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A newly proposed generalized formulation of the fractional derivative, known as Abu-Shady–Kaabar fractional derivative, is
investigated for solving fractional differential equations in a simple way. Novel results on this generalized definition is
proposed and verified, which complete the theory introduced so far. In particular, the chain rule, some important properties
derived from the mean value theorem, and the derivation of the inverse function are established in this context. Finally, we
apply the results obtained to the derivation of the implicitly defined and parametrically defined functions. Likewise, we study a
version of the fixed point theorem for α-differentiable functions. We include some examples that illustrate these applications.
The obtained results of our proposed definition can provide a suitable modeling guide to study many problems in
mathematical physics, soliton theory, nonlinear science, and engineering.

1. Introduction

Fractional calculus is theoretically considered as a natural
extension of classical differential calculus, which has
attracted many researchers, both from a more theoretical
point of view and for its diverse applications in sciences
and engineering. Thus, from a more theoretical perspective,
various definitions of fractional derivatives have been initi-
ated. Fractional definitions try to satisfy the usual properties
of the classical derivative; however, the only property inher-
ent in these definitions is the property of linearity. On the
contrary, some of the drawbacks that these derivatives pres-
ent can be located in the following:

(i) The Riemann-Liouville derivative does not satisfy
Dα

að1Þ = 0, if α is not a natural number

(ii) Fractional derivative statements do not possess
some of the fundamental properties of classical

derivatives, such as the product rule, the quotient
rule, or the chain rule

(iii) These derived proposals, in general, do not satisfy
DαDβ f =Dα+β f

(iv) The definition of the Caputo derivative implies that the
function f must be differentiable in the ordinary sense

More information on this definition of fractional deriva-
tive can be found in [1, 2].

The locally formulated fractional derivative is established
through certain quotients of increments. In this sense, Khalil
et al. [3] introduced a locally defined derivative, called con-
formable derivative. Some of the inconveniences that the
previous fractional derivatives presented have been success-
fully solved via this definition. Thus, for example, the afore-
mentioned rules for the derivation of products and quotients
of two functions or the chain rule are properties that have
been satisfied by the conformable derivative. The physical

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 4119082, 8 pages
https://doi.org/10.1155/2022/4119082

https://orcid.org/0000-0003-2260-0341
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4119082


and geometric meaning of the derivative is studied in [4, 5].
However, in [6], the author shows the disadvantages of using
the conformable definition compared to Caputo’s fractional
derivative definition, to solve some fractional models.

Recently, Abu-Shady and Kaabar [7] introduced a new
generalized formulation of the fractional derivative (GFFD)
that allows to solve analytically in a simple way some frac-
tional differential equations, whose results agree exactly with
those obtained via the Caputo and Riemann-Liouville deriv-
atives. Also, this new definition has advantages compared to
the conformable derivative definition. In addition, the study
in [7] has been recently extended to study some important
special functions in the sense of GFFD which are essential
for modeling phenomena [8].

The GFFD definition is very important in studying vari-
ous phenomena in science and engineering due to the pow-
erful applicability of this definition in investigating many
fractional differential equations in a very simple direction
of obtaining analytical solutions without the need for
approximate numerical methods or complicated algorithms
like other classical fractional definitions. This definition is
a modified version of the conformable definition to over-
come all issues and advantages associated with the conform-
able one.

Regarding the geometric behavior of GFFD, by following
the previous research study concerning the fractional cords
orthogonal trajectories in the sense of conformable defini-
tion [5], GFFD can be similarly applied to the same example
to interpret its geometrical meaning in more details.

One of the limitations of GFFD is that GFFD is locally
defined derivative, and some future works are needed to pro-
posed nonlocal formulation of GFFD in order to preserve
the nonlocality property of fractional calculus. However,
nonlocal definitions come with many associated challenges
while working on solving fractional differential equations.
Therefore, the future studies will work on overcoming all
these challenges.

The work is constructed as follows: The GFFD and its
main properties are presented in Section 2. New results on
generalized α-differential functions are proposed in Section
3 to complete the study carried out in [7]. Some interesting
applications of the results obtained on generalized α-differ-
entiable functions are presented in Section 4. In particular,
illustrative examples of the derivation of implicitly defined
functions, of parametrically defined functions and of the
application of the fixed point theorem for generalized α
-differentiable functions are included. Some conclusions
are drawn in Section 5.

2. Fundamental Tools

Definition 1 (see [7]). A given function f : ½0,∞Þ⟶ R, the
GFFD of order , 0 < α ≤ 1, of f at t > 0 is expressed as

DGFFD f tð Þ = lim
ε⟶0

f t + Γ βð Þ/Γ β − α + 1ð Þð Þεt1−αÀ Á
− f tð Þ

ε
, β > −1, β ∈ R+:

ð1Þ

If f is α-differentiable ðα −DFÞ in some ð0, aÞ, a > 0, and
lim

t⟶0+
DGFFD f ðtÞ exists, then we have

DGFFD f 0ð Þ = lim
t⟶0+

DGFFD f tð Þ: ð2Þ

Theorem 2 (see [7]). Let 0 < α ≤ 1,β > −1, β ∈ R+ and let f , g
be α −DF at a point t > 0. Then, we obtain

(i) DGFFD½ f + g� = aDGFFD½ f � + bDGFFD½g�, ∀a, b ∈ R
(ii) DGFFD½tp� = ðpΓðβÞ/Γðβ − α + 1ÞÞtp−α, ∀p ∈ R
(iii) DGFFD½ψ� = 0, ∀constant functions f ðtÞ = ψ

(iv) DGFFD½ fg� = f DGFFD½g� + gDGFFD½ f �
(v) DGFFD½ ð f /gÞ� = ðgDGFFD½ f � − f DGFFD½g�/g2Þ
(vi) If, additionally, f is a differentiable function, then

DGFFDf ðtÞ = ðΓðβÞ/Γðβ − α + 1ÞÞt1−αðdf /dtÞðtÞ.
The generalized α-derivative of certain functions using

GFFD is expressed as:

(i) DGFFD½1� = 0

(ii) DGFFD½sin ðktÞ� = ðkΓðβÞ/Γðβ − α + 1ÞÞt1−α cos ðktÞ
(iii) DGFFD½cos ðktÞ� = −ðkΓðβÞ/Γðβ − α + 1ÞÞt1−α sin ðkt

Þ
(iv) DGFFD½ekt� = ðkΓðβÞ/Γðβ − α + 1ÞÞt1−αekt

In addition, it is interesting to highlight the generalized α
-derivative of the following functions:

(i) DGFFD½ðΓðβ − α + 1Þ/αΓðβÞÞtα� = 1

(ii) DGFFD½sin ððΓðβ − α + 1Þ/αΓðβÞÞtαÞ� = cos ððΓðβ −
α + 1Þ/αΓðβÞÞtαÞ

(iii) DGFFD½cos ððΓðβ − α + 1Þ/αΓðβÞÞtαÞ� = −sin ððΓðβ
− α + 1Þ/αΓðβÞÞtαÞ

(iv) DGFFD½eððΓðβ−α+1Þ/αΓðβÞÞtαÞ� = eððΓðβ−α+1Þ/αΓðβÞÞt
αÞ.

Theorem 3 (Rolle’s theorem for generalized α-differentiable
functions) (see [7]). Let a > 0, α ∈ ð0,1� and f : ½a, b�⟶ R be
a given function satisfying

(i) f is continuous on ½a, b�
(ii) f is generalized α −DF on ða, bÞ
(iii) f ðaÞ = f ðbÞ
Then, ∃c ∈ ða, bÞ, such that DGFFDf ðcÞ = 0.

Theorem 4 (Mean value theorem for generalized α-differ-
entiable functions) (see [7]). Let a > 0, α ∈ ð0,1� and f : ½a, b
�⟶ R be a given function satisfying

2 Computational and Mathematical Methods in Medicine



(i) f is continuous on ½a, b�
(ii) f is generalized α −DF on ða, bÞ
Then, ∃c ∈ ða, bÞ, ∋

DGFFDf cð Þ = f bð Þ − f að Þ
h bα − aαð Þ , ð3Þ

where h = ðΓðβ − α + 1Þ/αΓðβÞÞ.

3. New Results on Generalized α -Differentiable
Functions

In this section, we establish important results that complete
the theory of generalized α-differentiable functions, intro-
duced in [7].

Theorem 5. If a given function f : ½0,∞Þ⟶ R is α −DF at
t0 > 0, 0 < α ≤ 1, β > −1, β ∈ R+, then f is continuous at t0.

Proof. Since

f t0 + Γ βð Þ/Γ β − α + 1ð Þð Þεt1−α0
À Á

= f t0 + Γ βð Þ/Γ β − α + 1ð Þð Þεt1−α0
À Á

− f t0ð Þ
ε

ε + f t0ð Þ,
ð4Þ

Then,

lim
ε⟶0

f t0 + Γ βð Þ/Γ β − α + 1ð Þð Þεt1−α0
À Á

= lim
ε⟶0

f t0 + Γ βð Þ/Γ β − α + 1ð Þð Þεt1−α0
À Á

− f t0ð Þ
ε

ε

� �
+ f t0ð Þ = f t0ð Þ:

ð5Þ

Hence, f is continuous at t0

Theorem 6 (Chain rule). Let 0 < α ≤ 1, β > −1, β ∈ R+, g gen-
eralized α −DF at t > 0 and f differentiable at gðtÞ then

DGFFD f ∘ g½ � tð Þ = f ′ g tð Þð ÞDGFFDg tð Þ: ð6Þ

Proof. We prove the result following a standard limit
approach. First, if the function g is constant in a neighbor-
hood of a > 0 then DGFFD½ f ∘ g�ðtÞ = 0. If g not is constant
in a neighborhood of a > 0, we can find a t0 > 0 such that
gðt1Þ ≠ gðt2Þ for any t1, t2 ∈ ða − t0, a + t0Þ. Now, since g is
continuous at a, for ε sufficiently small, we have

DGFFD f ∘ g½ � að Þ = lim
ε⟶0

f g a + Γ βð Þ/Γ β − α + 1ð Þð Þεa1−αÀ ÁÀ Á
− f g að Þð Þ

ε

= lim
ϵ⟶0

f g a + Γ βð Þ/Γ β − α + 1ð Þð Þεa1−αÀ ÁÀ Á
− f g að Þð Þ

g a + Γ βð Þ/Γ β − α + 1ð Þð Þεa1−αð Þ − g að Þ

∙
g a + Γ βð Þ/Γ β − α + 1ð Þð Þεa1−αÀ Á

− g að Þ
ε

= lim
ϵ⟶0

f g a + Γ βð Þ/Γ β − α + 1ð Þð Þεa1−αÀ ÁÀ Á
− f g að Þð Þ

g a + Γ βð Þ/Γ β − α + 1ð Þð Þεa1−αð Þ − g að Þ

∙lim
ϵ⟶0

g a + Γ βð Þ/Γ β − α + 1ð Þð Þεa1−αÀ Á
− g að Þ

ε
:

ð7Þ

Making

h = g a + Γ βð Þ
Γ β − α + 1ð Þ
� �

εa1−α
� �

− g að Þ, ð8Þ

in the first factor, so we have

lim
ϵ⟶0

f g a + Γ βð Þ/Γ β − α + 1ð Þð Þεa1−αÀ ÁÀ Á
− f g að Þð Þ

g a + Γ βð Þ/Γ β − α + 1ð Þð Þεa1−αð Þ − g að Þ
= lim

h⟶0

f g að Þ + hð Þ − f g að Þð Þ
h

,
ð9Þ

from here

DGFFD f ∘ g½ � að Þ = lim
h⟶0

f g að Þ + εð Þ − f g að Þð Þ
h

lim
ϵ⟶0

Á g a + Γ βð Þ/Γ β − α + 1ð Þð Þεa1−αÀ Á
− g að Þ

ε
= f ′ g að Þð ÞDGFFDg að Þ:

ð10Þ

Remark 7. Using the fact that differentiability implies gener-
alized α-differentiability and assuming gðtÞ > 0, Equation (6)
can be written as

DGFFD f ∘ g½ � tð Þ = Γ β − α + 1ð Þ
Γ βð Þ g tð Þα−1DGFFD f g tð Þð ÞDGFFDg tð Þ:

ð11Þ

Theorem 8 (Extended mean value theorem for generalized α
-differentiable functions) [5]. Let a > 0, α ∈ ð0,1�, and f , g
: ½a, b�⟶ R be functions satisfying

(i) f , g are continuous on ½a, b�
(ii) f , g are generalized α −DF on ða, bÞ
(iii) DGFFDgðtÞ ≠ 0∀t ∈ ða, bÞ
(iv) gðbÞ ≠ gðaÞ
(v) DGFFDf ðtÞ and DGFFDgðtÞ not annulled simulta-

neously on ða, bÞ
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Then, ∃c ∈ ða, bÞ, ∋

DGFFDf cð Þ
DGFFDg cð Þ = f bð Þ − f að Þ

g bð Þ − g að Þ : ð12Þ

Proof. Consider the function

F tð Þ = f tð Þ − f að Þ − f bð Þ − f að Þ
g bð Þ − g að Þ

� �
g tð Þ − g að Þð Þ: ð13Þ

Since F is continuous on ½a, b�, generalized α −DF on ð
a, bÞ, and FðaÞ = FðbÞ = 0, then by Theorem 3, ∃c ∈ ða, bÞ
such that DGFFDFðcÞ = 0. Using the linearity of DGFFD and
the fact that the generalized α-derivative of a constant is
zero, our result follows.

Remark 9. Observe that Theorem 4 is a special case of this
theorem for gðtÞ = ðΓðβ − α + 1Þ/αΓðβÞÞtα

Theorem 10. Let a > 0, α ∈ ð0, 1� and f : ½a, b�⟶ R be a
given function satisfying

(i) f is continuous on ½a, b�
(ii) f is generalized α −DF on ða, bÞ
If DGFFDf ðtÞ = 0, for all t ∈ ða, bÞ, then, f is a constant on

½a, b�

Proof. Suppose DGFFD f ðtÞ = 0 for all t ∈ ða, bÞ. Let t1, t2 ∈ ½a
, b� with t1 < t2. So, the closed interval ½t1, t2� is contained
in ½a, b�, and the open interval ðt1, t2Þ is contained in ða, bÞ.

Hence, f is continuous on ½t1, t2� and α −DF on ðt1, t2Þ.
So, by Theorem 4, there is c ∈ ðt1, t2Þ with

f t2ð Þ − f t1ð Þ
Γ β − α + 1ð Þ/αΓ βð Þð Þ tα2 − tα1ð Þ =DGFFD f cð Þ = 0: ð14Þ

Therefore, f ðt2Þ − f ðt1Þ = 0 and f ðt2Þ = f ðt1Þ
Since t1 and t2 are arbitrary numbers in ½a, b� with t1 < t2

, then f is a constant on ½a, b�.

Corollary 11 (see [5]). Let a > 0, α ∈ ð0,1�, and F,G : ½a, b�
⟶ R be functions such that DGFFDFðtÞ =DGFFDGðtÞ
∀t ∈ ða, bÞ. Then, ∃ a constant C such that

F tð Þ =G tð Þ + C: ð15Þ

Proof. By simply applying the above theorem to HðtÞ = Fðt
Þ − GðtÞ, it can easily be proven.

Theorem 12 (see [5]). Let a > 0, α ∈ ð0, 1�, and f : ½a, b�
⟶ R be a given function satisfying

(i) f is continuous on ½a, b�
(ii) f is generalized α −DF on ða, bÞ
Then, we have

(i) If DGFFDf ðtÞ > 0∀t ∈ ða, bÞ, then f is strictly increas-
ing on ½a, b�

(ii) If DGFFDf ðtÞ < 0∀t ∈ ða, bÞ, then f is strictly decreas-
ing on ½a, b�

Proof. Following similar line of argument as given in the
Theorem 10, there exists c between t1 and t2 with

f t2ð Þ − f t1ð Þ
Γ β − α + 1ð Þ/αΓ βð Þð Þ tα2 − tα1ð Þ =DGFFD f cð Þ: ð16Þ

(1) If DGFFD f ðcÞ > 0, then f ðt2Þ > f ðt1Þ for t1 < t2. There-
fore, f is strictly increasing on ½a, b�, since t1 and t2
are arbitrary number of ½a, b�

(2) If DGFFD f ðcÞ < 0, then f ðt2Þ < f ðt1Þ for t1 < t2. There-
fore, f is strictly decreasing on ½a, b�, since t1 and t2
are arbitrary number of ½a, b�.

Definition 13. Let I ⊂ ð0,∞Þ an open interval, α ∈ ð0,1�, and
f : I ⟶ R be we will say that f ∈ CαðI, RÞ if the f is general-
ized α −DF on I and generalized α-derivative is continuous
on I.

Theorem 14. Let I ⊂ ð0,∞Þ an open interval, α ∈ ð0,1�, and
f : I ⟶ R be a function of class Cα on the interval I. Suppose
f ðaÞ = b for some a ∈ I, and DGFFDf ðaÞ ≠ 0. Then, there is an
open neighborhood U of a in which f admits an inverse func-
tion f −1 of class Cα on the open neighborhood V = f ðUÞ of b,
and its generalized α-derivative is

DGFFDf −1 yð Þ = Γ βð Þ
Γ β − α + 1ð Þ
� �2 t1−αy1−α

DGFFDf tð Þ ,∀y ∈V , t = f −1 yð Þ:

ð17Þ

Proof. Since DGFFD f ðtÞ is continuous in the open interval I, it
is a known fact that there exists an open neighborhood U of
a in which DGFFD f ðtÞ has a constant sign (the sign of DGFD

f ðaÞ). From Theorem 14, it follows f that is strictly mono-
tonic on U (increasing if DGFFD f ðaÞ > 0 and decreasing if
DGFFD f ðaÞ < 0). Therefore, f is continuous and strictly
monotonic on U , so there is the inverse function of the
one-to-one function f : U ⟶ V , with V = f ðUÞ. This
inverse f −1 : V ⟶U is of class Cα and strictly monotonic
(in the same sense that f is) on V . Equation (30) can be
obtained from the identity f ð f −1ðyÞÞ = y for all y ∈ V , in
which the α-derivative (with respect to y) is calculated,

4 Computational and Mathematical Methods in Medicine



applying the chain rule

Γ β − α + 1ð Þ
Γ βð Þ tα−1DGFFD f tð Þ∙DGFFD f −1 yð Þ

= Γ βð Þ
Γ β − α + 1ð Þ y

1−α,∀y ∈ V , t = f −1 yð Þ:
ð18Þ

4. Applications

Some interesting applications of the results obtained on gen-
eralized α −DF functions are presented in this section.

4.1. Generalized α-Derivative of an Implicit Function. It is a
known fact that an equation Fðt, yÞ = 0 implicitly defines a
function y = gðtÞ in a certain open interval I, if Fðt, gðtÞÞ
= 0∀t ∈ I. Suppose that gðtÞ and Fðt, gðtÞÞ are generalized
α −DF functions in an open interval I ⊂ ðo:∞Þ, then the
derivative DGFFDgðtÞ can be found by calculating the gener-
alized α-derivative of Fðt, gðtÞÞ, as a compound function,
and canceling this derivative calculated.

Now, we are going to calculate the derivative of the gen-
eralized 1/3-differentiable y = gðtÞ function at the point t = 8
, such that gð8Þ = 1, and it is implicitly defined by the equa-
tion

ffiffi
t3

p
− 2

� �
e6
ffiffi
y3

p
− 3

ffiffi
t3

p
sin 1 − ffiffiffi

y3
pð Þ − ffiffiffi

y3
p + 1 = 0: ð19Þ

Calculating the 1/3 -derivative in this equation, we
obtain

1
3

Γ βð Þ
Γ β + 2/3ð Þ e

6
ffiffiffiffiffiffi
g tð Þ3

p
+ 2

ffiffi
t3

p
− 2

� �
e6
ffiffiffiffiffiffi
g tð Þ3

p
g tð Þ−2/3DGFFDg tð Þ

−
Γ βð Þ

Γ β + 2/3ð Þ sin 1 −
ffiffiffiffiffiffiffiffiffi
g tð Þ3

p� �
+

ffiffi
t3

p
cos 1 −

ffiffiffiffiffiffiffiffiffi
g tð Þ3

p� �
g tð Þ−2/3DGFFDg tð Þ

−
1
3g tð Þ−2/3DGFFDg tð Þ = 0:

ð20Þ

Taking t = 8 and gð8Þ = 1 in the equation above, we have

1
3

Γ βð Þ
Γ β + 2/3ð Þ e

6 + 2DGFFDg 8ð Þ − 1
3D

GFFDg 8ð Þ = 0: ð21Þ

Finally, the generalized 1/3-derivative is given by

DGFFDg 8ð Þ = −
Γ βð Þ

Γ β + 2/3ð Þ
e6

5 : ð22Þ

4.2. Generalized α-Derivative of a Parametrically Defined
Function. Let t = tðλÞ, y = yðλÞ be generalized α −DF func-
tions on an open interval I ⊂ ðo:∞Þ, with DGFFDtðλÞ ≠ 0
∀λ ∈ I. If t = tðλÞ and y = yðλÞ, define the function y = yðλð
tÞÞ = yðtÞ (where λðtÞ is the inverse function of tðλÞ), and

then, the generalized α-derivative of this function is given by

DGFFDy tð Þ = Γ β − α + 1ð Þ
Γ βð Þ ∙λα−1∙DGFFDy λð Þ∙DGFFDλ tð Þ

= Γ β − α + 1ð Þ
Γ βð Þ ∙λα−1∙DGFFDy λð Þ

∙
Γ βð Þ

Γ β − α + 1ð Þ
� �2

∙
λ1−αt1−α

DGFFDt λð Þ

= Γ βð Þ
Γ β − α + 1ð Þ

DGFFDy λð Þ
DGFFDt λð Þ t λð Þð Þ1−α:

ð23Þ

Note that the above expression is obtained by applying
the chain rule and the derivation formula of the inverse
function, both in the generalized sense.

Thus, for example, consider the function y = yðtÞ defined
parametrically by

t λð Þ = r 3
ffiffiffi
λ3

p
++ sin 3

ffiffiffi
λ3

p� �� �
y λð Þ = r 1 − cos 3

ffiffiffi
λ3

p� �� � ,∀λ ∈ 0, 2π
3

� �3:
" #

, ð24Þ

is generalized 1/3-differentiable and its 1/3-derivative is (as a
function of t)

DGFFDy tð Þ = Γ βð Þ
Γ β + 2/3ð Þ

DGFFDy λð Þ
DGFFDt λð Þ t λð Þð Þ2/3

= Γ βð Þ
Γ β + 2/3ð Þ

sin 3
ffiffiffi
λ3

p� �
1 + cos 3

ffiffiffi
λ3

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 3

ffiffiffi
λ3

p
++ sin 3

ffiffiffi
λ3

p� �� �23

r

= Γ βð Þ
Γ β + 2/3ð Þ tan 3

ffiffiffi
λ3

p

2

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 3

ffiffiffi
λ3

p
++ sin 3

ffiffiffi
λ3

p� �� �23

r
:

ð25Þ

4.3. Fixed Point Theorem for Generalized α-Derivative. We
present the fixed point theorem for generalized α-deriva-
tive and its respective proof. In addition, we will establish
some important results about the iteration of the fixed point
in the generalized α-derivative sense. However, we first pres-
ent some basic concepts and necessary results for the devel-
opments that we are going to carry out.

Definition 15. Let the following fixed-point equation t = f ðtÞ.
Here, f is a mapping from X ⟶ X. We assume that X is
endowed with the metric d. A point t ∈ X which satisfies t
= f ðtÞ is called a fixed point of f .

Theorem 16 (Modified mean value theorem for generalized
α-differentiable functions). Let a > 0, α ∈ ð0,1� and f : ½a, b�
⟶ R be a given function satisfying

(i) f is continuous on ½a, b�
(ii) f is generalized α −DF on ða, bÞ
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Then, ∃c ∈ ða, bÞ, ∋

DGFFDf cð Þ
hc1−α

= f bð Þ − f að Þ
b − a

, ð26Þ

where h = ðΓðβÞ/Γðβ − α + 1ÞÞ:

Proof. Consider the function

g tð Þ = f tð Þ − f að Þ − f bð Þ − f að Þ
b − a

t − að Þ: ð27Þ

Then, the function g satisfies the conditions of Theorem
3. Hence, ∃c ∈ ða, bÞ, ∋C0Tα

t ½g�ðcÞ = 0. Therefore

0 =DGFFDg cð Þ =DGFFD f cð Þ − f bð Þ − f að Þ
b − a

∙
Γ βð Þ

Γ β − α + 1ð Þ ∙c
1−α:

ð28Þ

Hence,

DGFFD f cð Þ
hc1−α

= f bð Þ − f að Þ
b − a

: ð29Þ

Now, we establish the fixed point theorem for general-
ized α-derivative.

Theorem 17. Let a > 0 and α ∈ ð0, 1�. If f ∈ Cð½a, b�, RÞ and
f ðtÞ ∈ ½a, b�, ∀t ∈ ½a, b�, then g has a fixed point at ½a, b�. If
also, f is generalized α −DF on ða, bÞ and

Γ β − α + 1ð Þ
Γ βð Þ

DGFFDf tð Þ
t1−α

����
���� ≤ k < 1,∀t ∈ a, bð Þ, ð30Þ

then f has a unique fixed point p at ½a, b�.

Proof. If f ðaÞ = a or f ðbÞ = b, the existence of the fixed point
is obvious. Suppose that f ðaÞ ≠ a and f ðbÞ ≠ b, therefore f ð
aÞ > a and f ðbÞ < b. Let gðtÞ = f ðtÞ − t, clearly continuous
on ½a, b�, we have

g að Þ = f að Þ − a > 0 andg bð Þ = f bð Þ − b < 0: ð31Þ

By the classical intermediate value theorem, then ∃p ∈ ð
a, bÞ∋gðpÞ = 0; that is

g pð Þ = f pð Þ − p = 0: ð32Þ

Therefore, f has a fixed point at p.
Suppose also that Equation (30) is satisfied and that p

and q are fixed points on ½a, b� with p ≠ q. By Theorem 16,
∃ is a number ξ between p and q, and therefore, in ða, bÞ,

such that

p − qj j = f pð Þ − f qð Þj j = Γ β − α + 1ð Þ
Γ βð Þ

DGFD f ξð Þ
ξ1−α

����
���� p − qj j

≤ k p − qj j < p − qj j,
ð33Þ

which implies that jp − qj < jp − qj which is contradiction,
therefore p = q.

Remark 18. To approximate the fixed point of a function f ,
we choose an initial approximate value p0, and we obtain
the succession fpng∞n=0 by taking pn = f ðpn−1Þ for each n ≥ 1
. If the succession fpng∞n=0 of converges p and f is a contin-
uous function, then

p = lim
n⟶∞

pn = lim
n⟶∞

f pn−1ð Þ = f lim
n⟶∞

pn−1
� �

= f pð Þ, ð34Þ

and a solution of the equation t = f ðtÞ is obtained. This tech-
nique is called iterative technique of the fixed point or func-
tional iteration.

The following result provides a first step to determine a
procedure that guarantees that the function f converges a
solution of the equation t = f ðtÞ and that also chooses f cor-
rectly in such a way that it makes the convergence as quickly
as possible.

Theorem 19. Let a > 0 and α ∈ ð0:1�. If f ∈ Cð½a, b�, RÞ and
f ðtÞ ∈ ½a, b�, for all t ∈ ½a, b�. Also, suppose that f is general-
ized α −DF on ða, bÞ with

Γ β − α + 1ð Þ
Γ βð Þ

DGFFDf tð Þ
t1−α

����
���� ≤ k < 1,∀t ∈ a, bð Þ: ð35Þ

If p0 is any number in ½a, b�, then, the succession defined
by

pn = f pn−1ð Þ, n ≥ 1, ð36Þ

converges the unique fixed point p in ½a, b�.

Proof. First, by Theorem 17, ∃is a unique fixed point at ½a, b�.
On the other hand, since f applies to ½a, b� itself, the
sequence fpng∞n=0 is defined ∀n ≥ 0 and pn ∈ ½a, b�∀n. Using
Equation (35) and the intermediate value theorem,

pn − pj j = f pn−1ð Þ − f pð Þj j

= Γ β − α + 1ð Þ
Γ βð Þ

DGFFD f ξð Þ
ξ1−α

����
���� pn−1 − pj j

≤ k pn−1 − pj j,

ð37Þ

where ξ ∈ ða, bÞ. Applying the above equation inductively
results
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pn − pj j ≤ k pn−1 − pj j ≤ k2 pn−2 − pj j ≤⋯ ≤ kn p0 − pj j: ð38Þ

Since k < 1, it easily follows that

lim
n⟶∞

pn − pj j ≤ lim
n⟶∞

kn p0 − pj j = 0, ð39Þ

and fpng∞n=0 converges to p.

Corollary 20. If f satisfies the hypotheses of Theorem 19, then

pn − pj j ≤ kn

1 − k
p0 − p1j j,∀n ≥ 1: ð40Þ

Proof. For n ≥ 1, the procedure used in the proof of Theorem
19 implies that

pn+1 − pnj j = f pnð Þ − f pn−1ð Þj j ≤ k pn − pn−1j j ≤⋯ ≤ kn p1 − p0j j:
ð41Þ

Hence, for m > n ≥ 1

pm − pnj j = pm − pm−1 + pm−1−⋯−pn+1 + pn+1 − pnj j
≤ pm − pm−1j j + pm−1 − pm−2j j+⋯+ pn+1 − pnj j
≤ km−1 p1 − p0j j + km−2 p1 − p0j j + kn p1 − p0j j
= kn 1 + k + k2+⋯+km−n−1À Á

p1 − p0j j:

ð42Þ

By Theorem 19, lim
n⟶∞

pm = p, so

p − pnj j = lim
m⟶∞

pm − pnj j ≤ kn p0 − pj j〠
∞

i=0
ki = kn

1 − k
p0 − p1j j:

ð43Þ

Remark 21. It is clear that the speed of convergence depends
on the factor kn/1 − k, and the smaller k can be made, the
faster the convergence will be. Convergence can be very slow
if k is close to 1.

Finally, we present an example that illustrates these last
established results.

Consider the function: f ðtÞ = 2−
ffiffi
t

p
on the interval ½1/9, 1�,

and we take α = β = 1/2. We can observe that f ð½1/9, 1�Þ = ½
0:5,0:7937005259840997� ⊂ ½1/9, 1�. Also, f is continuous
and

Γ 1ð Þ
Γ 1/2ð Þ

DGFFD f tð Þffiffi
t

p
����

���� = −
log 2
2
ffiffi
t

p
2
ffiffi
t

p

� �

≤ 0:82522692269223647775,∀t ∈ 1
9 , 1
� �

,

ð44Þ

so f satisfies the hypotheses of Theorem 17 and has a unique
fixed point at ½1/9, 1�. In addition, if we use Corollary 20, we
can estimate the number of iterations required to find an

approximation of the fixed point with a precision of 10−4.
Taking p0 = 1, to obtain this precision, 54 iterations are
required. Also, note that since the generalized 1/2-deriva-
tive DGFFD f ðtÞ is negative, the successive approximations
oscillate around the fixed point.

5. Conclusions

Novel results regarding the Abu-Shady–Kaabar fractional
derivative have been investigated in this study which are
extensions of the previous research study’s results in [7]. In
particular, some important properties of the generalized
fractional derivative have been accomplished, such as the
chain rule, some consequences of the mean value theorem,
and the derivation of the inverse function. It is verifiable
with the fact that these newly obtained results are consid-
ered as a natural extension of the classical differential cal-
culus. The potential of this new definition of fractional
derivative, both from a theoretical point of view and due
to its applications, is evident through the developments
and illustrative examples included in the previous section.
This research can definitely open a new path for more
related future works in which the results of classical math-
ematical analysis are extended in the sense of this new
definition of fractional derivative. This definition will be
applied further in studying various partial differential
equations such as Schrödinger equation and Wazwaz–Ben-
jamin–Bona–Mahony equation to study some solutions
that are important in soliton theory and many other inter-
esting research topics. Some specific examples of studies
that can be further studied in the sense of GFFD are the
Klein–Fock–Gordon equation via the Kudryashov-
expansion method [9], the systems of fractional-order par-
tial differential equations via the Laplace optimized
decomposition technique [10], and the noninteger
fractional-order hepatitis B model [11], by comparing the
previous results in the senses of conformable and Caputo
definitions with new results using GFFD. Numerical exper-
iments with error analysis including comparison between
conformable derivative and our definition including CPU
time in the graphical representations in the sense of our
proposed definition will be conducted in our future stud-
ies. In addition, in our future study, all algorithms and/
or pseudo-codes will be provided for the solutions’ steps
using one of the common software packages such as
MAPLE and MATHEMATICA.
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