance of immune cells between high- and low-
risk groups [18].

Immune function enrichment analysis was conducted in
high- and low-risk groups by using the GSEA software. Gene
sets used for analysis were c7: immunologic signature gene
sets. Significant screening criterion was FDR < 0:25.

3. Results

3.1. Differential Expression Analysis. Differential analysis was
conducted on N+ samples relative to N- samples, and 637
DEGs were obtained including 196 upregulated genes and
441 downregulated ones (Figure 1(a)). Enrichment analyses
were undertaken on these 637 DEGs. GO analysis suggested
that these genes were mainly enriched in biological functions
like chromatin assembly, DNA packaging, protein-DNA
complex assembly, and ligand (Figure 1(b)). The result of
KEGG manifested that these genes were mainly enriched
in biological pathways like retinol metabolism, metabolism
of xenobiotics by cytochrome P450, and viral carcinogenesis
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(Figure 1(c)). The above results indicated that these DEGs
may participate in chromatin assembly, DNA packaging,
retinol metabolism, and so on.

3.2. Construction of the Risk Model. Univariate Cox regres-
sion analysis was performed on the above 637 DEGs and
obtained 19 prognosis-related genes (Supplementary
Table 3). To avoid overfitting of the model, LASSO
regression analysis of these 19 genes screened 14 feature
genes (Figure 2(a)), which were then subjected to
multivariate Cox recession analysis, and 9 optimal feature
genes were finally screened (Figure 2(b)). Riskscore = 0:066
∗ PITX3 + 0:087 ∗ RHOV + 0:111 ∗MARCH4 – 0:033 ∗
ZNF536 – 0:047 ∗ SLC14A2 – 0:079 ∗ CYP17A1 + 0:053 ∗
IGFBP1 + 0:044 ∗KRT76 – 0:072 ∗GFI1B. Hence, we
obtained 9 optimal feature genes through regression
analyses to assess LUAD patient’s prognostic risk.

3.3. Assessment of the Risk Model. Afterwards, we assessed
validity and independence of the model. According to heat
map of the levels of these 9 optimal feature genes in high-
and low-risk groups (Figure 3(a)) combined with clinical

features, significant differences were exhibited in stages M
and N and survival status between the two risk groups.
Patient’s survival rate in high-risk group was prominently
lower than that in the low-risk group through distribution
of the riskscore of 9 optimal feature genes (Figure 3(b)),
patient’s survival status (Figure 3(c)), and survival curves
(Figure 3(d)) in two risk groups. Moreover, the survival rate
of N+ patients was lower relative to N- patients in two risk
groups (Figures 3(e) and 3(f)). Besides, the performance of
the risk model on determining patient’s prognosis was eval-
uated by ROC curve. The 1-, 3-, and 5-year AUC values in
training set were, respectively, 0.75, 0.75, and 0.74
(Figure 3(g)), while those in validation set were 0.74, 0.76,
and 0.75, respectively (Figure 3(h)). This testified that the
risk model based on the training set possessed good deter-
mining function on LUAD patient’s prognosis. In addition,
expression of these 9 optimal feature genes was closely asso-
ciated with LNM occurrence. Univariate and multivariate
Cox regression analyses were conducted on riskscores and
clinical data to assess the independence of the model. It
was found that riskscores were statistically significant to
patient’s prognosis (Figures 3(i) and 3(j)). To conclude, the
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Figure 1: Acquisition and analysis of DEGs. (a) Volcano plot of differential analysis on N+ relative to N- group. Red refers to upregulated
genes, and green refers to downregulated genes. (b) GO enrichment analysis. (c) KEGG enrichment analysis.
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Figure 2: Establishment of the risk model. (a) LASSO regression analysis was undertaken on 19 genes obtained. Fourteen feature genes were
finally screened. (b) Forest plot of 9 optimal feature genes which obtained from multivariate Cox regression analysis. ∗p < 0:05. ∗∗p < 0:01.
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Figure 3: Continued.
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9-gene risk model suggested a good prognostic effect, and
riskscore could be used as an independent factor for the
prognosis of LUAD patients.

3.4. Construction and Evaluation of the Nomogram. To bet-
ter apply our model to clinical practice, we established a
nomogram which could better predict LUAD patient’s prog-
nosis. The nomogram was drawn with risk type (low/high)
along with patient’s clinical data (age, sex, TNM stage, and
clinical stages) to predict the possibility of patient’s 1-, 3-,
and 5-year survival (Figure 4(a)). Its performance was
visualized by calibration curve (45° line referred to the
optimal performance). The high fitting of 1-, 3-, and 5-year
calibration curves demonstrated a good performance
(Figures 4(b)–4(d)). The above results suggested that the
nomogram may assist doctors to decide the plan for follow-
ing treatment of LUAD patients.

3.5. Riskscore Was Related to Tumor Immune Infiltration.
The infiltration abundance of each immune cells in samples
was scored by using CIBERSORT algorithm. A total of 184
low-risk samples and 170 high-risk samples were obtained
after screening the samples with p value<0.05 (Supplementary
Table 4). Histogram and heat map based on CIBERSORT
exhibited the degree of immunity in the high- and low-risk
groups (Figures 5(a) and 5(b)). Infiltration abundance of T
cells CD4 memory resting, NK cells activated, dendritic cells

resting, and mast cells resting in the high-risk group was
prominently downregulated relative to the low-risk group,
while infiltration abundance of T cells CD4 memory
activated, macrophages M0, and macrophages M1 was
significantly upregulated (Figure 5(c)). The above results
showed remarkable differences in immune cell infiltration
between two risk groups.

3.6. GSEA Enrichment Analysis in High- and Low-Risk
Groups. Lastly, to explore the differences in immune features
between the groups, GSEA was performed in these two
groups. As the results suggested, differential genes in the high-
and low-risk groups were enriched in FETAL_VS_AUDULT_
TREG_DN, NAIVE_TCELL_VS_MONOCYTE_UP, and
CD16_POS_MONOCYTE_VS_DC_DN (Figures 6(a)–6(c)).
It was showed that the two groups manifested statistical signif-
icances in immune features of immune cells including regula-
tory T cells and dendritic cells. These pathways may trigger
significant differences in prognosis.

4. Discussion

Accumulating evidence demonstrated that LUAD patients
with LNM often have a poor response to standard treatment
and shorter survival time [19]. It is urgent to classify these
patients in advance and predict their prognosis to help clini-
cians to better make targeted treatment plans. Nevertheless,
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Figure 3: Evaluation of the risk model. (a) Heat map of the expression of 9 genes. (b) Distribution plot of riskscore in each group. (c)
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regression analyses.
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a single biomarker cannot accurately or independently eval-
uate patient’s prognosis and is often affected by other clinical
factors [19]. Furthermore, clinical stages established by
patient- and tumor-related factors are limited in accuracy
and specificity, such as AJCC-TNM stage [20]. A study found
that multiple-gene signature is a better choice for predicting
patient’s prognosis and survival [21]. Hence, our study was
aimed at identifying molecular biomarkers related to LNM
in LUAD for better prediction of patient’s prognosis.

In the present study, DEGs were obtained via analyzing
gene expression profiles of N+ and N- samples in TCGA-
LUADdataset. Enrichment analyses suggested that the expres-
sion of the DEGs was associated with tumor development. To
further screen genes relevant to patient’s prognosis, regression
analyseswere undertaken. Finally, 9 optimal feature geneswere
acquired, and a risk model was constructed. Riskscore =
0:066 ∗ PITX3 + 0:087 ∗ RHOV+ 0:111 ∗MARCH4 – 0:033
∗ ZNF536 – 0:047 ∗ SLC14A2 – 0:079 ∗ CYP17A1 + 0:053

∗ IGFBP1 + 0:044 ∗ KRT76 – 0:072 ∗GFI1B. Previous stud-
ies demonstrated that the above genes are relevant to patient’s
survival and prognosis. For instance, elevated RHOV expres-
sion level correlates with NSCLC patient’s poor survival [22].
HighKRT76expression is associatedwith increased tumor sus-
ceptibility [23]. Subsequently, we evaluated the constructed
model and found that the high-risk group showed short sur-
vival. N+ patients had shorter survival relative to N- patients.
Moreover, ROC curve showed the favorable performance of
the model. To help clinicians to predict patients with high
mortality risk,webuilt a nomogramwith riskscores and clinical
factors. The calibration curve suggested the good performance
of the nomogram.

A clinical study illustrated that immune activation in
tumor cells is closely relevant to LNM [24]. To this end,
we also scored infiltration abundance. It was exhibited that
relative to the low-risk group, the infiltration abundance of
NK cells activated, T cells CD4 memory resting, dendritic
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cells resting, and mast cells resting was remarkably downreg-
ulated, while the infiltration abundance of macrophages M0,
T cells CD4 memory activated, and macrophages M1 was
prominently upregulated. Melaiu et al. [25] presented that
high density of tumor infiltrating NK cells is associated with
the excellent prognosis of various solid tumors. Mast cells,
known as mastocytes, are key regulators of immune effector
cells [26–28]. The infiltration of mast cells positively pertains
to the prognosis of gastric cancer [26–28]. Padoan et al. [29]
indicated that memory CD4+ T cells generate interleukin to
accelerate tumorigenesis, which explains potential factors for
upregulation of activated CD4+ T cells in the high-risk
group. Macrophages were considered as a major cell type
to connect inflammation and cancer, among which M1 can
activate inflammation to stimulate cancer progression [30].
In addition, Xiao et al. [31] confirmed that M1 macrophages
initiated by exosome-delivered THBS1 exacerbate malignant
progression of oral squamous cell carcinoma. Results of the
above references were similar to the results here, further
demonstrating that optimal feature genes related to LNM
were closely associated with immune infiltration degree.
GSEA enrichment analysis was conducted to better under-
stand the difference between the two groups. They displayed
statistical differences in immune degree of immune cells like
regulatory T cells and dendritic cells. A reference elaborated
that Treg cells abundantly infiltrate tumor tissue, relating
cancer patient’s poor prognosis [32]. Haak et al. [33] found
that the OS of tumor patients with high infiltration of
CD16+ cells is evidently longer. Dendritic cells are the main
modulators of adaptive immune response and indispensable
for T cell-manipulated cancer immunity [34]. This explains
that differences in immune features may be one of the
reasons for poor prognosis.

In sum, according to TCGA-LUAD data, we constructed
an effective 9-gene risk prognostic model that could predict
patient’s prognosis independent of other clinical factors.
Our model was able to divide LUAD patients into two
groups and effectively distinguish patients with poor prog-
nosis. Moreover, the identified feature genes may play a
predictive role to a certain extent in immune treatment.
However, limitations still exist here. In the future, we plan
to analyze the expression of optimal feature genes and
immune checkpoints to further validate underlying value
of the optimal feature genes in predicting the efficacy of
treatment with immune checkpoint inhibitors.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Ethical Approval

Not applicable.

Consent

Not applicable.

Conflicts of Interest

The authors declare that they have no potential conflicts of
interest.

Authors’ Contributions

All authors contributed to data analysis, drafting and revising
the article, gave final approval of the version to be published,
and agreed to be accountable for all aspects of the work.

Supplementary Materials

Supplementary 1. Supplementary Table 1. Clinical data of
TCGA-LUAD samples.

Supplementary 2. Supplementary Table 2. Clinical data of
LUAD samples in GSE31210 dataset.

Supplementary 3. Supplementary Table 3. The 19 prognosis-
related genes obtained.

Supplementary 4. Supplementary Table 4. Screened samples
after CIBERSORT score.

References

[1] W. Chen, R. Zheng, P. D. Baade et al., “Cancer statistics in
China, 2015,” CA: a Cancer Journal for Clinicians, vol. 66,
no. 2, pp. 115–132, 2016.

[2] D. S. Ettinger, D. E. Wood, W. Akerley et al., “Non-small cell
lung cancer, version 6.2015,” Journal of the National Compre-
hensive Cancer Network, vol. 13, no. 5, pp. 515–524, 2015.

[3] C. E. Nwogu, A. Groman, D. Fahey et al., “Number of lymph
nodes andmetastatic lymph node ratio are associated with sur-
vival in lung cancer,” The Annals Of Thoracic Surgery, vol. 93,
pp. 1614–1619, 2012.

[4] S. H. Ou, J. A. Zell, A. Ziogas, and H. Anton-Culver, “Prognos-
tic factors for survival of stage I nonsmall cell lung cancer
patients,” Cancer, vol. 110, no. 7, pp. 1532–1541, 2007.

[5] P. Goldstraw, K. Chansky, J. Crowley et al., “The IASLC lung
cancer staging project: proposals for revision of the TNM stage
groupings in the forthcoming (eighth) edition of the TNM
classification for lung cancer,” Journal of Thoracic Oncology,
vol. 11, no. 1, pp. 39–51, 2016.

[6] A. Matsuda and K. Katanoda, “Five-year relative survival rate
of lung cancer in the USA, Europe and Japan,” Japanese Jour-
nal of Clinical Oncology, vol. 43, no. 12, pp. 1287-1288, 2013.

[7] L. Fu, H. Wang, D. Wei et al., “The value of CEP55 gene as a
diagnostic biomarker and independent prognostic factor in
LUAD and LUSC,” PLoS One, vol. 15, no. 5, article
e0233283, 2020.

[8] B. Ma, Y. Geng, F. Meng, G. Yan, and F. Song, “Identification
of a sixteen-gene prognostic biomarker for lung adenocarci-
noma using a machine learning method,” Journal of Cancer,
vol. 11, no. 5, pp. 1288–1298, 2020.

[9] L. Zhang, Z. Zhang, and Z. Yu, “Identification of a novel
glycolysis-related gene signature for predicting metastasis
and survival in patients with lung adenocarcinoma,” Journal
of Translational Medicine, vol. 17, no. 1, p. 423, 2019.

[10] M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edgeR: a
bioconductor package for differential expression analysis of

9Computational and Mathematical Methods in Medicine

https://downloads.hindawi.com/journals/cmmm/2022/3887857.f1.pdf
https://downloads.hindawi.com/journals/cmmm/2022/3887857.f2.pdf
https://downloads.hindawi.com/journals/cmmm/2022/3887857.f3.pdf
https://downloads.hindawi.com/journals/cmmm/2022/3887857.f4.pdf


digital gene expression data,” Bioinformatics, vol. 26, no. 1,
pp. 139-140, 2010.

[11] G. Yu, L. G. Wang, Y. Han, and Q. Y. He, “clusterProfiler: an R
package for comparing biological themes among gene clus-
ters,” Omics: A Journal Of Integrative Biology, vol. 16, no. 5,
pp. 284–287, 2012.

[12] T. M. Therneau and P. M. Grambsch, “Modeling Survival
Data: Extending the Cox Model,” Technometrics, vol. 44,
no. 1, 2013.

[13] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “Regular-
ization paths for Cox's proportional hazards model via coordi-
nate descent,” Journal of Statistical Software, vol. 39, no. 5,
pp. 1–13, 2011.

[14] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization
paths for generalized linear models via coordinate descent,”
Journal of Statistical Software, vol. 33, no. 1, pp. 1–22, 2010.

[15] Z.Wang, J. Zhu, Y. Liu et al., “Development and validation of a
novel immune-related prognostic model in hepatocellular car-
cinoma,” Journal of Translational Medicine, vol. 18, no. 1,
p. 67, 2020.

[16] P. Blanche, J. F. Dartigues, and H. Jacqmin-Gadda, “Estimat-
ing and comparing time-dependent areas under receiver oper-
ating characteristic curves for censored event times with
competing risks,” Statistics in Medicine, vol. 32, no. 30,
pp. 5381–5397, 2013.

[17] C. Huang, Z. Liu, L. Xiao et al., “Clinical significance of serum
CA125, CA19-9, CA72-4, and fibrinogen-to-lymphocyte ratio
in gastric cancer with peritoneal dissemination,” Frontiers in
Oncology, vol. 9, p. 1159, 2019.

[18] A. M. Newman, C. L. Liu, M. R. Green et al., “Robust enumer-
ation of cell subsets from tissue expression profiles,” Nature
Methods, vol. 12, no. 5, pp. 453–457, 2015.

[19] H. Kuroda, Y. Sakao, M. Mun et al., “Lymph node metastases
and prognosis in left upper division non-small cell lung can-
cers: the impact of Interlobar lymph node metastasis,” PLoS
One, vol. 10, no. 8, article e0134674, 2015.

[20] Y. Wang, Q. Zhang, Z. Gao et al., “A novel 4-gene signature for
overall survival prediction in lung adenocarcinoma patients
with lymph node metastasis,” Cancer Cell International,
vol. 19, no. 1, p. 100, 2019.

[21] Y. L. Chen, G. J. Ge, C. Qi et al., “A five-gene signature may
predict sunitinib sensitivity and serve as prognostic biomark-
ers for renal cell carcinoma,” Journal of Cellular Physiology,
vol. 233, no. 10, pp. 6649–6660, 2018.

[22] M. V. Shepelev and I. V. Korobko, “The _RHOV_ gene is over-
expressed in human non -small cell lung cancer,” Cancer
Genetics, vol. 206, no. 11, pp. 393–397, 2013.

[23] I. Sequeira and F. M.Watt, “The role of keratins in modulating
carcinogenesis via communication with cells of the immune
system,” Cell Stress, vol. 3, no. 4, pp. 136–138, 2019.

[24] Z. Xiang, C. Zhong, A. Chang et al., “Immune-related key gene
CLDN10 correlates with lymph node metastasis but predicts
favorable prognosis in papillary thyroid carcinoma,” Aging
(Albany NY), vol. 12, no. 3, pp. 2825–2839, 2020.

[25] O. Melaiu, V. Lucarini, L. Cifaldi, and D. Fruci, “Influence of
the tumor microenvironment on NK cell function in solid
tumors,” Frontiers in Immunology, vol. 10, p. 3038, 2019.

[26] S. A. Oldford and J. S. Marshall, “Mast cells as targets for
immunotherapy of solid tumors,” Molecular Immunology,
vol. 63, no. 1, pp. 113–124, 2015.

[27] T. Nakano, C. Y. Lai, S. Goto et al., “Immunological and regen-
erative aspects of hepatic mast cells in liver allograft rejection
and tolerance,” PLoS One, vol. 7, no. 5, article e37202, 2012.

[28] M. Wang, Z. Li, Y. Peng et al., “Identification of immune cells
and mRNA associated with prognosis of gastric cancer,” BMC
Cancer, vol. 20, no. 1, p. 206, 2020.

[29] A. Padoan, M. Plebani, and D. Basso, “Inflammation and pan-
creatic cancer: focus on metabolism, cytokines, and immu-
nity,” International Journal of Molecular Sciences, vol. 20,
no. 3, p. 676, 2019.

[30] E. M. Conway, L. A. Pikor, S. H. Y. Kung et al., “Macrophages,
inflammation, and lung cancer,” American Journal of Respira-
tory and Critical Care Medicine, vol. 193, no. 2, pp. 116–130,
2016.

[31] M. Xiao, J. Zhang, W. Chen, and W. Chen, “M1-like tumor-
associated macrophages activated by exosome-transferred
THBS1 promote malignant migration in oral squamous cell
carcinoma,” Journal of Experimental & Clinical Cancer
Research, vol. 37, no. 1, p. 143, 2018.

[32] A. Tanaka and S. Sakaguchi, “Targeting Treg cells in cancer
immunotherapy,” European Journal of Immunology, vol. 49,
no. 8, pp. 1140–1146, 2019.

[33] F. Haak, I. Obrecht, N. Tosti et al., “Tumor infiltration by
OX40+ cells enhances the prognostic significance of CD16+
cell infiltration in colorectal cancer,” Cancer Control, vol. 27,
no. 1, p. 1073274820903383, 2020.

[34] A. Gardner and B. Ruffell, “Dendritic cells and cancer immu-
nity,” Trends in Immunology, vol. 37, no. 12, pp. 855–865,
2016.

10 Computational and Mathematical Methods in Medicine


	Construction of Lymph Node Metastasis-Related Prognostic Model and Analysis of Immune Infiltration Mode in Lung Adenocarcinoma
	1. Introduction
	2. Materials and Methods
	2.1. Data Source and Preprocessing
	2.2. Differential Expression Analysis
	2.3. Differential Gene Enrichment Analyses
	2.4. Construction of the Risk Model
	2.5. Model Assessment
	2.6. Construction and Evaluation of the Nomogram
	2.7. Immune Analysis of High- and Low-Risk Groups

	3. Results
	3.1. Differential Expression Analysis
	3.2. Construction of the Risk Model
	3.3. Assessment of the Risk Model
	3.4. Construction and Evaluation of the Nomogram
	3.5. Riskscore Was Related to Tumor Immune Infiltration
	3.6. GSEA Enrichment Analysis in High- and Low-Risk Groups

	4. Discussion
	Data Availability
	Ethical Approval
	Consent
	Conflicts of Interest
	Authors’ Contributions
	Supplementary Materials

