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The COVID-19 pandemic has shocked nations due to its exponential death rates in various countries. According to the United
Nations (UN), in Russia, there were 895, in Mexico 303, in Indonesia 77, in Ukraine 317, and in Romania 252, and in
Pakistan, 54 new deaths were recorded on the 5th of October 2021 in the period of months. Hence, it is essential to study the
future waves of this virus so that some preventive measures can be adopted. In statistics, under uncertainty, there is a
possibility to use probability models that leads to defining future pattern of deaths caused by COVID-19. Based on probability
models, many research studies have been conducted to model the future trend of a particular disease and explore the effect of
possible treatments (as in the case of coronavirus, the effect of Pfizer, Sinopharm, CanSino, Sinovac, and Sputnik) towards a
specific disease. In this paper, varieties of probability models have been applied to model the COVID-19 death rate more
effectively than the other models. Among others, exponentiated flexible exponential Weibull (EFEW) distribution is pointed
out as the best fitted model. Various statistical properties have been presented in addition to real-life applications by using the
total deaths of the COVID-19 outbreak (in millions) in Pakistan and Afghanistan. It has been verified that EFEW leads to a
better decision rather than other existing lifetime models, including FEW, W, EW, E, AIFW, and GAPW distributions.

1. Introduction

The first case of COVID-19 infection was located in Pakistan
on February 26, 2020, in Karachi—a recent returnee from
Iran. From that point onward, the spread of contaminations
sped up, and on March 18, 2020, it was affirmed that the
infection had spread to all regions of Pakistan. More than
a hundred deaths apart from more than six thousand
infected people were reported in the first seven weeks of this
outbreak [1]. Pakistan has the third-highest number of cases
in South Asia after India and Bangladesh, while it stands 7th
in Asia as of September 16, 2021, with a 26th position world-

wide. The first death was reported on March 20 in Sindh
province, and the community transmission was spread rap-
idly all over the country.

In a country like Pakistan, the graph started to follow an
upward trajectory in March 2020 and peaked in June when it
slowly started to decline and flattened in August and Sep-
tember. But again, it started to increase in October of the
same year, reflecting the bathtub shape in the data.
Figures 1(a) and 1(b) show the average infection rates.

Many researchers have conducted various studies to
investigate the COVID-19 outbreak, such as Singh et al.
who explored how to predict the COVID-19 pandemic for
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the top 15 countries using the ARIMA model [2]. The
worldwide death rates were estimated by Chaurasia and
Pal, by employing the ARIMA and regression models [3].
Chakraborty and Ghosh utilized a regression tree and
ARIMA model to forecast the short time of COVID-19 cases
in multiple countries and the risk of COVID-19 by finding
various demographic characteristics beside some disease

characteristics within these countries [4]. Yousaf et al. [5]
utilized the autoregressive integrated moving average
(ARIMA) model to predict infections, deaths, and recover-
ies. Fong et al. [6] considered small data for early forecasting,
while Petropoulos and Makridakis [7] also applied the fore-
casting model. Chen et al. [8] designed an algorithm for pre-
dicting COVID-19 data, while Nayak et al. [9] and
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Figure 1: (a) Weekly average of COVID-19 infections in Pakistan. (b) Weekly average of COVID-19 infections in Afghanistan.
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Figure 2: Plots of the CDF and PDF of EFEW.
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Wolkewitz et al. [10] applied a probabilistic model to ana-
lyze COVID-19 data. The size of the COVID-19 epidemic
has been worked out by Yue et al. [11] with the help of sur-
veillance systems, and a similar study to estimate the final
size of the COVID-19 epidemic has also been discussed
by Syed and Sibgatullah [12]. Mizumoto et al. [13] esti-
mated the asymptomatic proportion of COVID-19. Many
researchers applied various statistical models to predict data
analysis. For example, Sukhanova et al. [14] forecast the
macroeconomic indices with the help of ARIMA, vector
autoregression (VAR), and simultaneous equation system.
Yu et al. [15] predict the tourism demand by utilizing the
SARIMA model and neural network (NN). To examine the
accuracy with which long-term scenarios can be predicted
in patients with coronary artery disease, Lee et al. [16]
applied Cox regression. The results showed that model-
based prediction was considered better as compared to doc-
tors’ prediction.

Many lifetime distributions are available in the literature
to predict the COVID-19 data, but these distributions are
unable to model the data more precisely. For example, the
Weibull (W) distribution introduced by Weibull [17] and
the exponential (Ex) distribution by Epstein [18] along with
other lifetime distributions are unable to model the COVID-
19 data or any other data related to any infections of the dis-
ease that does not follow a constant rate (monotonic data).
In daily life situations, the data does not always follow a
monotonic failure function; rather, it follows a nonmono-
tonic failure function. For example, patients with tuberculo-
sis have a higher risk in the early stages but a lower risk later
on. A similar form of nonmonotonicity occurs in infants
because the hazards for infants are highest in the early stages
and gradually reduce as they develop, but the danger
increases again as they become older, resulting in the bath-
tub shape. The researchers are trying to introduce functions
that are more flexible as well as and can capture the nonmo-
notonic hazard rate functions. For example, Cordeiro et al.
[19], El-Gohary et al. [20], Ijaz et al. [21], and Farooq et al.
[22] worked on introducing the new distributions. We rec-
ommend recent research studies: Ijaz et al. [21, 23] and Ijaz
et al. [24].

In practice, the modeling of real phonon becomes more
complex when the number of unknown’s parameters is
large. There are two main significant advantages of the prob-
ability models in this paper. First, it presents a best fitted
model which is more flexible with fewer unknown parame-
ters. Secondly, it leads us to better results for various hazard
rate shapes, particularly in a bathtub shape where the curves
are flatted at the middle and skewed on either side. Note that
the distribution in this paper may not be considered as a best
fitted model for the data sets with extreme values or even
when there is an outlier.
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Figure 3: Hazard rate function of EFEW.

Table 1: Skewness and kurtosis.

a b c d Skewness Kurtosis

0.5 9.5 0.1 1 0.996 43.031

0.5 10 10 10 0.010 1.239

15 15 15 0.1 -0.421 2.420

0.1 20 0.1 0.1 1 155

10 10 15 1 -0.017 1.254

10 7 4 1 0.009 1.251

1 10 1 10 0.123 1.277

1 10 0.1 0.1 0.999 121.275

10 10 10 0.1 -0.519 1.262

10 10 10 10 0.048 1.242
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2. Material and Methodology

The current research study focuses on the best fitted proba-
bility model which has more parameters as compared to
some existing models. In this paper, the best fitted model
has increased a shape parameter (d) in the family of distribu-
tions introduced by [22]. The CDF and PDF of the proposed
probability model take the following forms:

F xð Þ = eaF xð Þ − 1
ea − 1

� �d

, x and a, d > 0, ð1Þ

f xð Þ = adf xð ÞeaF xð Þ eaF xð Þ − 1
� �d−1

ea − 1ð Þd
: ð2Þ

By putting the CDF and PDF of the Weibull distribution,
Equations (1) and (2) take the following form:

F xð Þ =
ea 1−e−bxcð Þ − 1
� �

ea − 1

0@ 1Ad

, x > 0, a, b, c, and d > 0, ð3Þ

f xð Þ =
abcdxc−1ea 1−e−bxcð Þ−bxc ea 1−e−bxcð Þ − 1

� �d−1
ea − 1ð Þd

, ð4Þ

where “b” is the scale and “c” and “d” are the shape
parameters.

Figure 2 defines the shapes of the CDF and PDF
described in (3) and (4), respectively.

2.1. The Survival SðxÞ and Hazard hðxÞ Rate Function. By def-
inition, SðxÞ and hðxÞ functions are, respectively, defined by

S xð Þ = 1 − F xð Þ,

h xð Þ = f xð Þ
S xð Þ :

ð5Þ

Table 2: Data set 1: Pakistan (total deaths per million).

0.009 0.014 0.014 0.023 0.027 0.032 0.036 0.041 0.05 0.054

0.063 0.095 0.118 0.122 0.154 0.181 0.186 0.213 0.24 0.258

0.276 0.294 0.299 0.389 0.412 0.421 0.435 0.503 0.579 0.611

0.647 0.761 0.797 0.91 0.96 1.073 1.145 1.218 1.272 1.322

1.412 1.553 1.743 1.888 1.992 2.069 2.155 2.327 2.553 2.648

2.712 2.879 2.983 3.196 3.336 3.445 3.486 3.776 3.776 3.952

4.088 4.251 4.459 4.604 4.83 4.984 5.129 5.283 5.419 5.546

5.704 5.962 6.315 6.714 6.985 7.338 7.642 8.013 8.321 8.76

9.063 9.358 9.833 10.209 10.666 11.15 11.15 11.549 12.354 12.852

13.468 14.002 14.618 15.311 15.849 16.252 16.728 16.999 17.669 17.936

18.267 18.643 18.864 19.485 19.897 20.25 20.603 20.603 20.911 21.558

21.907 22.282 22.559 22.898 23.192 23.527 23.84 24.084 24.383 24.564

24.564 24.999 25.207 25.347 25.528 25.7 25.845 26.09 26.198 26.357

26.357 26.447 26.551 26.674 26.818 26.941 26.941 27.054 27.158 27.158

27.226 27.321 27.398 27.47 27.534 27.602 27.67 27.747 27.792 27.855

27.896 27.955 27.955 28.023 28.073 28.109 28.154 28.208 28.267 28.267

28.317 28.371 28.403 28.444 28.448 28.466 28.494 28.512 28.647 28.679

28.702 28.702 28.724 28.747 28.788 28.815 28.838 28.851 28.878 28.896

28.924 28.942 28.969 29.01 29.041 29.046 29.064 29.082 29.118 29.141

29.173 29.204 29.231 29.272 29.308 29.331 29.354 29.422 29.458 29.485

29.485 29.53 29.585 29.625 29.662 29.689 29.743 29.788 29.824 29.883

29.942 29.974 30.051 30.123 30.146 30.209 30.295 30.341 30.399 30.454

30.494 30.508 30.535 30.599 30.671 30.762 30.811 30.888 30.943 31.006

31.088 31.205 31.341 31.432 31.545 31.586 31.69 31.785 31.939 32.106

32.183 32.328 32.414 32.563 32.731 32.812 34.229 34.419 34.687 34.841

35.058 35.325 35.506 35.75 35.954 36.149 36.33 36.629 36.968 37.145

37.394 37.588 37.851 38.019 38.421 38.693 38.947 39.173 39.494 39.82

39.983 40.314 40.789 41.106 41.486 41.876 42.238 42.518 42.89 43.265

43.768 44.153 44.438 44.701 44.95 45.235 45.484 45.746 46.068 46.439

46.679 46.855 47.123 47.358
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Table 3: Data set 2: Afghanistan (total deaths per million).

0.026 0.026 0.026 0.051 0.077 0.077 0.103 0.103 0.103 0.103

0.103 0.103 0.206 0.257 0.308 0.385 0.411 0.411 0.437 0.462

0.462 0.488 0.565 0.591 0.745 0.771 0.771 0.771 0.848 0.925

0.925 1.028 1.028 1.105 1.207 1.336 1.49 1.516 1.567 1.644

1.747 1.85 2.183 2.312 2.44 2.672 2.723 2.8 2.954 3.083

3.134 3.262 3.391 3.494 3.93 4.316 4.367 4.444 4.573 4.829

4.984 5.292 5.574 5.626 5.651 5.677 5.857 6.062 6.345 6.422

6.628 6.833 7.039 7.655 7.809 8.04 8.503 9.273 9.582 9.967

10.506 11.046 11.56 11.688 12.202 12.382 12.716 13.05 14.129 14.18

14.719 15.028 15.336 15.85 16.389 17.314 17.519 18.393 18.701 19.009

19.318 20.037 20.782 21.09 21.27 22.246 23.119 23.685 24.121 24.635

24.995 25.585 25.996 26.716 27.332 28.154 28.694 29.516 29.952 30.389

30.441 30.518 30.62 31.16 31.519 32.085 32.393 32.65 32.675 32.701

32.958 32.984 33.009 33.035 33.138 33.138 33.292 33.42 33.652 33.78

33.934 34.14 34.576 34.833 35.064 35.193 35.219 35.347 35.398 35.501

35.553 35.604 35.604 35.604 35.655 35.707 35.912 36.015 36.015 36.041

36.041 36.041 36.041 36.143 36.22 36.22 36.22 36.22 36.297 36.375

36.452 36.503 36.503 36.503 36.503 36.503 36.657 36.683 36.94 36.94

36.965 36.965 37.068 37.145 37.171 37.197 37.325 37.325 37.376 37.376

37.453 37.505 37.505 37.505 37.505 37.608 37.608 37.71 37.736 37.787

37.813 37.864 37.89 37.993 38.044 38.07 38.096 38.096 38.198 38.275

38.378 38.507 38.558 38.609 38.712 38.764 38.866 38.943 39.046 39.175

39.329 39.406 39.431 39.508 39.508 39.663 39.74 39.842 39.997 39.997

40.048 40.202 40.51 40.587 40.69 40.947 41.05 41.307 41.615 42

42.154 42.334 42.463 42.797 43.105 43.413 43.721 44.055 44.389 44.62

44.698 45.006 45.571 46.11 46.804 47.292 47.42 47.42 47.883 48.14

48.808 48.962 49.296 49.707 49.964 50.246 50.477 50.58 51.248 51.659

52.019 52.147 52.584 53.098 53.483 53.843 54.382 54.613 54.947 55.204

55.487 55.846 55.975 56.026 56.283 56.283 56.283 56.283 57.465 57.644
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Figure 4: Theoretical and empirical PDF and CDF of EFEW.
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Using (3) and (4), we get

S xð Þ =
ea − 1ð Þd − ea 1−e−bxcð Þ − 1

� �d
ea − 1ð Þd

,

h xð Þ =
abcdxc−1ea 1−e−bxcð Þ−bxc ea 1−e−bxcð Þ − 1

� �d−1
ea − 1ð Þd − ea 1−e−bxcð Þ − 1

� �d :

ð6Þ

Figure 3 defines various shapes of the hazard rate function.

3. Statistical Properties

3.1. Quantile Function. The quantile function is defined by

p X ≤ xð Þ = q: ð7Þ

Using (3), we get

ea 1−e−bxcð Þ − 1
� �

= q1/d ea − 1ð Þ: ð8Þ

The final result for X can be obtained as

x = −1
b

log a − log 1 + q1/d ea − 1ð Þ� �
a

 ! !1/c

, ð9Þ

where q ∼U½0, 1�.
3.2. rth Moment. The rth moment can be obtained by

E xrð Þ =
ð
xr f xð Þdx,

E xrð Þ =
ð∞
0

xrabcdxc−1ea 1−e−bxcð Þ−bxc ea 1−e−bxcð Þ − 1
� �d−1

dx

ea − 1ð Þd
:

ð10Þ

Using z = eað1−e
−bxc Þ, then dz = abcxc−1eað1−e

−bxc Þ−bxcdx and
x = ð−1/b log ð1 − log z/aÞÞ1/c.

E xrð Þ = d −1/bð Þr/c
ea − 1ð Þd

ðea
1

log 1 − log z
a

� �� �r/c
z − 1ð Þd−1dz:

ð11Þ

Using ðlog ð1 − log z/aÞÞr/c =∑∞
k=1ð−1Þk+r/cðkÞc/r

ð−log z/aÞkr/c for jlogx/aj < 1 and ðz − 1Þd−1 =∑∞
n=0

ð−1Þ1+d+n d − 1
n

 !
zn,

finally, we obtained

= d −1/bð Þr/c
ea − 1ð Þd

〠
∞

k=1
〠
∞

n=0
−1ð Þk+r/c −1ð Þ1+d+n kð Þc/r

d − 1

n

 !

�
−1ð Þkr/c − n + 1ð Þaf g−kr/cΓ kr/c + 1,− n + 1ð Þ log að Þ

h i
n + 1 :

ð12Þ

3.3. Order Statistics. The ith order statistic of the PDF is given
by

f i, nð Þ xð Þ = n!
i − 1ð Þ! n − ið Þ! f xð ÞF xð Þi−1 1 − F xð Þð Þn−i: ð13Þ

Letting Equations (3) and (4), the 1st and nth order statistics
of EFEW can be obtained, respectively, by using i = 1 and i
= n as

Table 4: MLE and standard errors for data 1.

Model W A MLE Standard error -log(L)

EFEW 1.727 8.395

9.286 1.399

1090.112
0.002 0.0002

1.886 0.0266

0.1901 0.0236

FEW 4.284 22.263

1.989 0.3550

1187.6380.099 0.0239

0.882 0.0609

Ex-W 4.711 24.596

3.834 NaN

1204.8550.999 NaN

-3.796 NaN

W 4.679 24.424
0.042 0.0081

1203.33
1.020 0.0543

E 4.705 24.563 0.045 0.0026 1203.454

AIFW 2.756 13.822
0.019 0.0020

1229.493
0.050 0.0026

GAPW 4.339 22.566

0.362 0.0791

1190.3730.085 0.0180

0.908 0.0542

f 1, nð Þ =
nabcdxc−1ea 1−e−bxcð Þ−bxc ea 1−e−bxcð Þ − 1

� �d−1
ea − ea 1−e−bxcð Þ� � n−1ð Þd

ea − 1ð Þnd
,

f n, nð Þ =
nabcdxc−1ea 1−e−bxcð Þ−bxc ea 1−e−bxcð Þ − 1

� �nd−1
ea − 1ð Þnd

:

ð14Þ

6 Computational and Mathematical Methods in Medicine



0 0.2 0.4 0.6

0.8

0.4

0.0Em
pi

ric
al

 p
ro

ba
bi

lit
ie

s

Theoretical probabilities

P-P plot

0.06

0.04

0.02

0.00

D
en

sit
y

0 10

Data

20 30 40 50

Empirical and
theoretical dens.

0 4000 8000 12000

40

30

20

10

0
Em

pi
ric

al
 q

ua
nt

ile
s

Theoretical quantiles

Q-Q plot

0 10 20 30 40 50

0.8

0.4

0.0

CD
F

Data

Empirical and
theoretical CDFs

Figure 5: Theoretical, empirical, Q-Q plot, and P-P plot for EFEW.
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Table 5: Model selection criterion for data 1.

Models AIC CAIC BIC HQIC

EFEW 2188.224 2188.362 2202.958 2194.124

FEW 2381.277 2381.359 2392.327 2385.702

E 2408.907 2408.921 2412.591 2410.383

W 2410.659 2410.701 2418.027 2413.61

Ex-W 2415.711 2415.794 2426.762 2420.136

AIFW 2462.986 2463.028 2470.354 2465.937

GAPW 2386.745 2386.828 2397.796 2391.171
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3.4. Skewness and Kurtosis. The mathematical form of the
skewness and kurtosis is given below:

S = Q 6/8ð Þ +Q 2/8ð Þ − 2Q 4/8ð Þ
Q 6/8ð Þ −Q 2/8ð Þ ,

K = Q 7/8ð Þ +Q 3/8ð Þ −Q 5/8ð Þ −Q 1/8ð Þ
Q 6/8ð Þ −Q 2/8ð Þ ,

ð15Þ

where αln ð1−e−byÞ log ðαÞβ/ð1 − αln ð1−e−byÞÞðeby − 1Þ describes
quartile values.

Table 1 clearly shows that EFEW can model the normal,
positively skewed data, or even the data skewed to the left.

4. Special Cases

The special cases of EFEW are as follows.

Case 1. When d = 1. By putting d = 1 in (3) and (4), we
derive the CDF and PDF of the flexible exponential Weibull

(FEW) distribution. The mathematical form is described as

F xð Þ = ea 1−e−bxcð Þ − 1
ea − 1 , x > 0, b > 0, c > 0, and a ≠ 1,

f xð Þ = abcxc−1ea 1−e−bxcð Þ−bxc
ea − 1 :

ð16Þ

Case 2. When d = 1 and c = 1. Putting d = 1and c = 1 in (3)
and (4) shall refer to the CDF and PDF of the gull alpha
power exponential distribution (GAPE). The mathematical
form is described as

F xð Þ = ea 1−e−bxð Þ − 1
ea − 1 , x > 0, b > 0, and a ≠ 1,

f xð Þ = abea 1−e−bxð Þ−bx
ea − 1 :

ð17Þ

Case 3. When d = 1 and c = 2. If we replace d = 1 and c = 2 in
(3) and (4), the CDF and PDF will become NF Rayleigh
(NFPR) distribution. Mathematically, the CDF and PDF of
NFPR are

F xð Þ = ea 1−e−bx2
� �

− 1
ea − 1 , x > 0, b > 0, and a ≠ 1,

f xð Þ = abcxea 1−e−bx2
� �

−bx2

ea − 1 :

ð18Þ

5. Parameter Estimation

The log likelihood function of Equation (4) is defined by

log Lð Þ = n log abcd

ea − 1ð Þd
 !

+ c − 1ð Þ〠logxi

+ a〠 1 − e−bx
c

� �
−〠bxc + a d − 1ð Þ〠 1 − e−bx

c
� �

:

ð19Þ

The partial derivatives of (19) with respect to parameters
are obtained by

Table 6: MLE and standard errors for data 2.

Model W A MLE Standard error -log(L)

EFEW 1.792 8.989

7.784 1.1655

1155.904
0.002 0.0002

1.775 0.0249

0.219 0.0263

FEW 3.779 19.969

1.775 0.3369

1236.6560.072 0.0158

0.902 0.0517

E 4.122 21.839 0.036 0.0021 1249.168

W 4.072 21.563
0.031 0.0071

1248.961
1.043 0.0600

Ex-W 4.063 21.519

3.137 NaN

1254.0470.999 NaN

-3.095 NaN

AIFW 2.487 12.846
0.045 0.0049

1278.144
0.042 0.0022

GAPW 3.850 20.354

0.418 0.1003

1238.8720.068 0.0189

0.909 0.06515

d
d að Þ log Lð Þ = d − 1ð Þ −nd log ea − 1ð Þ − e−bx

c + 1
� �

−
d − 1ð Þandea

ea − 1 + n
a
− e−bx

c + 1,

d
d bð Þ log Lð Þ = a d − 1ð Þ〠xce−b〠xc + a〠xce−b〠xc + n

b
−〠xc,

d
d cð Þ log Lð Þ =

−e−b∑xc b∑xc log xð Þ−∑log xð Þð Þc − nð Þe∑bxc − abcd∑xc log xð Þ
� �

c
,

d
d dð Þ log Lð Þ = a −log ea − 1ð Þnd − e−b〠xc + 1

� �
− a log ea − 1ð Þn d − 1ð Þ + n

d
:

ð20Þ
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The above expressions are not in closed form, but still,
the numerical solution is possible by using various mathe-
matical techniques.

6. Applications

In this section, the COVID-19 death data of Pakistan and
Afghanistan were considered to delineate the real-life appli-
cations by means of AIC, CAIC, BIC, and HQIC.

It should be noted that the model with a fewer value of
these criteria is considered as the best model among others.

The data sets with the URL https://github.com/owid/
covid-19-data are taken from May 2, 2020, till July 4, 2021,
for Pakistan and Afghanistan. Tables 2 and 3 respectively
defines the mortality rates in Pakistan and Afghanistan.

In Figure 4, both the theoretical and empirical graphs
depict that the EFEW is the best fitted line as compared to
other existing distributions and can be justified from
Tables 4 and 5.

Figure 5 demonstrates the Q-Q and P-P plot of the
COVID-19 death data. The Q-Q plot demonstrates that
most of the data points, except a few points on the upper tail,
follow a linear pattern on the line, while the P-P plot also

indicates a reasonably good fit and indicates that the EFEW
reasonably describes the empirical data distribution along
with empirical and theoretical densities and their CDF.

Figure 6 depicts the pattern of the hazard rate function.
The curve clearly crosses the diagonal line, and hence, the
data follows a nonmonotonic hazard rate function.

Table 4 shows the Cramer-Mises (W) and Anderson-
Darling (A) maximum likelihood estimates, standard
errors, and log-likelihood values. Table 5 shows the best
model selection criterion. The results of Tables 5 and 6
depict the smaller values for FEW among others using this
goodness of fit criteria and hence show that EFEW pro-
vides a flexible fit over exponential (E), Weibull (W),
Exponential-Weibull (Ex-W), Algoharai inverse flexible
Weibull (AIFW), and gull alpha power Weibull (GAPW)
distributions.

Figure 7 shows the theoretical and empirical PDF and
CDF of EFEW distribution using the COVID-19 death data
from Afghanistan. Both the theoretical and empirical graphs
clearly depict that the EFEW is the best fitted line as com-
pared to other existing distributions and can be justified
from the numerical values presented in Tables 6 and 7.

Figure 8 demonstrates the Q-Q and P-P plot of the
COVID-19 death data from Afghanistan. The Q-Q plot
demonstrates that most of the data points, except a few
points on the upper tail, follow a linear pattern on the line,
while the P-P plot also indicates a reasonably good fit and
indicates that the EFEW reasonably describes the empirical
data distribution along with empirical and theoretical densi-
ties and their CDF.

Figure 9 follows the same pattern as Figure 6 which
means that the death rate in Afghanistan also follows a non-
monotonic shape.

The results of Tables 6 and 7 show that by employing
these criteria, smaller values are achieved for EFEW, and
hence, EFEW gives a flexible fit over FEW, E, W, Ex-W,
AIFW, and GAPW.
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Figure 7: Theoretical and empirical PDF and CDF of EFEW.

Table 7: Model selection criterion for data 2.

Models AIC CAIC BIC HQIC

EFEW 2319.808 2319.949 2334.488 2325.69

FEW 2479.313 2479.396 2490.322 2483.724

E 2500.336 2500.35 2504.006 2501.806

W 2501.923 2501.965 2509.263 2504.863

Ex-W 2514.095 2514.178 2525.104 2518.506

AIFW 2560.288 2560.33 2567.628 2563.228

GAPW 2483.744 2483.828 2494.754 2488.155
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Table 8: Average values of MSE and bias.

Parameters n MSE (a) MSE (b) MSE (c) MSE (d) Bias (a) Bias (b) Bias (c) Bias (d)

a = 0:5 40 31.947 5.718 1.119 48.202 3.904 1.907 0.949 5.032

b = 0:05 70 24.757 5.100 1.032 41.127 3.392 1.720 0.901 4.521

c = 1:5 100 22.843 4.316 0.918 34.410 3.280 1.498 0.833 3.829

d = 0:5 150 20.125 3.659 0.831 26.742 2.983 1.309 0.781 3.190

a = 0:6 100 21.828 3.174 1.090 30.497 3.034 1.210 0.888 3.450

b = 0:05 200 13.441 1.606 0.724 16.210 2.239 0.714 0.676 1.976

c = 1:77 300 9.5134 1.047 0.577 11.166 1.768 0.528 0.581 1.472

d = 0:6 400 7.8027 0.758 0.492 8.0283 1.558 0.425 0.513 1.140
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7. Simulation Study of EFEW Distribution

A simulation study has been performed to check the consis-
tency of the parameters of the EFEW distribution. We con-
sider two set of parameter values, i.e., a = 0:5, b = 0:05,
c = 1:5, and d = 0:5 and a = 0:6, b = 0:05, c = 1:77, and d =
0:6. A simulation is performed with 1000 replications. A
sample of sizes n = 40, 70, 100, 150 and n = 100, 200, 300,
400 are drawn, respectively, and the bias and mean square
error (MSE) are estimated. The mathematical forms are
described as

MSE = 1
W

〠
W

i=1
bαi − αð Þ2,

Bias = 1
W

〠
W

i=1
bαi − αð Þ:

ð21Þ

Table 8 defines the average mean square errors and
biases of each parameter using small and large sample sizes
taken from EFEW. It is quantified that when we increase
the sample of size n, the average values of mean square
errors and bias decrease with different values of parameters.

8. Conclusion

In this article, the best fitted model (EFEW) is pointed out
for modeling the death rates of coronavirus. Various statisti-
cal properties of the proposed model have been discussed.
The significance of EFEW has been evaluated using the
death data of COVID-19 in Pakistan and Afghanistan. It
has been verified that the EFEW model is capable of model-
ing both the monotonic and nonmonotonic failure data bet-
ter than the existing models. Moreover, the findings
consistently lead to better results and increase the model
flexibility compared to the existing probability distributions.
Hence, the inclusion of the parameter (d) to the existing
model plays an important role and hence is a better choice
in making predictions of deaths among infected patients of
coronavirus than the other models.

It is expected that the present class of expressions, along
with its special forms, will attract the researchers towards its
contribution to other applied research areas such as engi-
neering, hydrology, agriculture, economics, survival analysis,
and various others. Moreover, the present study can be
extended to neutrosophic statistics. A future research study
may also be conducted on the Bayesian analysis of the model
parameters under various loss functions.
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