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Acute kidney injury (AKI) can be caused by multiple etiologies and is characterized by a sudden and severe decrease in kidney
function. Understanding the independent risk factors associated with the development of AKI and its early detection can refine
the risk management and clinical decision-making of high-risk patients after cardiovascular surgery. A retrospective analysis
was performed in a single teaching hospital between December 1, 2019, and December 31, 2020. The diagnostic performance
of novel biomarkers was assessed using random forest, support vector machine, and multivariate logistic regression. The
nomogram from multivariate analysis of risk factors associated with AKI indicated that only LVEF, red blood cell input, and
ICUmvat contribute to AKI differentiation and that the difference is statistically significant (P < 0:05). Seven radiomics
biomarkers were found among 65 patients to be highly correlated with AKI-associated delirium. The importance of the
variables was determined using the multilayer perceptron model; fivefold cross-validation was applied to determine the most
important delirium risk factors in radiomics of the hippocampus. Finally, we established a radiomics-based machine learning
framework to predict AKI-induced delirium in patients who underwent cardiovascular surgery.

1. Introduction

Notwithstanding that unprecedented progress has been
made in understanding the pathogenesis and development
of novel therapeutic strategies, cardiovascular disease
remains the leading cause of morbidity and mortality in
patients with renal dysfunction, especially acute kidney
injury (AKI) [1]. AKI is a complex syndrome caused by mul-
tiple etiologies and characterized by a sudden and severe
decrease in kidney function, presented with an increase
in serum creatinine (SCr) or a reduction in urine output
[2, 3]. In a recent study, more than half the patients hos-
pitalized in the intensive care unit (ICU) ward developed
AKI [4]. Note that increased AKI severity correlates posi-
tively with short- and long-term mortality after discharge
[5, 6]. In addition, as established recently, the mortality
risk increases significantly with AKI severity, reaching a

rate of up to 40–60% [5, 7, 8]. The occurrence rate of
AKI might be somewhat affected by differences in socio-
economic statuses [9]. Consequently, the severity of
adverse events has become a worldwide medical burden.
To the best of our knowledge, regardless of the underlying
etiology, there are no effective treatments for AKI once it
develops [10]. Clinically, AKI management refers to an
early detection of its occurrence for the general critical
care population with limited ongoing or recurrent renal
injury, consequently providing supportive management of
advanced renal dysfunction [11]. Considering the negative
impact of AKI on short- and long-term outcomes, it is
essential to explore novel methods to identify high-risk
patients and diagnose subclinical AKI to improve patient
outcomes. As previously described, the development of
statistical predictive models for estimating the risk factors
of AKI has become possible with the development of
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clinical informatics and the increasing availability of elec-
tronic medical records [12]. Of note, multivariate logistic
regression analysis is the most frequently used statistical
algorithm to determine risk predictors for the short-term
outcome [11]. Several underlying susceptibilities, proce-
dures, or exposures have been identified as risk factors
for the occurrence of postoperative AKI, such as older
age, chronic kidney disease, comorbidities (e.g., diabetes
and hypertension), sepsis, major surgery, and hemody-
namic instability [13, 14].

An increasing body of evidence has suggested that AKI
can significantly affect the brain tissue and function. Ische-
mic AKI can reportedly cause neuronal pyknosis and an
increase in brain microgliomas. In addition, AKI can lead
to brain microvascular protein leakage and increased vascu-
lar permeability, thereby increasing the risk of cerebrovascu-
lar diseases and the incidence of brain dysfunction. The
incidence rate of stroke increased significantly with a glo-
merular filtration rate below 60ml·min-1·1.73m-2 and a Cr/
Alb ratio greater than 30mg/g. Moreover, the United States
Renal Disease Database reported that the incidence rate of
stroke in uremic people aged >65 years is 9%. The early
symptoms in AKI patients with concomitant impaired brain
tissue and function include fatigue, apathy, bradykinesia,
and an inability to concentrate. In severe cases, delirium,
confusion, and coma might occur. In addition, reduced
autonomous behavior and slow movement have been docu-
mented in animal models of renal ischemia and bilateral
nephrectomy.

Acute kidney injury might be associated with numerous
brain and hippocampal complications, as it can alter the per-
meability of the blood–brain barrier. Although the patho-
genesis of acute uremic encephalopathy is poorly
understood, the potential underlying mechanism contribut-
ing to hippocampal involvement includes the release of mul-
tiple inflammatory mediators, which lead to hippocampal
inflammation and cytotoxicity, neurotransmitter derange-
ment, transcriptional dysregulation, and changes in the
expression of apoptotic genes. Impairment of brain function,
especially of a structure that has vital activity in learning and
memory and is highly sensitive to renal ischemic injury, can
ultimately lead to cognitive and functional complications in
patients with AKI. Delirium is the most common clinically
observed symptom after AKI, as it has a relatively high mor-
tality rate (22%–76%). Liu et al. found that AKI leads to the
release of soluble and cellular inflammatory mediators in the
brain, which primarily target the hippocampus and increase
brain microvascular protein leakage. They also found that
severe AKI and bilateral nephrectomy can lead to more pro-
nounced behavior changes than less severe AKI or the com-
bination of sham AKI with surgery and anesthesia [15].
Therefore, early prediction and intervention of hippocampal
changes caused by AKI are crucial in reducing patient mor-
tality and improving the prognosis [16].

As it is clinically difficult to detect early hippocampal
damage, the prognosis is generally poor once the injury
occurs, and the associated mortality rate is high. Currently,
there is a paucity of efficient and low-cost methods for
detecting early hippocampal damage. The current clinical

approach involves magnetic resonance imaging (MRI)
examination of the hippocampus and qualitative assessment
methods to observe morphological changes, with no quanti-
tative analytical methods available. This study is aimed at
establishing and validating a machine learning-based quan-
titative method for noninvasive hippocampal assessment
through preoperative cranial computed tomography (CT)
instead of magnetic resonance imaging for the early detec-
tion of AKI-related hippocampal damage and prompt clini-
cal intervention.

However, early biochemical and clinical data have not
been analyzed in studies that sought to predict the risk fac-
tors of AKI after surgery [17]. In addition, risk assessment
before surgery is crucial to optimize strategies to prevent
AKI and AKI-induced hippocampal changes to determine
which patients require more intense motorizations after sur-
gery. Overall, the present study seeks to determine the inci-
dence and risk factors of AKI and AKI-associated
hippocampal damages in patients who have undergone car-
diovascular surgery.

2. Materials

2.1. Subjects. A retrospective cohort analysis was conducted
in a teaching hospital. Patients (age ≥ 18 years) at risk of
developing AKI after primary cardiovascular surgery were
included in our current study. The exclusion criteria com-
prised patients with renal insufficiency, acute or chronic kid-
ney disease, or preoperative hemodynamic instability;
patients who underwent emergency operation; patients
who developed postoperative urinary tract infection or were
treated with nephrotoxic drugs or glucocorticoids before or
after surgery; and patients without complete clinical data.
All patients provided written informed consent before par-
ticipation. The study was approved by the Medical Ethics
Committee of the First Affiliated Hospital of Nanjing Medi-
cal University (KY20190404-03-KS-01) and complied with
the requirements of the Declaration of Helsinki.

2.2. AKI Definition and Grouping Design. According to the
Kidney Disease Improving Global Outcomes (KDIGO)
workgroup [18], the AKI criteria comprise 50% increase in
SCr measurements relative to the baseline, SCr increases of
more than 0.3mg/dl within a 48-h interval during 7 days,
or urine volume less than 0.5ml/(kg·h) for 6 h [19]. After
cardiovascular surgery, patients who developed postopera-
tive AKI were included in the AKI group, whereas those
without AKI were included in the non-AKI group.

2.3. Delirium Definition and Grouping Design. According to
the DSM-IV-TR criterion [20], the diagnostic criteria for
delirium included the following: (A) disturbance of con-
sciousness (i.e., reduced clarity of environmental awareness)
with reduced ability to focus, sustain, or shift attention. (B)
A change in cognition or the development of a perceptual
disturbance that is not better accounted for by a preexisting,
established, or evolving dementia. Other common features
of delirium include sleep disorders (such as changes in
sleep–wake cycles), changes in psychomotor activity, and

2 Computational and Mathematical Methods in Medicine



abnormal neurobehavioral symptoms. Delirium cases were
divided into hyperactive type (HT), inhibited type (IT),
and mixed type (MT). Patients with HT presented with a
state of restlessness and high alertness to the surrounding
environment. Patients with IT exhibited poor arousal, leth-
argy, and weakness. Because this type of delirium is nonde-
structive, the symptoms are usually undetectable. Patients
expressing both phenotypes were classified as MT. Within
48 h of cardiovascular surgery, the included patients were
examined by psychologists and classified using the above-
mentioned criteria.

3. Methods

3.1. Clinical Data Collection. Three hundred and twenty
patients who underwent cardiovascular surgery from
December 1, 2019, to December 31, 2020, were retrieved
from hospital’s electronic medical records. Finally, 227
patients were included in our study and separated into train-
ing and validation groups. The preoperative data mainly
included demographic characteristics (age, gender), height,
body weight, body mass index, smoking and drinking his-
tory, comorbidities (hypertension, diabetes, and cardiovas-
cular disease), central venous pressure, left ventricular

ejection fraction (LVEF), coronary arteriography, and
clinical laboratory data (hemoglobin, albumin, hematocrit,
baseline SCr, N-terminal pro-brain natriuretic peptide
(NT-proBNP), neutrophil gelatinase-associated lipocalin
(NGAL), fatty acid-binding protein (FABP), troponin I
(TnI), and blood glucose). The intraoperative data com-
prised the cardiopulmonary bypass (CPB) time, type of sur-
gery, extracorporeal circulation urine output, ultrafiltration
volume, and red blood cell input (RBCI) on the surgery
day. Finally, the postoperative data included the length of
ICU stay, mechanical ventilation auxiliary time (MVAT),
and continuous renal replacement therapy (CRRT) use.

3.2. Imaging Data Collection. All patients underwent brain
CT before cardiovascular surgery; CT images with an axial
slice thickness of 1mm were retrospectively collected
between December 1, 2019 and December 31, 2020. All
study subjects were older than 18 years, and a normal hippo-
campus was confirmed before surgery. Figure 1 demon-
strates the machine learning process adopted in the study
and patient data distribution.

3.3. Image Preprocessing and Hippocampus Autosegmentation.
After the brain CT images were obtained, a deep learning
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Figure 1: Machine learning analysis process of AKI and AKI-led delirium on clinical and CT radiomics parameters.
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method was applied to generate a visual MRI image set for
hippocampus auto-segmentation, as reported by Li et al.
[21]. The traditional CT image and artificial intelligence brain
library were used to reconstruct the MRI image from the vir-
tual image library closest to the patient’s brain anatomy and
to perform CT-MR image fusion through artificial intelligence
methods. Accordingly, a virtual MRI could determine the
location of the hippocampus from the CT image and delineate
it. In addition, bias field correction was applied for virtual MRI
image noise reduction and preprocessing. Regions of interest
(ROIs) were used as the range for feature extraction of the hip-
pocampus. To compensate for the effect of variable voxel size
on image analysis, all CT images were resampled to pixel
dimensions of 1mm× 1mm× 5mm. To reduce the errors
associated with manual delineation of the hippocampus and
improve the delineation efficiency, a rigorously tested and
internally developed delineation program based on artificial
intelligence was used to delineate the hippocampus before
and after the cardiovascular surgery. As enhanced CT is not
routinely used in clinical practice, cases with only plain CT
scans were also collected to delineate the hippocampus.
According to the literature, the two images exhibit no statisti-
cal significance in delineating the volume and boundary of the
hippocampus. The mean Dice similarity coefficient and aver-
age Hausdorff distance of the two image sequences were 0.90
and 1.6mm, respectively. All above steps are explained in
Figure 2, the process of automatically delineating the hippo-
campus ROI from CT and radiomics feature extraction.

3.4. Image Feature Extraction. Quantitative radiomics analy-
sis was conducted on the hippocampus region. A total of 661

radiomics features characterizing the intensity and texture of
the hippocampus were extracted. Wavelet transformation
was performed on the hippocampus region to quantify the
hippocampus in multiple dimensions.

The intensity features measured the gray-level distribu-
tion in the tumor region and quantified in terms of mean,
energy, entropy, variance, skewness, and kurtosis. The tex-
ture features that characterized the tumor texture properties
were based on the gray-level cooccurrence matrix (GLCM),
gray-level size-zone matrix (GLSZM), gray-level run-length
matrix (GLRLM), and neighborhood gray-tone-difference
matrix (NGTDM), including homogeneity (GLCM), small-
zone emphasis (GLSZM), short-run emphasis (GLRLM),
and complexity (NGTDM). Details of the texture features,
including the category and feature names, are provided in
Table 1.

Wavelet selection was performed by selecting the high-
frequency parts (H) or low-frequency parts (L) of the wave-
let components of the tumor region at the very axis. Eight
categories of wavelet features were acquired and labeled as
HHH, HHL, HLH, LHH, LLL, LLH, LHL, and HLL. The
HLH category features comprised texture features derived
from the tumor region after high-frequency wavelet selec-
tion on the x-axis and z-axis and low-frequency wavelet
selection on the y-axis.

3.5. Image/Clinical Feature Selection. To compensate for the
accuracy of AD on hippocampus delineation, the texture
analysis method was repeated two more times by performing
morphological erosion and expansion of all pixels on the ini-
tial contour of the ROI. Only radiomics features that showed
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Figure 2: The process of automatically delineating the hippocampus ROI from CT and radiomics feature extraction.
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a high correlation (>0.99) with the erosion and expansion of
the ROI were used for further analysis.

Specific feature screening steps:

(1) After feature extraction, the null features were
removed, and features that had no omics feature
changes before and after the operation were deleted,
leaving 714 features

(2) The MWU test was conducted to delete features
unrelated to the result variable (n = 103), and 611
features were left. The study samples were divided
into two groups (delirium and no delirium) according
to our data. The Mann–Whitney U-test/Wilcoxon
rank-sum test was used to compare the preoperative
and postoperative hippocampal radiomics character-
istics of different groups. The characteristics that

Table 1: Characteristics of patients of risk factors associated with AKI after cardiovascular surgery (N = 227).

Variables AKI group (n = 66) Non-AKI group (n = 161) χ2/F/t/Z P value

Demographic

Gender (male) (n [%]) 39 (59.09) 82 (50.93) 1.293 0.256

Age ≥ 60 (year) 44 (66.67) 84 (52.17) 4.669 0.031

Height (cm) (�x ± s) 164:12 ± 9:64 163:52 ± 8:63 0.477 0.634

Weight (kg) (�x ± s) 66:89 ± 11:51 66:69 ± 10:71 0.988 0.323

BMI (kg/m2) (�x ± s) 1:797 ± 0:178 1:793 ± 0:169 0.146 0.884

Smoking history (n [%]) 17 (25.75) 28 (17.39) 2.400 0.121

Drinking history (n [%]) 8 (12.12) 9 (5.59) 2.198 0.138

Laboratory

Hematocrit (�x ± s) (%) 24:92 ± 3:89 25:08 ± 3:80 -1.425 0.155

Albumin (g/l) (�x ± s) 38:25 ± 3:36 40:12 ± 3:40 -3.794 0.000

NGAL (ng/ml) (M [IQR]) 82.3 (51.7, 153.7) 49.2 (34.9, 117.2) -3.272 0.001

TnI (>0.5 ng/ml) (n [%]) 12 (18.18) 24 (14.90) 0.327 0.568

FABP (>2.5 ng/ml) (n [%]) 17 (25.75) 37 (22.98) 0.243 0.622

NT-prBNP (>300 pg/ml) (n [%]) 20 (30.30) 24 (14.91) 2.079 0.149

Coronary angiography (n [%]) 49 (74.24) 112 (69.56) 0.397 0.529

Clinical

Hypertension (n [%]) 33 (50.00) 76 (47.20) 0.180 0.671

Diabetes (n [%]) 25 (37.88) 28 (17.39) 10.979 0.001

Anemia (n [%])∗ 25 (37.87) 20 (12.42) 19.086 0.000

LVEF (�x ± s) (%) 58:43 ± 7:42 60:42 ± 5:39 -1.807 0.024

CVP (cmH2O) (�x ± s) 9:076 ± 3:400 8:621 ± 2:629 0.973 0.333

Type of surgery (n [%]) 9.900 0.007

Coronary artery bypass surgery 19 (28.79) 38 (23.60)

Valvuloplasty 29 (43.94) 103 (63.98)

Combined surgery∗∗ 18 (27.27) 20 (12.42)

CPB time (>120 minutes) (n [%]) 34 (51.52) 45 (27.95) 11.456 0.001

Duration of surgery (>6 hours) (n [%]) 40 (60.60) 69 (42.85) 5.908 0.015

Aortic occlusion time (minute) (M [IQR]) 108 (83.5, 140.5) 97 (82.0, 129.0) -1.670 0.095

Red blood cell input (n [%]) 23 (34.85) 10 (6.21) 30.899 0.000

Urine output (ml) (M [IQR]) 200 (100, 300) 200 (150, 350) -1.619 0.105

Ultrafiltration volume (ml) (M [IQR]) 1350 (800, 2250) 1500 (800, 2070) -0.720 0.472

ICU length of stay (day) (M [IQR]) 2 (1, 4) 1 (1, 2) -5.4189 0.000

Mechanical ventilation time (hour) (M [IQR]) 14 (10.0, 20.25) 11 (7.5, 14.0) -3.822 0.000

CRRT (n [%]) 2 (3.0) 0 (0.00) Fisher’s 0.246

Hospitalization time (day) (�x ± s) 18:70 ± 5:52 15:78 ± 5:61 3.591 0.000

Notes: ∗Preoperative anemia was defined as a hemoglobin less than 110 g/l in female patients and 120 g/l in male patients; ∗∗Combined surgery was referred
to a combination of two or more surgical operations. Abbreviations: BMI: body mass index; CPB: cardiopulmonary bypass; CVP: central venous pressure;
CRRT: continuous renal replacement therapy; FABP: fatty acid-binding protein; IABP: intra-aortic balloon pump; ICU: intensive care unit; LVEF: left
ventricular ejection fraction; M [IQR]: median [inter quartile range]; NGAL: neutrophil gelatinase-associated lipocalin; NT-prBNP: N-terminal probrain
natriuretic peptide; TnI: troponin I.
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exhibited significant differences between the groups
were screened. The MWU test excluded 107 features
that exhibited no statistical differences within the
group (FDR was used to obtain corrected P values).

(3) Variance/standard deviation analysis: the features
whose standard deviation (SD) was less than 0.05
were deleted, resulting in 490 features

(4) Correlation detection: redundant features with a
Pearson correlation index ≥ 0:99 were deleted, and
features highly correlated with the classification
results were retained. The number of feature vari-
ables was reduced from 491 to 163

(5) Finally, LASSO dimensionality reduction was per-
formed, features were reduced from 163 to 7, and
the smallest MSE was selected. As a result, the sim-
plest predictive classification model obtained with
one SD consisted of only eight variables

3.6. Image/Clinical Signature Construction. A radiomics sig-
nature and a clinical signature were built by summing the
features multiplied by their coefficients. The prediction value
of integration of radiomics and clinical features was tested
using a multivariable logistic regression model. Finally, the
prediction model’s performance was assessed by calculating
the AUC of the ROCs.

3.7. Image/Clinical Signature Validation. The signatures
were established using a fourfold cross-validation approach.
The patients were randomly separated into five folds. Three
out of the four folds were used for feature selection at a λ
value. The resulting signature was then tested on the other
fold patients. The binomial deviance of fivefold cross-
validation was used to select the best λ value for the least
binomial deviance.

3.8. Statistical Analysis. Measured data were expressed as
absolute numbers and percentages or mean ± standard
deviation (�x ± s) and interquartile ranges (25th and 75th
percentiles) when applicable. Continuous variables were
compared using the Mann–Whitney U test, and categorical
variables were compared using the chi-square or Fisher’s
exact test. All calculations were performed using SPSS 22.0
Statistical Software (SPSS, Inc., Chicago, IL, USA) and Med-
Calc Statistical Sofware, version 19.0.4 (MedCalc Software
bvba, Ostend, Belgium). Univariate logistic regression was
conducted to screen potential risk factors significantly asso-
ciated with AKI. The multivariate logistic regression analysis
included factors that exhibited statistical significance during
univariate analysis (P value < 0.05) to stratify postoperative
AKI-related risk factors. The stepwise forward method was
used for variable selection. Measures of effect were reported
using odds ratios for both crude and adjusted analysis,
followed by a 95% confidence interval, and a P value <

Patients underwent primary cardiovascular surgery (n = 320)
between 1 December 2019 and 31 December 2020

Participants (n = 318)

Juveniles (n = 2)

Patients with renal insufficiency (n = 11)
Patients with acute or chronic kidney (n = 9)
Patients with preoperative hemodynamic instability surgery (n = 8)
Patients underwent emergency operation (n = 13)
Patients with postoperative urinary tract infection (n = 24)
Patients treated with nephrotoxic drugs glucocorticoids (n = l2)

Screened participants (n = 241)

Final participants (n = 227)

AKI group (n = 66) Non-AKI group (n = 161)

Incomplete clinical data (n = 14)

Figure 3: Flow chart representing the patient selection process and groups.

6 Computational and Mathematical Methods in Medicine



0.05 was used to determine statistical significance. Further-
more, the diagnostic performance of novel biomarkers was
assessed by calculating the areas under the receiver-
operator characteristic curves (AUC); pairwise comparison
of ROC curves was performed for AKI risk and AKI-
associated hippocampal changes and delirium.

4. Experimental Results and Discussion

4.1. Characteristics and Outcomes of Patients. Between
December 1, 2019, and December 31, 2020, 320 patients
were at risk of developing AKI in the cardiothoracic surgery

department, and 227 patients were involved in the final
study cohort. A flowchart of our study is provided in
Figure 3. According to the KDIGO clinical practice guide-
lines, 66 patients were diagnosed with hospital-acquired
AKI within a week after the cardiovascular surgery, of which
29 patients (43.94%) exhibited hippocampal changes and
delirium. Surgical procedures in the AKI group included
coronary artery bypass surgery (n = 19), valve replacement
(n = 29), and a combination of two or more cardiovascular
surgical operations (n = 18). Surgical procedures in the
non-AKI group also included coronary artery bypass surgery
(n = 38), valve replacement (n = 103), and a combination of

Table 2: Characteristics of patients with delirium and without delirium (N = 66).

Delirium group (N = 29) Nondelirium group
(N = 36)

Average sd Average sd P value q value

Age 62.364 11.054 62.097 11.214 0.543 0.283

Weight 64.927 9.093 64.758 9.845 0.784 0.682

Height 165.200 8.322 164.661 9.009 1.231 1.231

BMI 1.803 0.144 1.798 0.158 0.068 0.015

Hemoglobin 131.291 21.513 131.468 22.320 0.342 0.149

Hematocrit 25.182 3.087 24.710 3.400 0.743 0.614

Albumin 39.485 3.285 39.349 3.455 0.066 0.011

NGAL 130.778 67.210 130.911 66.236 0.593 0.361

TnI 0.348 0.836 0.479 1.606 0.055 0.005

FABP 1.580 2.959 1.721 3.103 0.784 0.716

NT-prBNP 376.628 501.617 408.349 568.687 0.124 0.038

LVEF 62.273 5.182 61.565 6.385 0.112 0.029

CVP 8.618 3.670 8.548 3.640 0.054 0.002

Type of surgery 2.164 1.290 2.129 1.263 0.342 0.164

CPB time 112.255 36.932 115.258 38.488 0.674 0.527

RBCI 0.487 1.527 0.529 1.524 0.634 0.413

Aortic occlusion time 73.155 28.342 76.218 29.587 0.894 0.855

Ultrafiltration volume 1820.982 1096.451 1858.935 1121.492 0.556 0.314

ICU length of stay 1.927 2.641 2.290 3.050 0.064 0.008

ICU mechanical ventilation time 12.825 13.227 14.974 17.253 0.321 0.126

Hospitalization time 17.576 8.069 18.237 7.965 0.667 0.493
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Figure 4: Nomogram from multivariate analysis of risk factors associated with AKI.
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two or more cardiovascular surgical operations (n = 20). At
the end of the study, two patients who required CRRT after
valve replacement surgery or coronary artery bypass surgery
survived. Of the four patients (1.76%) who died, three devel-
oped postoperative AKI, and the mortality rate in the AKI
group was higher than that in the non-AKI group
(P ≤ 0:01). Detailed patient characteristics grouped accord-
ing to the KDIGO workgroup are provided in Table 1.
Detailed patient characteristics with and without delirium
are provided in Table 2.

4.2. Univariate Logistic Regression Analyses of Risk Factors
for AKI. Upon admission, the older patients, especially those
older than 60 years, harbored a higher risk of AKI. As shown
in Table 1, patients with preexisting complications were
prone to AKI, such as diabetes. Patients with anemia were
at an increased risk of AKI, especially those with low serum
albumin levels. Conversely, no significant correlation was
found between the other demographic and physiological
variables in AKI patients (Ps > 0:05). To increase the diag-
nostic accuracy, novel biomarkers, including NGAL, TnI,
FABP, and NT-proBNP, were also investigated in this set-
ting. Univariate analysis revealed that the urinary NGAL
level was higher in patients with AKI than those without
(P < 0:05). In contrast, there were no significant differences
among the serum levels of TnI, FABP, and NT-proBNP
between patients with and without AKI. Additionally, there
was no remarkable difference in the coronary angiography
findings between patients with and without AKI (P > 0:05).

Analysis of routinely used intraoperative variables
showed that an increased risk of AKI was associated with a
combination of surgical operations, prolonged CPB therapy,
longer duration of surgery, or erythrocyte transfusions on
the day of surgery. Conversely, there were no significant dif-
ferences in other intraoperative variables between patients
with and without AKI, such as interval, aortic occlusion
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Figure 5: Diagnostic performance of novel biomarkers using receiver-operative characteristic curves of EF, RBCI, ICUmvat, and clinical
signature. (a–d) stands for the performance of novel biomarkers of EF, RBCI, ICUmvat, and clinical signature, respectively.

Table 3: Multivariate analysis of risk factors associated with AKI
after cardiovascular surgery.

Coefficients St. error Z P value

Intercept 0.0738 2.4390 0.0300 0.9759

Diabetes 0.2187 0.1543 1.4170 0.1563

NGAL 0.0004 0.0007 0.4870 0.6260

TnI -0.1471 0.1273 -1.1550 0.2480

Albumin -0.0265 0.0527 -0.5030 0.6146

LVEF -0.0420 0.0209 -2.0060 0.0449∗

CPB time -0.0001 0.0085 -0.0110 0.9912

Aortic occlusion time 0.0173 0.0109 1.5820 0.1137

RBCI 0.2451 0.1346 1.8210 0.0485∗

Ultrafiltration capacity 0.0001 0.0002 0.6930 0.4882

ICUmvat 0.0195 0.0089 2.1920 0.0284∗

Cleveland 0.2304 0.1421 1.6210 0.1050

Abbreviations: 95% CI: 95% confidence interval; CPB: cardiopulmonary
bypass; ICU: intensive care unit; NGAL: neutrophil gelatinase-associated
lipocalin; OR: odds ratio; SE: standard error. ∗ P value < 0.05.
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time, urine output, and ultrafiltration volume (Ps > 0:05).
Notably, postoperative AKI was associated with worse out-
comes, such as prolonged mechanical ventilation auxiliary
time, length of ICU stay, and hospitalization time.

4.3. Diagnostic Performance of Novel Biomarkers Using
Random Forest, Support Vector Machine, and Multivariate
Logistic Regression. When EF, RBCI, and ICUmvat were
entered in the regression equation, ICUmvat had the largest
impact on the entire model, followed by EF and RBCI. We
assumed that when ICUmvat was equal to 60h, EF was 40%,
and RBCI was 4, yielding scores of 30, 50, and 25, respectively
(the red arrow in Figure 4), and a total score of 105. A total

score greater than 70% was obtained for the predicted risk of
AKI using the above three variables. This approach is simple
and can be easily implemented in clinical practice.

Figure 4 demonstrates the nomogram obtained from
multivariate log regression analysis of risk factors associated
with AKI, including EF, RBCI, and ICUmvat. We created a
nomogram with these three variables for easy implementa-
tion during clinical practice. Meanwhile, the diagnostic per-
formance of novel biomarkers EF, RBCI, and ICUmvat, and
the clinical signature was assessed using ROC curves
(Figure 5).

Prediction of AKI and AKI-related hippocampus
changes after the cardiovascular surgery is demonstrated in

Table 4: 5-fold cross-validation results of AUC after multiple logistic regression (MLR).

Signature AUC Precision Recall F-score Accuracy Delong test for AUC values

Training set

Fold-1 0.633 0.696 0.320 0.438 0.773

Z = 8:551, P ≤ 0:01
Fold-2 0.594 0.619 0.250 0.356 0.739

Fold-3 0.635 0.667 0.340 0.450 0.757

Fold-4 0.640 0.708 0.333 0.453 0.773

Fold-5 0.662 0.639 0.426 0.511 0.757

Average 0.633 0.666 0.334 0.442 0.760

Testing set

Fold-1 0.596 0.200 0.500 0.286 0.667

Z = 6:321, P ≤ 0:01
Fold-2∗ 0.817 0.385 0.833 0.526 0.804

Fold-3 0.745 0.583 0.636 0.609 0.800

Fold-4 0.609 0.214 0.500 0.300 0.689

Fold-5 0.503 0.182 0.250 0.211 0.667

Average 0.654 0.313 0.544 0.386 0.725

Best model in validation set∗ AUC Precision Recall F-score Accuracy

0.753 0.667 0.277 0.391 0.934

Table 5: AKI classification performance using clinical-based random forest (RF) model.

Signature AUC Precision Recall F-score Accuracy Delong test for AUC values

Training set

Fold-1 0.957 0.714 0.909 0.800 0.889

Z = 11:203, P ≤ 0:01
Fold-2 0.934 1.000 0.308 0.471 0.800

Fold-3 0.927 1.000 0.636 0.778 0.909

Fold-4 0.881 1.000 0.462 0.632 0.848

Fold-5 1.000 1.000 1.000 1.000 1.000

Average 0.940 0.943 0.663 0.736 0.889

Testing set

Fold-1 0.686 0.471 0.296 0.364 0.691

Z = 9:674, P ≤ 0:01
Fold-2 0.665 0.522 0.231 0.320 0.718

Fold-3 0.583 0.267 0.074 0.116 0.665

Fold-4 0.659 0.485 0.308 0.376 0.706

Fold-5∗ 0.714 0.571 0.500 0.533 0.767

Average 0.661 0.463 0.282 0.342 0.709

Best model in validation set∗ AUC Precision Recall F-score Accuracy Delong test for AUC values

0.817 0.620 0.677 0.647 0.788
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Figure 6: ROC curve of the 5 folds in training and testing sets and the best performance Signature of random forest (RF) model. The first
row (a–e) represents the ROC calculated by 5 folds of the training set; the second row (f–j) represents the ROC calculated for 5 folds of the
test set.

10 Computational and Mathematical Methods in Medicine



Table 3. The AUC scores of the fivefold cross-validation
after the application of multiple logistic regression, random
forest, and support vector machine are summarized in
Tables 4 and 5 (Figure 6) and Table 6 (Figure 7), respec-
tively. The SVM model that performed the best during the
fivefold cross-validation could distinguish AKI from non-
AKI, as demonstrated in the heat map (Figure 8).

The “cmdscale” function can implement traditional mul-
tidimensional scaling, also known as principal coordinate
analysis. It takes the interior point distance matrix as the
input and outputs a series of points. Ideally, these points
are two-dimensional or three-dimensional. The Euclidean
distance between them produces the same distance matrix
as the original; accordingly, the scatter plot of these points
can objectively present the original distance.

4.4. Multilayer Perceptron-Based Prediction Model
Establishment for AKI-Led Delirium. Before developing the
predictive model, the collected data were randomly divided
into training (70%) and validation (30%) datasets. The train-
ing dataset was used to construct predictive models using
machine learning algorithms (multilayer perceptron (MLP)
was mainly used here). Fivefold cross-validation was used
to continuously adjust model’s parameters to reduce the
chance of overfitting and then verify and compare the final
performance of each model in the validation dataset. AUC,
sensitivity, specificity, and accuracy were used to compare
different models. For modeling and statistical analysis, the
Rstudio neural network package version 1.44.2 (https://
cran.r-project.org/web/packages/neuralnet/index.html) and
Python programming software version 3.9 (Python software,

Table 6: The AKI classification performance using clinical-based support vector machine (SVM) model.

Signature AUC Precision Recall F-score Accuracy Delong test for AUC values

Testing set

Fold-1 0.535 0.973 0.777 0.864 0.729

Z = 2:551, P = 0:042
Fold-2 0.500 1.000 0.767 0.868 0.696

Fold-3 0.558 0.861 0.786 0.822 0.700

Fold-4 0.548 0.938 0.777 0.850 0.724

Fold-5 0.500 1.000 0.777 0.874 0.713

Average 0.528 0.954 0.777 0.856 0.712

Training set

Fold-1 0.612 0.247 1.000 0.396 0.124

Z = 5:551, P = 0:019
Fold-2 0.769 0.865 0.776 0.818 0.867

Fold-3 0.650 0.938 0.818 0.874 0.844

Fold-4 0.808 0.849 0.776 0.811 0.889

Fold-5∗ 0.615 0.938 0.776 0.849 0.778

Average 0.731 0.882 0.778 0.826 0.849

Best model in validation set∗ AUC Precision Recall F-score Accuracy Delong test for AUC values

0.812 0.821 0.742 0.780 0.870

SVM ROC kernal = radial

1.500 (1.000, 0.625)
AUC: 0.812
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Figure 7: (a) The ROC curve of the best performance signature of SVM model, (b) which reflects the multidimensional scale transformation
diagram of AKI and non-AKI.
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http://www.python.org/) were used. An MLP network with
two hidden layers was built using the training dataset. Each
hidden layer contained 11 neurons. The same network struc-
ture was used for the validation dataset, but the training
weight parameters of each neuron were obtained after opti-
mizing the training dataset. The softmax activation function
was used in the final output layer before the network could
output the final results.

Seven radiomics biomarkers were found in 65 patients to
be highly correlated with AKI-related delirium (Table 7).

The importance of the variables was determined using
the MLP model (Figure 9); fivefold MLP training and valida-
tion was applied to determine the most important delirium
risk factors in the radiomics of the hippocampus. The MLP
network structure and model performance are presented in
Figures 10 and 11, respectively.

4.5. Discussion. Cardiac surgery-associated acute kidney
injury (CSA-AKI) is a well-documented complication fol-
lowing cardiac surgery, associated with increased morbidity
and mortality, prolonged hospital stay, and higher medical
costs [22]. Much heterogeneity surrounds AKI incidence
after cardiovascular surgery due to the differences in
research objects, research methods, AKI definitions, diagno-

sis and treatment levels of medical centers, and selected
models. Based on the KDIGO clinical practice guidelines,
66 patients in our present study were diagnosed with
hospital-acquired AKI within a week after cardiovascular
surgery, with an incidence rate of 29.07% (range 5%–30%),
consistent with the literature [23, 24]. To appropriately
manage CSA-AKI, a precise prediction model for identifying
high-risk patients is required to optimize the postoperative
treatment strategy.

To analyze numerous variables with nonlinearity and
complex relationships associated with CSA-AKI develop-
ment, an alternative and effective approach is required to
develop precise prediction models. Over the years, machine
learning has been applied in different areas of medicine, such
as outcome prediction, diagnosis, medical image interpreta-
tion, and treatment [25, 26]. The advantage of this
completely data-driven learning without reliance on rule-
based programming is that machine learning constitutes a
reasonable approach. Accordingly, in the present study,
machine learning methods especially in predictive control
techniques were applied to develop a model for the accurate
prediction of CSA-AKI [27].

Previous studies have addressed the relationship between
cardiac dysfunction and AKI risk in various clinical settings.
For instance, in patients who underwent coronary artery
bypass grafting and had preserved systolic function, preop-
erative E/e′ > 15 was a strong independent predictor of
AKI [28]. Moreover, among patients who underwent pri-
mary coronary intervention due to ST-segment elevation
myocardial infarction, a high E/e′ ratio was associated with
an increased risk of AKI [29]. Another study showed that
decreased LVEF was associated with a faster deterioration
of the renal function [30]. Patients with heart failure who
underwent coronary artery bypass surgery exhibited an
increased risk for AKI postoperatively, even after adjustment
for comorbidities, such as LVEF. Among patients with heart
failure, having a severely reduced LVEF was associated with
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Table 7: Radiomics biomarker correction with AKI-led delirium.

Delirium
OR 95% CI

GLCM∗315.4ClusterProminence 1.45 0.98-1.89

GLCM270.7Contrast 2.33 1.76-2.97

GLCM333.7InverseVariance 1.56 1.11-1.98

GLCM180.7Energy 2.67 2.03-3.19

GLCM225.1InformationMeasureCorr1 1.97 0.98-2.23

GLCM225.4Correlation 1.19 0.87-1.34

GLCM315.4Correlation 2.54 1.78-3.07

Notes: ∗GLCM: gray level cooccurrence matrices.
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AKI more than those with preserved LVEF [31]. The present
study also supported these previous results. In addition, the
present study showed that systolic and diastolic heart dys-
function, characterized by LVEF differences, was associated
with AKI development in hospitalized patients. Therefore,
echocardiographic monitoring of heart dysfunction can be
added to the prediction models of AKI and possibly to real
clinical practice to identify high-risk patients and improve
outcomes.

Meanwhile, anemia has been reported as a potential
modifiable risk factor for postoperative AKI [32, 33]. Ane-
mia is associated with an increased AKI risk, mainly in the
surgical setting [33]. However, preoperative anemia is asso-
ciated with an increase in the probability of erythrocyte
transfusion, risk of postoperative renal failure, and mortality,

as more intraoperative blood transfusion implies more post-
operative bleeding [34]. Accumulating evidence has demon-
strated a dose-dependent association between the volume of
red blood cells (RBCs) and AKI severity [35, 36]. Consistent
with the literature, we found that erythrocyte transfusions
on the surgery day were associated with an increased rate
of AKI. A series of changes that RBCs experience during
storage, including decreased deformability, increased fragil-
ity, progressive hemolysis, and accumulation of free hemo-
globin and iron, have been proposed as mechanisms
responsible for transfusion-associated AKI [37].

In addition, our analysis of intraoperative variables dem-
onstrated that adult patients had a high incidence of AKI
after CPB heart surgery and required a prolonged length
of ICU or hospital stay; severe AKI could increase
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perioperative mortality by 3–8 times [38]. An increasing
body of evidence has suggested that postoperative AKI
occurrence is associated with short-term adverse outcomes
[39, 40]. The present study showed that patients who devel-
oped AKI required invasive mechanical ventilation, higher
mortality, prolonged length of ICU stay, and longer hospital-
ization time. Exposure to surgery and nephrotoxins is one of
the specific modifiable factors, subsequently contributing to
AKI development [5, 18, 41]. Additionally, AKI has been
associated with increased in-hospital mortality and short-
and long-term mortalities after discharge [6]. It has previ-
ously been reported that the long-term prognosis is still poor
for AKI patients, even with complete recovery of the renal
function [42]. Accordingly, it is important to explore the risk
factors associated with short- and long-term outcomes of
AKI patients.

As shown in Figure 5, the multivariate logistic regression
method showed that the predictive performance of a single
clinical or laboratory index for AKI was limited. The largest
and smallest AUC values were found for RBCI (0.651) and
ICUmvat (0.559), respectively, suggesting that although
these indicators are effective in predicting AKI and are sta-
tistically significant during logistic regression, their predic-
tive power is largely limited. However, the predictive
performance was significantly enhanced when the three var-
iables were integrated into a prediction model (AUC value
0.753). In addition, although the random forest-based pre-
diction model yielded excellent performance in the training
set, the AUC values ranged from 0.881 to 1 during training
of the fivefold cross-validation model. However, in the sub-
sequent validation dataset, the model’s generalization ability
was average, and the maximum AUC was only 0.714. This
finding shows that the random forest model exhibits transi-
tional fitting in the training set. The above findings suggest

that the generalization of our model was average, with a
lower performance yield than the multivariate logistic
regression method. This observation is related to settings
such as the number of random forest trees during the design
of the random forest model. Pruning and pruning settings
have always been challenging in machine learning, requiring
constant trial and error to balance the training and valida-
tion datasets. The support vector machine-based model per-
formed better than the above two methods, with an AUC
value of 0.812 for the best model. When the simple neural
network of MLP was used to predict the probability of delir-
ium caused by AKI, although the number of hidden layers
was 2 and the number of neurons in each layer was 10, the
machine learning MLP model yielded excellent performance
in the training and validation datasets. The average AUC
reached 0.903, suggesting that our simple neural network is
efficient for the two-class prediction models and yields excel-
lent prediction results with a simpler network structure.

This study has some limitations. Our analysis used only
single-center data, with a relatively small sample size. The
performance of the machine learning algorithm might differ
when applied to larger datasets with heterogeneous patient
characteristics. As such, external validation is required to
prevent overfitting. Future prospective studies are required
to evaluate the application of machine learning-based pre-
dictive models during clinical practice to identify patients
at high risk of AKI and improve outcomes.

5. Conclusion

Because of the high incidence of AKI, understanding the
independent risk factors associated with the development
of AKI and its early detection is helpful in the risk manage-
ment and clinical decision-making of high-risk patients after
cardiovascular surgery. A radiomics-based machine learning
framework can predict AKI-related delirium in patients who
have undergone cardiovascular surgery.
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