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Objective. To screen CXC chemokines related to the risk of lung adenocarcinoma (LUAD) using bioinformatics and construct a
CXC-based prognostic risk model to improve the diagnosis and treatment of LUAD patients.Methods. The Cancer Genome Atlas
(TCGA) database and Gene Expression Omnibus (GEO) database were searched to obtain mRNA expression data and
clinicopathological information of LUAD patients. CXC genes differentially expressed in LUAD were screened using the R
packages. Further, risk factors significantly associated with the survival of LUAD patients were obtained by the univariate Cox
proportional hazard regression, LASSO regression, and multivariate Cox proportional hazard regression analysis, following
which a risk prediction model was constructed. The performance of the CXCL13-based model in predicting the prognosis of
low-risk and high-risk effect LUAD patients was verified, and the association between the model and the degree of tumor
immune cell infiltration was investigated. Results. CXCL13 was significantly highly expressed in the cancer tissues of LUAD
patients. The risk of death in patients with highly expressed CXCL13 was about 1.5 times higher than in those with lowly
expressed CXCL13 (HR = 1:5153357). CXCL13-based risk scoring showed that the high-risk score of LUAD patients was
significantly correlated with poor prognosis, but no relation between the two was found in the GEO validation sets, suggesting
that this risk model may not be accurate enough. In addition, activated B cells, CD4+ T cells, CD8+ T cells, and dendritic cells
were significantly positively correlated with the high risk of LUAD. Conclusions. Although we found that a high expression of
CXCL13 was associated with a high risk of death and immune cell infiltration and activation in LUAD patients, the CXCL13-
based risk model was not accurate enough for predicting the prognosis of LUAD patients.

1. Introduction

Lung cancer is by far the leading cause of cancer death in men
and women, and approximately a quarter of cancer cases die
of lung cancer [1]. According to different histological sub-
types, it is divided into lung adenocarcinoma (LUAD), squa-
mous carcinoma, large cell carcinoma, and small cell lung
cancer [2], with LUAD as the most prevalent subtype [3].
In recent years, with the application of multimodal treatment
strategies, including diagnosis, immunotherapy, molecular
therapy, radiotherapy, and noninvasive surgical resection,
the clinical prognosis of LUAD patients has improved signif-

icantly, but the five-year overall survival rate is still unsatis-
factory at only about 18% [4, 5]. Currently, there is no ideal
biomarker for various tumors, including lung cancer. Thus,
comprehensive analysis of epidemiological and clinical data,
molecular detection of blood biomarkers, tumor cell and
tumor immune cell infiltration, and other analyses are
required to obtain a more objective and accurate diagnosis
and prognosis prediction [6].

The chemokine superfamily, composed of approximately
50 endogenous chemokine ligands and 20 G-protein-coupled
receptors, is a class of small molecular weight proteins
secreted by cells that regulate the function of the immune
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system. Their main roles are to regulate processes such as cell
migration, localization, proliferation, differentiation, and sur-
vival. Additionally, they mediate development, homeostasis,
and angiogenesis and participate in autoimmune diseases,
inflammation, and tumor development [7–9]. According to
the number and spacing of conserved cysteine residues in
the N-terminus, chemokines can be classified into four catego-
ries: CC chemokines, CXC chemokines, C chemokines, and
CX3C chemokines (X is other amino acid residues) [6, 8].

CXC chemokine subfamily is made up of 17 members
(CXCL1–CXCL17). Studies have shown that multiple CXC
chemokines play an important role in the malignant behav-
iors, including cancer development and cancer drug resis-
tance, in various cancers such as glioma [10], leukemia
[11], gastric cancer [12], colorectal cancer [13], and lung
cancer [14]. However, it is unclear whether CXC chemokine
subfamily members have some role in LUAD. Therefore,
with LUAD patient data from the TCGA and GEO public
databases, this study used differential analysis, univariate
Cox regression, LASSO regression, and multivariate Cox
regression to screen CXC chemokine subfamily members
associated with LUAD. A prognostic risk model was then
established based on the screened CXC genes, and the corre-
lation between the model and tumor-infiltrating immune
cells in LUAD patients was assessed.

2. Materials and Methods

2.1. Source of Data. Raw RNA-seq data and clinicopatholo-
gical information of LUAD patients were obtained from
the TCGA database (https://www.cancer.gov/), while the
GEO database (http://www.ncbi.nlm.nih.gov/geo/) provided
gene expression data of GSE31210 and GSE72094 datasets,
with the former as the training set and the latter as the val-
idation set.

2.2. Data Processing and Screening of Differentially Expressed
Genes. The data were read using the R software (version
4.0.5). The datasets were normalized using the “limma”
package, and differentially expressed genes (DEGs) in LUAD
tissues and paracancerous tissues were screened. The signif-
icance of gene expression differences between two kinds of
tissues was analyzed by t-test and ∣ logFC ∣ >1. P < 0:05
served as the cut-off criteria.

2.3. GO and KEGG Functional Enrichment Analyses. The
biological functions of DEGs and the related signaling path-
ways were identified using GO and KEGG analyses. GO
analysis, including biological process (BP), cellular compo-
nent (CC), and molecular function (MF), and KEGG path-
way enrichment analysis were performed using the DAVID
online website (https://david.ncifcrf.gov/) [15]. P < 0:05
was considered as the threshold for statistical significance.

2.4. CXC Chemokine-Based Risk Prediction Modeling

2.4.1. Univariate Cox Proportional Hazard Regression. CXC
genes with expressions greater than the mean were labeled
as high expression group and expressed as 1, while those
with expression less than or equal to the mean as low expres-

sion group were expressed as 2. The univariate Cox propor-
tional hazard regression analysis of CXC genes was
performed using the coxph function in the R “survival”
package to assess the relationship between LUAD-related
CXC genes and overall survival (OS) of LUAD patients.

2.4.2. LASSO Regression. LASSO is a penalized regression
method that adjusts the regression coefficient with an L1
penalty and reduces the final weight of most potential indi-
cators to zero, thereby decreasing the number of indicators
with nonzero final weight [16]. LASSO regression analysis
was performed using the glmnet function and cv.glmnet
function of the R “glmnet” package, with the survival time
(time) and survival status (status) as dependent variables
and the expression levels of 14 CXC genes as independent
variables. Such analysis aimed to screen for CXC genes asso-
ciated with LUAD survival.

2.4.3. Multivariate Cox Proportional Hazard Regression. The
CXC genes obtained from screening by the LASSO regres-
sion and univariate Cox proportional hazard regression were
then included in the multivariate Cox regression model. The
obtained CXC genes with expression greater than the mean
were labeled as high expression group and expressed as 1,
while those with expression less than or equal to the mean
as low expression group were expressed as 2. The multivar-
iate Cox proportional hazard regression analysis of CXC
genes was performed using the coxph function in the R “sur-
vival” package. The risk index of each sample was predicted
according to regression coefficient β, and the calculation for-
mula of the risk index was RiskScore = Σβi ∗ xi.

2.5. Validation of the Proportional Hazard Model. According
to the formula RiskScore = 0:40333 ∗ CXCL13, the risk score
of TCGA LUAD training set (533 cases), GSE31210 (246
cases), and GSE72094 dataset (442 cases) samples was calcu-
lated. The risk score greater than the mean was marked as
highRisk and those less than or equal to the mean as low-
Risk. Survfit function and Surv function of R package “sur-
vival” were used for survival analysis and for drawing of
the Kaplan-Meier (KM) survival curve and survdiff function
for a log-rank test. Usage of roc.curve function with Risk-
Score as the marker values was applied to plot the receiver
operating characteristic (ROC) curve and calculate the area
under the ROC curve (AUC).

2.6. Construction of Prediction Nomogram. A prediction
nomogram was constructed by integrating the age, gender,
TNM stage, and risk score of LUAD patients in TCGA LUAD
samples, thus predicting the relationship between each vari-
able in the model and survival. A nomogram function of the
R package “rms” was constructed and plotted to predict the
1-year, 2-year, and 3-year survival rates of LUAD patients.

2.7. Single-Sample Gene Set Enrichment Analysis. Single-
sample gene set enrichment analysis (ssGSEA) was carried
out using the gsva function of the R package “GSVA,”
and the immune scores of the high-risk and low-risk groups
were calculated to evaluate the degree of tumor immune cell
infiltration.
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3. Results

3.1. Differentially Expressed CXC Genes and GO and KEGG
Enrichment Analyses. The clinical information and RNA-
seq data of lung tissues from 594 LUAD patients, including
61 normal tissues and 533 cancer tissues, were downloaded
from the TCGA database. The TCGA-derived mRNA
sequencing data of LUAD patient tissues collated in this
study matched CXC genes to obtain the expression of 14
CXC genes in lung tissue except for CXCL4, CXCL7, and
CXCL15 (Figure 1(a)).

KEGG and GO analyses were then performed on these
14 CXC genes. GO analysis results showed that the 14
CXC genes associated with LUAD were mainly enriched in
leukocyte chemotaxis, leukocyte migration, cell chemotaxis
of BP (circular markers in Figure 1(b)), external side of the
plasma membrane of CC (square markers in Figure 1(b)),
and chemokine activity of MF (diamond markers in
Figure 1(b)). KEGG analysis showed that the 14 CXC genes
associated with LUAD were mainly enriched in signaling
pathways such as chemokine pathway, cytokine-cytokine
receptor interaction, viral protein interaction with cytokine,
and cytokine receptor (triangular markers in Figure 1(b)).

By differential expression analysis of genes in adjacent
noncancerous tissues and LUAD tissues with the cuff-off cri-
teria of ∣ logFC ∣ >1 and P < 0:05, 1673 DEGs were obtained,
including 679 upregulated genes (red scatters in Figure 1(c))
and 994 downregulated genes (green scatters in Figure 1(c)).
The intersection of DEGs with 14 CXC genes by the Wayne
diagram showed that 6 CXC chemokine genes had signifi-
cantly abnormal expression in LUAD tissues, of which
CXCL2, CXCL3, CXCL12, and CXCL16 were significantly
downregulated in LUAD tissues, while CXCL13 and
CXCL14 were significantly upregulated (Figure 1(d)).

3.2. Risk Prediction Model of CXC Genes in LUAD. The rela-
tionship between CXC chemokine genes and OS of LUAD
patients was assessed by the univariate Cox proportional
hazard regression. The results showed that among the 14
CXC chemokine genes expressed in LUAD, only the regres-
sion coefficient coef (beat value) of CXCL13 was statistically
significant (P = 0:0014), indicating that LUAD patients with
high CXCL13 expression had a higher risk of survival, and
their risk of death was approximately 1.5-fold higher than
of patients with low CXCL13 expression (HR = 1:52,
Figure 2(a)). Further, LASSO regression was employed for
screening CXC genes significantly associated with OS time
and survival status of LUAD patients. The results revealed
that none of the LASSO regression coefficients were 0. Three
stable genes (CXCL6, CXCL5, and CXCL17) at the right side
of the dashed line were selected as the optimal genes for
modeling (Figures 2(b)–2(d)), suggesting that these three
genes were significantly associated with the prognosis of
LUAD patients. Finally, CXCL13, CXCL6, CXCL5, and
CXCL17 were included in the multivariate Cox regression
model. CXCL13 was found to be an independent risk factor
for LUAD (P = 0:0194), with the coef of CXCL13 = 0:40333
and its risk score in LUAD being RiskScore = 0:40333 ∗
CXCL13 expression.

3.3. CXC Gene-Based Establishment of Prognostic
Characteristics and Validation of Their Predictive
Performance. The risk score of the TCGA training set sam-
ples was calculated according to the risk score formula, with
risk scores greater than the mean labeled as highRisk and
those less than or equal to the mean labeled as lowRisk.
The results showed that there were 160 patients in the high-
Risk group and 360 patients in the lowRisk group in the
TCGA training set. Based on KM curves, high-risk patients
had significantly worse OS rates than low-risk patients
(Figure 3(a), P < 0:05). In addition, ROC curve analysis
showed that the AUC of this risk model for the 1-year, 2-
year, and 3-year survival prediction curves was less than
0.6, suggesting that the predictive value of this model for
the real high and low risks of LUAD was unsatisfactory
(Figure 3(b)). The GSE31210 and GSE72094 datasets were
subsequently used as validation sets to validate the effect of
the risk model. The results showed that the GSE31210 data-
set contained 124 highRisk samples and 102 lowRisk sam-
ples, and the GSE72094 dataset contained 212 highRisk
samples and 173 lowRisk samples. KM survival curves indi-
cated that this risk model was not significantly associated
with survival in LUAD patients in both GEO validation sets
(Figures 3(c) and 3(d) P > 0:05). In addition, a nomogram
was drawn based on clinical information such as age, gender,
and TNM stage of TCGA LUAD patients and calculated risk
scores to predict the 1-, 2-, and 3-year survival rates of
LUAD patients (Figure 3(e)).

3.4. Levels of Infiltrating Immune Cells in Patients with High-
Risk and Low-Risk LUAD. To clarify the relationship
between the constructed risk prediction model and immune
cell infiltration, we applied the ssGSEA method to the
transcriptome of the TCGA LUAD samples to assess the
immunity of different risk groups. Twenty-eight kinds of
infiltrating immune cells were included to estimate the
immune capacity of LUAD patients. The results showed that
immune cells or immune processes such as activation of B
cells, CD4+ T cells, CD8+ T cells, and dendritic cells were
significantly and positively correlated with the high risk of
LUAD patients (P < 0:01), and the correlation coefficient R
reached 0.872 (Figure 4).

4. Discussion

Chemokines are important components of the tumor micro-
environment and have multiple regulatory functions that
can act on both the tumor microenvironment and tumor
cells [6]. This study explored whether the CXC chemokine
subfamily genes could serve as prognostic factors and could
be used to construct effective risk models for LUAD patients.
Upon differential analysis of CXC gene expression in LUAD
patients from the TCGA LUAD, we found that the expres-
sion levels of CXC2, CXCL3, CXC12, and CXC16 in tumor
tissues of LUAD patients were significantly lower than in
normal tissues, while CXCL13 and CXC14 were significantly
highly expressed in tumoral tissues compared to normal
ones. Unlike our results, multiple studies have shown that
CXCL2, CXCL3, CXC12, and CXC16 were highly expressed
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in lung cancer tissues and are essential for tumor growth
[17–20]. However, the findings of Fan et al. were consistent
with this present study [21]. Highly expressed CXCL13 and
CXCL14 in lung cancer tissues were also reported in other
studies [22, 23].

CXCL13, also known as B cell-attracting chemokine 1, is
a homeostatic chemokine used to recruit B cells, a few T
cells, and macrophages [24]. In recent years, CXCL13 has
been proved to be expressed at high levels in various malig-
nant tumor tissues such as gastric cancer [25], breast cancer
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Figure 1: Differentially expressed CXC genes and GO and KEGG enrichment analyses. (a) Wayne diagram showing LUAD-related CXC
chemokine genes in the TCGA dataset. (b) GO analysis and KEGG analysis of LUAD-related CXC chemokine genes (abscissa GeneRatio
is the ratio of the number of genes enriched in each item to the total number of differential genes, that is, the enrichment; the more
rightward the marker, the higher the enrichment). (c) Screening of DEGs in LUAD tissues in the LUAD TCGA dataset and visualization
by volcano plot. (d) Wayne diagram of CXC chemokine genes significantly differentially expressed in LUAD tissues.
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Figure 2: CXC chemokine-based risk prediction modeling for LUAD. (a) Univariate Cox proportional hazard regression analysis to assess
the relationship between CXC genes and overall survival in LUAD patients, ∗∗P < 0:01. (b and c) Prognostic characteristics constructed by
the minimum criteria of the LASSO Cox regression algorithm, with each curve representing the change trajectory of each independent
variable coefficient (b); the corresponding genes at the site of the dashed line which was marked as the minimum value of log λ were the
optimal genes for modeling (c). (d) Multivariate Cox proportional hazard regression analysis based on the risk score formula.
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Figure 3: Continued.
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[26, 27], colorectal cancer [28], lung cancer [29, 30], prostate
cancer [31], and lymphoma and correlated with tumor size,
stage, lymph node metastasis status [25], sex hormone levels,
drug treatment response [32], and tumor recurrence. Collec-
tively, CXCL13 is considered as a potential prognostic and
therapeutic marker. It was reported that the overexpression

of CXCL13 could promote the growth, migration, invasion,
and epithelial-mesenchymal transformation of tumor cells
[16]. Wang et al. found that CXCL13 was overexpressed in
62% of smokers and 45% of nonsmokers in lung cancer
patients [29]. Animal experiments confirmed that CXCL13
was involved in the development of benzopyrene-induced
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Figure 3: CXC gene-based establishment of prognostic characteristics and validation of their predictive performance. (a) Kaplan-Meier
survival curve to assess the prognostic value of the risk model for LUAD patients. (b) AUC of the risk model for the 1-year, 2-year, and
3-year survival prediction curves. TP represents TRUE positive, and FP is FALSE positive according to cutoff. (c and d) GSE31210
dataset (c) and GSE72094 dataset (d) used to validate the predictive performance of the risk model for survival of LUAD patients. (e) A
nomogram constructed based on the risk score of the TCGA LUAD training set and the clinical characteristics of the patients.
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lung cancer [29], and Singh et al. demonstrated significantly
higher serum levels of CXCL13 in lung cancer patients com-
pared with healthy controls [30]. Combining the above pre-
vious studies and the survival and prognosis data obtained
from our study, it can be speculated that CXCL13 could
be a potential prognostic marker for LUAD, and its expres-
sion level is significantly and negatively correlated with the
survival of LAUD patients. Using the above prognostic anal-
ysis results, we further established a CXCL13-based risk pre-
diction model. The performance of the model was validated
using the mRNA expression of LUAD patients derived from
the GEO datasets. However, the risk score based on
CXCL13 expression level in the GSE31210 and GSE72094
datasets showed no significant correlation with the survival
of LUAD patients (P > 0:05), and the AUC value of the
ROC curve based on the TCGA LUAD data also suggested
that the model had an unsatisfactory prediction accuracy
of 1-year, 3-year, and 5-year survival of LUAD patients.
Such results could be explained by the selection of TCGA
and GEO original data.

Tumor immune infiltration analysis showed that a high
level of CXCL13 and corresponding high risk of LUAD were
positively correlated with the activation of B cells, CD4+ T
cells, CD8+ T cells, and dendritic cells. As reported, CXCL13
and its receptor CXCR5 can enhance B cell receptor-
mediated B cell activation [33]. In breast cancer patients,
tumor-infiltrating CD4+ lymphocytes were shown to be a
vital source of CXCL13 [34]. High levels of CXCL13 in
patients with chronic hepatitis B stimulated the recruitment
of CXCR5+ CD8+ T cells to produce high levels of HBV-
specific interferon-γ and IL-21 in patients with chronic
HBV infection to improve viral control [35]. CXCL13 medi-
ates B cell recruitment in tumor tissues while being essential
for the formation of tertiary lymphoid structures (TLSs), and
CXCL13+ CD103+ CD8+ TILs may play a critical role in
mediating B cell recruitment and TLS formation in human
tumors [36]. Animal experiments by McDonald et al. showed
that dendritic cells could produce CXCL13 and participate in
the development of small intestinal lymphoid tissue [37].
Taken together, we speculate that the high level of CXCL13
in cancer tissues of LUAD patients may be related to the acti-
vation and recruitment of B cells and T cells, and B cells and
dendritic cells may be important sources of CXCL13.

This study still had some limitations. All the results of
this study were based on bioinformatics calculations and
were not verified experimentally. Also, the algorithm may
have screened out some important prognostic factors.

5. Conclusions

In summary, CXCL13 was found to be significantly and highly
expressed in LUAD tissues compared to normal tissues. Based
on the risk assessment, CXCL13 was an independent risk fac-
tor for LUAD and was significantly associated with poor prog-
nosis in LUAD patients. However, its predictive model failed
to provide accurate results in the GEO database. In addition,
activation of B cells, CD4+ T cells, CD8+ T cells, and dendritic
cells were also found to be positively correlated with high risk
in LUAD patients (R = 0:872).

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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