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Objective. This study is aimed at predicting and contrasting the mechanisms of artemisinin (ARS), dihydroartemisinin (DHA),
artesunate (ART), artemether (ARM), and arteether (ARE) in the treatment of osteoporosis (OP) using network pharmacology and
molecular docking. Methods. The targets of ARS, DHA, ART, ARM, and ARE were obtained from the SwissTargetPrediction. The
targets related to OP were obtained from the TTD, DrugBank, Genecards, and DisGeNet databases. Then, the anti-OP targets of
ARS, DHA, ART, ARM, and ARE were obtained and compared using the Venn diagram. Afterward, the protein-protein
interaction (PPI) networks were built using the STRING database, and Cytoscape was used to select hub targets. Moreover,
molecular docking validated the binding association between five molecules and hub targets. Finally, GO enrichment and KEGG
pathway enrichment were conducted using the DAVID database. The common pathways of five molecules were analysed. Results.
A total of 28, 37, 36, 27, and 33 anti-OP targets of ARS, DHA, ART, ARM, and ARE were acquired. EGFR, EGFR, CASP3,
MAPK8, and CASP3 act as the top 1 anti-OP targets of ARS, DHA, ART, ARM, and ARE, respectively. MAPK14 is the common
target of five molecules. All five molecules can bind well with these hubs and common targets. Meanwhile, functional annotation
showed that MAPK, Serotonergic synapse, AMPK, prolactin, and prolactin signaling pathways are the top 1 anti-OP pathway of
ARS, DHA, ART, ARM, and ARE, respectively. IL-17 signaling pathway and prolactin signaling pathway are common anti-OP
pathways of five molecules. Besides, GO enrichment showed five biological processes and three molecular functions are common
anti-OP mechanisms of five molecules. Conclusion. ARS, DHA, ART, ARM and ARE can treat OP through multi-targets and multi
pathways, respectively. All five molecules can treat OP by targeting MAPK14 and acting on the IL-17 and prolactin signaling
pathways.

1. Introduction

Osteoporosis (OP) is a bone metabolic disease common in
the elderly [1]. OP patients have a poor quality of life due
to chronic pain and deformed spines [2]. The rising num-
ber of fractures caused by OP leads to substantial morbid-
ities, mortality, and expensive healthcare costs [3]. Despite
immense treatment advances, concerns regarding long-
term efficacy and numerous side effects make it urgent
to find new, effective anti-OP drugs [4].

Artemisinin (ARS) is the first-line antimalarial drug
acquired from Artemisia annua L, which has several deriva-

tives such as dihydroartemisinin (DHA), artesunate (ART),
artemether (ARM), and arteether (ARE) [5, 6]. In ancient
medical books, Artemisia annua L is mentioned to improve
OP symptoms, including limb pain and joint inflexibility.
Therefore, the anti-OP effect of ARS and its derivatives
has gained wide attention. In vivo, Artemisia annua ethanol
extract, ARS, and DHA can inhibit bone loss in ovariecto-
mizedmice [7, 8]. DHA and ART also prevent lipopolysaccha-
ride (LPS)-induced bone loss [9]. To further explore the
mechanism, the effects of ARS and its derivatives on osteoblast
and osteoclast were studied in vitro. ARS, DHA, ART, and
ARM can impair RANKL-induced osteoclast differentiation
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by hampering the expression of NFATc1 [7, 8, 10–12].
Besides, DHA can suppress osteoclastogenesis by suppressing
the NF-κB activation and controlling the mitochondria-
dependent apoptosis pathway [13]. ART can inhibit osteoclas-
togenesis via the miR-503/RANK axis and enhance osteoblast
differentiation by miR-34a/DKK1 axis [11, 14]. Meanwhile,

current studies only focused on the anti-OP mechanism of
ARM in regulating theMAPK (ERK, JNK, p-38) pathway [12].

As mentioned above, ARS and its derivatives can play
the anti-OP role through similar and unique mechanisms.
A comprehensive and systematic mechanism for treating

Table 1: Basic information on ARS and its derivatives.

PubChem
CID

Molecular
name

Canonical SMILES Molecular structure

68827 ARS CC1CCC2C(C(=O)OC3C24C1CCC(O3)(OO4)C)C

3000518 DHA CC1CCC2C(C(OC3C24C1CCC(O3)(OO4)C)O)C

6917864 ART CC1CCC2C(C(OC3C24C1CCC(O3)(OO4)C)OC(=O)CCC(=O)O)C

68911 ARM CC1CCC2C(C(OC3C24C1CCC(O3)(OO4)C)OC)C

3000469 ARE CCOC1C(C2CCC(C3C24C(O1)OC(CC3)(OO4)C)C)C
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OP is still not widely reported. This study investigates the
potential mechanism of ARS and its derivatives in treating
OP using network pharmacology, which provides a refer-
ence for further experimental research.

2. Methods

2.1. Identification of the Basic Information of ARS and Its
Derivatives. The canonical simplified molecular input line

Table 2: The common targets and specific targets of five molecules against OP.

Molecules Targets

Common MAPK14

ARS specific
CASR, TTR, TGFBR1, ALPL, TRPV1, CACNA1C, PDGFRB, CCR3,

CRHR1, ADRA1D, HSP90AA1, KAT2B

DHA specific CYP3A4, MAPK3, CSF1R, VDR, CYP17A1, ASAH1, CYP11B1, CYP2D6, TOP2A, BRS3, LGMN

ART specific
NR3C1, LTB4R, DPP4, ACE, PTGER4, PPARG, PTGER2, THRB, ELANE, THRA,

AGTR1, HNF4A, LPAR3, PPARA, PTPN11, PRKAA1, PRKAA2, SOAT1

ARM specific PGR

ARE specific PTK2B, MMP13, CTSK, SCN9A, ADAMTS4, ADRA1A, NR4A1, MTOR

OP ARS

1476 28 48

(a)

OP DHA

1467 37 58

(b)

OP ART

1468 36 52

(c)

OP ARM

1477 27 62

(d)

OP ARE

1471 33 65

(e)
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Figure 1: The Venn diagram of targets for treating OP. (a–e) The Venn diagram of targets of ARS-OP (a), DHA-OP (b), ART-OP (c),
ARM-OP (d), ARE-OP (e). (f) The Venn diagram of anti-OP targets of five molecules.
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Figure 2: Continued.
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entry specification (SMILES) and the structure of ARS and
its derivatives were obtained from PubChem database
(https://pubchem.ncbi.nlm.nih.gov/). The SMILES were
input into SwissTargetPrediction (http://www. swisstarget-
prediction.ch/) to obtain potential targets (probability >0)
of ARS and its derivatives. Homo sapiens was selected as
the target organism.

2.2. Screening OP-Associated Targets. OP-connected genes
were acquired from these online databases: Therapeutic Tar-
get Database (TTD http://database.idrb.cqu.edu.cn/TTD/),
the DrugBank database (https://www.drugbank.ca/), Gene-
cards (Relevance score>mean, http://www.genecards.org),
and DisGeNet (https://www.disgenet.org/). The UniProtKB
ID was used to verify all targets.

2.3. Venn Diagram Analysis. The overlapping of drug-
related and OP-associated targets might be the potential tar-
gets for drugs against OP. Anti-OP targets of ARS, DHA,
ART, ASM, and ARE were acquired by Venn online tool
(http://jvenn.toulouse.inra.fr/app/example.html). Moreover,
a Venn diagram compared the potential anti-OP targets of
five molecules.

2.4. PPI Network Construction and Hub Targets Analysis.
Protein-protein interaction (PPI) networks were constructed
to obtain the interaction between targets by inputting anti-
OP targets of each molecule into the STRING database,
respectively, (https://cn.string-db.org/). The protein type
was set to Homo sapiens, and the minimum required inter-
action score was medium (0.4). The PPI results were moved
to Cystoscope (3.7.2) to screen the hub targets with a high
degree.

2.5. Molecular Docking. The five molecules’ common and
hub targets were verified by docking with the five molecules.
The structure data files (SDFs) of five molecules were
acquired from PubChem and converted to protein data bank
(PDB) files via open Babel. The 3D structures of target pro-
teins were acquired from the PDB (http://www.pdb.org/).
Autodock tools software aids in the process of the receptors
and ligands. Autodock Vina was used for molecular docking
and to acquire binding energy. Finally, the graphical soft-
ware PyMOL was used to illustrate the docking of the recep-
tor and ligand.

2.6. Enrichment Analysis of GO and KEGG Pathways. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment of each molecule
was conducted by the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID, version 6.8,
https://david.ncifcrf.gov/). A P value less than 0.05 were con-
sidered significantly enriched. The bubble diagrams were
constructed to analyze the top 10 biological pathways
(BPs), cell localization (CC), molecular function (MF), and
the top 20 KEGG pathways that were significantly enriched.
The common terms of five molecules of the specific terms of
each molecule were obtained in excel.

2.7. Common Pathways Analysis. The maps of the common
KEGG pathways were acquired from the KEGG database
(https://www.genome.jp/kegg/). Different colors were used
to represent targets of different molecules. The genes
enriched by five molecules in the common pathway were
presented on one map.
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MMP2

PTGS2

MTOR

(e)

Figure 2: PPI networks and hub targets’ networks. (a) ARS, (b) DHA, (c) ART, (d) ARM, and (e) ARE.

Table 3: The docking energy of five molecules binding to common
and hub targets.

Molecular name Targets PDB ID
Docking score
(kcal/mol)

ARS MAPK14 5ETI -6.8

DHA MAPK14 5ETI -6.9

ART MAPK14 5ETI -7.6

ARM MAPK14 5ETI -6.3

ARE MAPK14 5ETI -6.2

ARS EGFR 5GTY -8.7

DHA EGFR 5GTY -8.7

ART CASP3 2 J30 -6.3

ARM MAPK8 3PZE -6.0

ARE CASP3 2 J30 -6.6
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3. Results

3.1. Basic Information on ARS and Its Derivatives. The
canonical SMILES and molecule structure of ARS, DHA,
ART, ARM, and ARE acquired from PubChem are shown
in Table 1. The structure of ARS and its derivatives are partic-
ular for the internal peroxide bridge [5]. The SMILES formats
of five molecules were input into SwissTargetPrediction to
predict corresponding targets. As a result, 76 targets were
predicted for ARS, 95 targets for DHA, 88 targets for ART,
89 targets for ARM, and 98 targets for ARE.

3.2. The Potential anti-OP Targets of ARS and Its Derivatives.
1504 OP-related targets were obtained from TTD, Gene-
cards, DrugBank, and DisGeNet databases using the key-
word “osteoporosis”. The overlapping targets of molecules

and OP were considered as targets for treating OP. 28, 37,
36, 27, and 33 targets of ARS, DHA, ART, ARM, and ARE
were identified to treat OP. The Venn diagrams are gener-
ated as Figures 1(a)–1(e). The targets of five molecules
against OP were compared. Five molecules share MAPK14.
The details of common and specific anti-OP targets of five
molecules are shown in Figure 1(f) and Table 2.

3.3. PPI Network Construction and Hub Targets Analysis. As
shown in Figure 2, the PPI networks exhibit the interaction
between targets. Cystoscope generates the new simple net-
works and screens the top 10 hub targets of each molecule.
Based on the new network, EGFR, HSP90AA1, and
MAPK14 are the top 3 anti-OP targets of ARS. EGFR,
MAPK3, and PTGS2 are the top 3 anti-OP targets of
DHA. CASP3, MMP9, and PPARG are the top 3 anti-OP

(a) (b)

(c) (d)

(e)

Figure 3: Schematic diagram on the docking of MAPK14 with ARS (a), DHA (b), ART (c), ARM (d), and ARE (e).
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Figure 4: GO enrichment analysis. (A) The number of enriched GO terms. (b–f) Top GO enriched terms of ARS, DHA, ART, ARM, and
ARE in treating OP.
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targets of ART. MAPK8, PTGS2, and IGF1R are the top 3
anti-OP targets of ARM. CASP3, MTOR, and PTGS2 are
the anti-OP effect of ARE.

3.4. Molecular Docking. MAPK14 is the only common target
of 5 molecules. EGFR, EGFR, CASP3, MAPK8, and CASP3
are the top1 hub anti-OP targets of ARS, DHA, ART,
ARM, and ARE, respectively. Molecular docking is con-
ducted to investigate the binding of five molecules with
EGFR, CASP3, MAPK8, and MAPK14. Table 3 shows the
calculated binding energy. Figure 3 shows the docking visu-
alization of five molecules and MAPK14. The binding
energy of less than -5 kcal/mol indicates a stable binding
between the ligands and receptors [15, 16]. The results reveal
that five molecules can bind well with MAPK14 and hub
targets.

3.5. GO Enrichment. GO enrichment of five molecules was
performed, respectively, to determine the anti-OP mecha-
nism of each molecule. Figure 4(a) shows that ARS-OP tar-
gets were significantly enriched into 60 BP terms, 12 CC
terms, and 26 MF terms; DHA-OP targets were enriched
into 126 BP terms, 14 CC terms, and 36 MF terms; ART-
OP targets were enriched into 123 BP terms, 8 CC terms,
and 33 MF terms; ARM-OP targets were enriched into 86
BP terms, 8 CC terms, and 21 MF terms; ARE-OP targets
were enriched into 107 BP terms, 18 CC terms, and 30 MF
terms. Figure 4(b)–4(f) displays the bubble chart of each
category’s top 10 GO terms.

The common GO terms can uncover the common
mechanism of five molecules. A total of 5 BP and 3 MF were
identified, and no CC was shared by all five molecules
(Table 4).

3.6. KEGG Enrichment. KEGG pathways enrichment was
conducted to predict the potential anti-OP pathways of five
molecules, respectively. The KEGG pathway involved in
human disease section was removed because OP was caused
by basic biological dysfunctions [16]. Figure 5(a) shows 18
pathways were significantly enriched from ARS-OP targets,
55 pathways from DHA-OP targets, 32 pathways from
ART-OP targets, and 19 pathways from ARM-OP targets,
40 pathways from ARE-OP targets. 10 pathways with mini-
mum P values were plotted in the bubble chart, as shown in
Figure 5(b)–5(f).

On the other hand, the prolactin signaling pathway and
IL-17 signaling pathway were found to be shared by five
molecules, a common anti-OP mechanism of five molecules.
In addition, specific pathways of each molecule have been
found. The calcium signaling pathway is the ARS-specific

pathway, and apoptosis is the ARE-specific pathway. DHA
has 15 specific pathways, such as parathyroid hormone syn-
thesis, secretion and action, sphingolipid signaling, and ara-
chidonic acid metabolism. ART has 8 specific pathways,
such as renin secretion, glucagon signaling pathway, and
thermogenesis. More details on the common and specific
KEGG pathways are shown in Table 5.

3.7. Common Pathways Analysis. All five molecules exhibit
an anti-OP effect by prolactin signaling pathway and IL-17
signaling pathway, acting on different genes of the two path-
ways. In the IL-17 signaling pathway, ARS target at
HSP90AA1, MAPK8, and MAPK14; DHA target at
MMP1, MAPK1, MAPK14, PTGS2, MMP9, and MAPK3;
ART target at MMP1, CASP3, MAPK1, MAPK14, and
MMP9; ARM target at MAPK8, MAPK14, and PTGS2;
and ARE target at MAPK8, MMP13, CASP3, MAPK14,
and PTGS2. In the prolactin signaling pathway, ARS target
at MAPK8, MAPK14, and ESR2; DHA target at PIK3CA,
MAPK1, JAK2, MAPK14, CYP17A1, and MAPK3; ART tar-
get at PIK3CA, MAPK1, MAPK14, and ESR2; ARM target at
STAT5B, MAPK8, JAK2, MAPK14, and ESR2; and ARE tar-
get at STAT5B, MAPK8, PIK3CA, JAK2, MAPK14, and
ESR2. Figure 6 illustrates the location of each target, where
rectangles of different colors represent the target genes of
different molecules.

4. Discussion

ARS and its derivatives have been used to treat many dis-
eases, such as cancers, viral infections, inflammatory, and
autoimmune diseases [17–19]. ARS and its derivatives can
improve bone metabolism in vivo and in vitro, but detailed
mechanisms are unclear [7–14]. Network pharmacology, a
systems biology-based methodology, is used to identify the
anti-OP mechanism of ARS and its derivatives entirely
[20]. Moreover, the anti-OP mechanism of these molecules
was compared.

It is found that ARS, DHA, ART, ARM, and ARE act in
an anti-OP role through multi targets and multi pathways,
respectively. In our study, EGFR is the most noticeable
anti-OP target of ARS and DHA, CASP3 is the most impor-
tant anti-OP target of ART and ARE, and MAPK8 is the
most promising target of ARM. Previous studies have
reported the importance of EGFR, CASP3, and MAPK8 in
the pathogenesis of OP. EGFR can regulate the proliferation
and differentiation of osteoblast and induce osteoclast differ-
entiation by upregulating RANKL expression [21, 22]. The
degeneration of cortical bone caused by aging is also con-
trolled by EGFR signaling [23]. CASP3, the crucial enzyme

Table 4: The common GO terms of five molecules.

GO Common GO terms

BP
Positive regulation of smooth muscle cell proliferation, positive regulation of gene expression,
positive regulation of apoptotic process, signal transduction, intracellular signal transduction

CC None

MF Enzyme binding, identical protein binding, MAP kinase activity
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Figure 5: Continued.
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in the execution phase of apoptosis, is abnormally expressed
in the OP model. It is essential for self-renewal and osteo-
genic/adipogenic differentiation of MSCs [24–26]. DHA
can increase the expression of CASP3 during LPS-induced
osteoclastogenesis [13]. MAPK8 can regulate osteoblast
autophagy and mitophagy, promoting extracellular matrix
mineralization [27–29]. Therefore, EGFR, CASP3, and
MAPK8 were focused on the next experiments exploring
the anti-OP mechanism of ARS and its derivatives.

KEGG analysis suggested that the MAPK signaling path-
way, serotonergic synapse, AMPK signaling pathway, pro-
lactin signaling pathway, and prolactin signaling pathway
are the top 1 anti-OP pathway of ARS, DHA, ART, ARM,
and ARE, respectively. These pathways are known as OP-
related pathways. MAPK signaling pathway is a classical
signaling pathway for regulating bone metabolism [30].
Experimental studies have found that DHA and ARM can

restore bone loss by the MAPK signaling pathway [12, 31].
Serotonergic synapses can secrete serotonin, a neurotrans-
mitter that increases bone formation and decreases bone
resorption [32, 33]. As an intracellular sensor for regulating
the energy balance, AMPK is a potential therapeutic target
for OP. AMPK can determine the differentiation of mesen-
chymal progenitor cells into adipocytes or osteoblasts by
regulating the expression of Runx2 and PPARG, inhibiting
the formation of osteoclasts and bone resorption through
NFATc1 [34]. Clinical and animal experiments have proved
that abnormal prolactin level is related to bone metabolism
disorder. Further studies reveal that prolactin can indirectly
affects bone remodeling by regulating sex hormone levels
[35]. Further experimental validation is required to investi-
gate the effect of ARS and its derivatives on these pathways.

There are a few common anti-OP mechanisms among
the five molecules. MAPK14 is the common target of five

Table 5: The common KEGG pathways and specific KEGG pathways of five molecules against OP.

Molecules KEGG pathways

Common IL-17 signaling pathway, prolactin signaling pathway

ARS specific Calcium signaling pathway

DHA specific

Parathyroid hormone synthesis, secretion and action, sphingolipid signaling pathway,
arachidonic acid metabolism, Adherens junction, T cell receptor signaling pathway,
aldosterone-regulated sodium reabsorption, cholinergic synapse, regulation of actin

cytoskeleton, platelet activation, metabolic pathways, retrograde endocannabinoid signaling,
oxytocin signaling pathway, cellular senescence, retinol metabolism, B cell receptor

signaling pathway

ART specific
Renin secretion, glucagon signaling pathway, thermogenesis, PPAR signaling pathway,

thyroid hormone signaling pathway, natural killer cell mediated cytotoxicity,
Apelin signaling pathway, mTOR signaling pathway

ARM specific None

ARE specific Apoptosis

Serotonergic synapse
TNF signaling pathway

IL−17 signaling pathway

Ras signaling pathway
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Figure 5: KEGG enrichment analysis. (a) The number of enriched KEGG pathways. (b–f) Top KEGG enriched pathways of ARS, DHA,
ART, ARM, and ARE in treating OP.
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molecules, regulating the expression of OPG and promoting
the proliferation and differentiation of osteoclast progenitors
[36, 37]. All five molecules can regulate the module function
of enzyme binding, identical protein binding, and MAP
kinase activity to reduce bone loss. These molecules can

improve bone metabolism by five biological processes,
including positive regulation of smooth muscle cell prolifer-
ation, positive regulation of gene expression, positive regula-
tion, apoptotic process, signal transduction, and intracellular
signal transduction. KEGG analysis shows that IL-17 and

IL-7 signaling pathway

(a)

ARS
DHA
ART

ARM
ARE

Prolactin signaling pathway

(b)

Figure 6: The targets of five molecules in the common pathways. (a) The targets of ARS, DHA, ART, ARM, and ARE in the IL-17 signaling
pathways. (b) The targets of ARS, DHA, ART, ARM, and ARE in the prolactin signaling pathways.
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prolactin signaling pathways are common pathways of five
molecules, and both are vital in the progression of OP. The
IL-17 signaling pathway is a classical way that mediates bone
and immune cells. Postmenopausal women’s low bone mass
density is associated with high plasma IL-17 level [38]. IL-
17A, an important member of the IL-17 family, plays a dual
role in osteoclasts and osteoblasts [39, 40]. The prolactin sig-
naling pathway can regulate sex hormone levels, which are
crucial in bone metabolism [35]. Five molecules can act on
the two pathways together but at different targets. These
common anti-OP mechanisms may be acquired from the
same structures of ARS and its derivatives.

Interestingly, among the five molecules, DHA can act on
the most targets, regulate the most GO MF, and involve the
most GO BP and KEGG pathways. Besides, ARS, DHA,
ART, ARM, and ARE have specific targets, BP terms, and
KEGG pathways.

There were a few shortcomings in this study. Due to the
limitations of network pharmacology, the dose-effect rela-
tionships of ARS, DHA, ART, ARM, and ARE are required
to explore in additional studies. The anti-OP mechanisms
of five molecules also need further experimental validation.
However, this study not only provides a basis for subsequent
experimental verification but provides an example for
exploring the mechanism of similar compounds using net-
work pharmacology.

5. Conclusion

In conclusion, ARS, DHA, ART, ARM, and ARE act in an
anti-OP role through multitargets and multipathways,
respectively. DHA is a prominent molecule due to its many
targets and pathways. All five molecules can treat OP by tar-
geting MAPK14 and acting on the IL-17 and prolactin sig-
naling pathways.
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