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Objective. As an extension of optical coherence tomography (OCT), optical coherence tomographic angiography (OCTA)
provides information on the blood flow status at the microlevel and is sensitive to changes in the fundus vessels. However, due
to the distinct imaging mechanism of OCTA, existing models, which are primarily used for analyzing fundus images, do not
work well on OCTA images. Effectively extracting and analyzing the information in OCTA images remains challenging. To
this end, a deep learning framework that fuses multilevel information in OCTA images is proposed in this study. The
effectiveness of the proposed model was demonstrated in the task of diabetic retinopathy (DR) classification. Method. First, a
U-Net-based segmentation model was proposed to label the boundaries of large retinal vessels and the foveal avascular zone
(FAZ) in OCTA images. Then, we designed an isolated concatenated block (ICB) structure to extract and fuse information
from the original OCTA images and segmentation results at different fusion levels. Results. The experiments were conducted
on 301 OCTA images. Of these images, 244 were labeled by ophthalmologists as normal images, and 57 were labeled as DR
images. An accuracy of 93.1% and a mean intersection over union (mIOU) of 77.1% were achieved using the proposed large
vessel and FAZ segmentation model. In the ablation experiment with 6-fold validation, the proposed deep learning framework
that combines the proposed isolated and concatenated convolution process significantly improved the DR diagnosis accuracy.
Moreover, inputting the merged images of the original OCTA images and segmentation results further improved the model
performance. Finally, a DR diagnosis accuracy of 88.1% (95%CI ± 3:6%) and an area under the curve (AUC) of 0.92 were
achieved using our proposed classification model, which significantly outperforms the state-of-the-art classification models. As
a comparison, an accuracy of 83.7 (95%CI ± 1:5%) and AUC of 0.76 were obtained using EfficientNet. Significance. The
visualization results show that the FAZ and the vascular region close to the FAZ provide more information for the model than
the farther surrounding area. Furthermore, this study demonstrates that a clinically sophisticated designed deep learning model
is not only able to effectively assist in the diagnosis but also help to locate new indicators for certain illnesses.

1. Introduction

Diabetic retinopathy (DR) is a microvascular impairment of
the fundus caused by diabetes and is one of the leading
causes of blindness and visual impairment [1]. DR has vari-
ous and complex pathogenesis that are still unclear. For the
diagnosis of DR, the most common methods are fluores-
cence fundus angiography (FFA) and indocyanine green
angiography (ICGA) [2]. Both of these methods, however,

are invasive medical imaging examinations. Moreover, the
leakage of contrast media and retinal hemorrhage may dis-
turb the media transparency, blurring the image of retinal
vessels. As a result, the lesion area is difficult to precisely
identify and assess.

Optical coherence tomography (OCT) is a new noninva-
sive imaging technique that can be used to effectively
observe subtle changes in the superficial and deep capillary
plexus of the human retinal microvasculature and has
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become popular in recent years [3]. As an extension of OCT,
optical coherence tomographic angiography (OCTA) is used
to capture and analyze the movement of blood cells in the
field of vision by repeatedly capturing images of the same
retinal position to obtain an image of the capillary network
[4]. Studies have shown that several fundus diseases, such
as age-related macular degeneration (AMD) [5], choroidal
neovascularization (CNV) [6, 7], and retinal arterial macro-
aneurysms (RAM) [8], can be detected using OCTA images.
OCTA is sensitive to the deterioration of vascular networks,
hence providing a novel way of monitoring and evaluating
the progression of DR [9, 10]. Liu et al. compared several
machine learning models for DR discrimination based on 3
× 3mm OCTA scans of different segmentation layers,
including the superficial vascular plexus (SVP), deep vascu-
lar plexus (DVP), and retinal vascular network (RVN). The
best DR diagnosis performance, with an overall accuracy of
0.82 and AUC of 0.83, was obtained by logistic regression
regularized with the elastic net penalty (LR-EN) [11]. Abdel-
salam and Zahran used a support vector machine (SVM) to
diagnose early nonproliferative diabetic retinopathy (NPDR)
based on multifractal geometry and obtained promising
results [12]. However, due to the special imaging mechanism
of OCTA, conventional image analysis technology does not
always work well on OCTA images, and very different fea-
tures are extracted. Moreover, the image quality of OCTA
images is largely affected by factors such as a turbid refrac-
tive medium, image noise, and artifacts of vascular projec-
tion. Consequently, studies are urgently needed on feature
extraction and analysis techniques for OCTA images.

Compared with traditional machine learning algorithms,
deep learning shows higher performance in analyzing medi-
cal images [13–15]. The deep convolutional neural network
(CNN) is one of the most common methods used to imple-

ment image segmentation and classification due to its pow-
erful feature extraction and function fitting abilities
[16–20]. Ma et al. published a dedicated Retinal OCTA SEg-
mentation (ROSE) dataset and proposed split-based coarse
segmentation modules for vessel segmentation [21]. CNNs
have also been considered for DR classification by jointly
using en-face OCT and OCTA [22]. Currently, the number
of OCTA data samples with high-quality labels is much
smaller than that of fundus images; therefore, better utiliza-
tion of multilevel information and a combination of domain
knowledge is the key to improving deep learning-based
OCTA analysis techniques.

In this paper, we proposed a deep learning framework
that extracts and analyzes the multilevel information in
OCTA images and demonstrated its advantage in DR diag-
nosis. We presented a segmentation model based on U-Net
to segment the boundaries of vessels and the foveal avascular
zone (FAZ) in OCTA images. Then, a new deep learning
framework was proposed to predict the class of OCTA
images based on fusing the original OCTA image and the
segmentation results. A visualization method was used to
indicate the regions of interest (ROIs) in the CNN model
to locate the key lesion areas that are focused on by the pre-
diction model to provide guidance for researchers on the key
features for DR diagnosis.

2. Materials and Methods

2.1. Dataset. The OCTA-500 dataset compiled by Li et al.
[23] was the dataset that was used in this study. Three differ-
ent OCTA data projections were provided in this dataset. In
this study, we used the maximum projection between ILM
and OPL (B5), which is generated by the maximum projec-
tion of the inner retina and can clearly show the vascular

(a)

i ii

(b)

Figure 1: Examples of the OCTA image and the mask image. (a) OCTA image. (b) Mask image of (i) the main vessels (surrounding area)
and (ii) the FAZ (center).
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morphology of the inner retina and the shape of the FAZ.
Therefore, it is the most frequently used OCTA projection
map for retinal vessel and FAZ segmentation [23].

The dataset contains two subsets with different fields of
view (FOVs). As shown in Figure 1(a), the white parts in
the image are vessels, while the black zone in the center that
is surrounded by vessels is the FAZ, which is a concave zone
in the postretinal area that is approximately 2mm in diam-
eter and does not contain any vessels. One data subset had
a 6mm × 6mm FOV, while the other subset had a 3mm ×
3mm FOV. Fifty-seven DR samples and 244 normal sam-
ples were labeled in the dataset. The DR diagnosis was pro-
vided by ophthalmologists. Moreover, the masking labels of
vessels and FAZ were provided. Figure 1(b) shows one of the
mask images: the white parts denote vessels, the gray part
denotes the FAZ, and the black part is the background.

2.2. Segmentation of the Vessels and FAZ. To acquire the
labeled image that indicates the vessels and FAZ, we pro-
posed a segmentation method based on the U-Net [24]

architecture, as shown in Figure 2. The OCTA image and
its corresponding mask image are used as the input and
ground truth, respectively. The network architecture can be
divided into contracting and expansive paths. More specifi-
cally, the contracting path consists of a series of convolu-
tional layers that reduce the size of the feature map. The
expansive path is composed of upsampling operations and
convolutional layers. The upsampling operations expand
the size of the feature map, and the convolutional layers
reduce the number of feature channels. The feature maps
with the same size from contracting and expansive paths
are concatenated by a skip connection. Eventually, the final
segmentation result is given by the softmax and ArgMax
operations.

The loss function is designed as follows:

L = −
1

H ×W
〠
m∈H

〠
n∈W

ym,n log f m,n xð Þ + 1 − ym,n
� �

log 1 − f m,n xð Þ� �" #
,
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Figure 3: The process of obtaining a merged image with an OCTA image and a labeled image by channel concatenation.
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Figure 2: The segmentation model in this study based on the U-Net architecture.
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Figure 4: The CNN model used in this paper. (a) The total architecture, which consists of convolutional blocks and identity residual blocks
in the convolution process. (b) The identity residual block. (c) The convolutional block.
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where H denotes the height of the input image, W denotes
the width, ym,n denotes the true label of the sample, and
f m,nðxÞ denotes the output of the segmentation model.

2.3. Image Channel Concatenation. The labeled images that
indicate the vessels and FAZ can be used as expert opinions
(i.e., domain knowledge), which provide more effective
information to the deep learning model. Therefore, the
labeled images are input with the OCTA images as addi-
tional domain knowledge. These two types of images are
single-channel images. Therefore, they can be concatenated
by the channel dimension to obtain double-channel images.
In other words, the labeled image and OCTA image are two
independent channels of the merged image. The concatena-
tion process is shown in Figure 3.

2.4. Deep Learning Framework Based on Multilevel
Information Fusion. The proposed deep learning framework
for DR diagnosis in this study is designed based on the
ResNet50 [25] architecture, and its structure is shown in
Figure 4(a). To sufficiently extract information from the
merged image, we designed a deep learning framework with
an isolated concatenated block (ICB) architecture based on
ResNet50. More specifically, in the isolated convolutional
process, the input is a double-channel image composed of
the original OCTA image and labeled image. They are sepa-
rately processed by convolutional layers to extract the pri-
mary features. The two feature maps are concatenated to
form a composite feature map. The new feature map is input
into a convolutional layer and a pooling layer for information
integration and parameter reduction. In the concatenated con-
volutional process, the input double-channel image is directly
processed by a convolutional layer with a pooling layer to
resize the feature map and make it consistent with the output
of the isolated convolutional process. Eventually, the output
feature maps of the isolated and concatenated convolutional
processes are concatenated.

Then, the feature maps are processed by the following
convolution process. More specifically, the convolution pro-
cess is composed of four-stage residual convolutional blocks
according to ResNet50. These blocks are made up of a con-
volutional block and several identity residual blocks. These
block types are shown in Figures 4(b) and 4(c). Eventually,
the classification results are given by a full connection layer
followed by a softmax operation.

The loss function is designed as follows:

L = −〠
c∈D

tc log f c xð Þ, ð2Þ

where c denotes the current class,D denotes all classes of the
whole dataset, tc denotes the true label of the sample, and
f cðxÞ denotes the output of the classification model.

2.5. Model Visualization. In this study, we used gradient-
weighted class activation mapping (Grad-CAM) [26] to
visually analyze our model. Studies have shown that convo-
lutional layers can retain spatial information [27, 28], while
deeper layers contain more advanced feature information

[29, 30]. Therefore, we focused on the last convolutional
layer, which indicates the location of the region that is
important for determining classification.

The class activation map PC is calculated by the follow-
ing algorithm:
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where Ml denotes the lth channel of the output feature map,
f C denotes the output of the sigmoid function of the current
class, N denotes the number of feature points in the feature
map, σ denotes the activation function, and a rectified linear
unit (ReLU) is used in this study.

3. Results and Discussion

A total of 301 images were used for the training and testing
process in the cross-validation. Among these images, the
ophthalmologists labeled 57 images as DR and 244 as nor-
mal (the ground truth).

An accuracy of 93.1% and a mean intersection over
union (mIOU) of 77.1% were achieved using our segmenta-
tion model. These values were calculated as the average of
three classes. As shown in Table 1, the segmentation task
includes three classes, namely, the background, vessels, and
FAZ classes. The classification accuracy is 93.2% for the
background, 93.8% for vessels, and 92.3% for the FAZ.
Several typical segmentation results are shown in Table 2.

An ablation experiment was conducted to verify the
performance of the proposed classification model. Three
models were compared in the ablation test, namely, a model
with only an isolated convolution process, with only a
concatenated convolution process, and with both isolated
and concatenated convolution processes. Obviously, the
model using only the concatenated convolution process is
equivalent to ResNet50, and the model using both isolated
and concatenated convolution processes is the proposed
model. Moreover, images with only segmentation results,
only OCTA images, and merged images were taken as the
input of the above three classification models. As shown in
Table 3, the best accuracy of 88.1% with 95%CI ± 3:6% is
achieved using the model using both isolated and
concatenated convolution processes with merged images as
the input. We also found that, given the same input, the
model using both isolated and concatenated convolution
processes achieved the best performance. While using the

Table 1: The segmentation accuracy and IOU for every class using
our model.

Class Accuracy IOU

Background 93.2% 92.6%

Vessels 93.8% 54.1%

FAZ 92.3% 84.6%

Average 93.1% 77.1%
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same model, the highest accuracy for each model was
obtained using the merged images. Sixfold cross-validation
was applied for the above analysis.

We compared our model with other existing models on
the DR classification task for the same dataset with 6-fold
cross-validation. In this comparison, the inputs for every

model were merged images. As shown in Table 4, the highest
accuracy of 88.1% with 95%CI ± 3:6% was achieved using
our classification model. The sensitivity of our proposed
model (51.8%) is also significantly larger than other
methods, with a comparable specificity. Due to the unbal-
anced number of positive and negative training samples,

Table 3: The ablation experiment results of our classification model.

Input Model Accuracy

Segmentation results

Concatenated convolution (ResNet50) 75.2% (95%CI ± 7:5%)
Isolated convolution 78.9% (95%CI ± 4:6%)

Isolated and concatenated convolution 80.6% (95%CI ± 2%)

OCTA images

Concatenated convolution (ResNet50) 77.6% (95%CI ± 6:2%)
Isolated convolution 84.4% (95%CI ± 2:7%)

Isolated and concatenated convolution 87.8% (95%CI ± 3:1%)

Merged images

Concatenated convolution (ResNet50) 79.6% (95%CI ± 3:6%)
Isolated convolution 84.7% (95%CI ± 2:0%)

Isolated and concatenated convolution 88.1% (95%CI ± 3:6%)

Table 2: Examples of segmentation results.

Case OCTA image Label Segmentation result

Case 1

Case 2

Case 3
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the proposed model tends to underestimate the number of
positive samples, which limits its sensitivity. However, this
effect can be easily alleviated by setting another judging
threshold to meet the need for a high sensitivity requirement
of clinical diagnosis.

The receiver operating characteristic (ROC) curves,
which more comprehensively represent the performance of
the classification model, of the above models are shown in
Figure 5. The largest area under the curve (AUC) of 0.92
was obtained using our model.

The class activation maps of the last feature map were
generated by Grad-CAM. The weight heatmaps were added
to the merged images to indicate the ROIs for the classifica-
tion model, as shown in Figure 6. Features in the region of
the higher heatmap (in red) have a larger impact on the clas-
sification judgment. It can be observed that most red-
colored regions are close to the central part of the images,
which indicates that the FAZ and the vascular area around
it are the most important regions considered by the model
for DR classification. In other words, we found that patho-

logical changes in DR may appear around the FAZ region
based on the visualization results. In addition, compared to
the narrow FOV images, the red color in the activation
map has a smaller proportion of the whole image in the wide
FOV image. We will explore more specific pathological
changes through more experiments and by consulting med-
ical experts in our future work.

We performed an experiment on another OCTA dataset,
and the results are shown in Table 5. It was found that the
highest accuracy was also achieved by using our model.

4. Conclusion

Deep learning can be used to analyze OCTA images by com-
bining multilevel information and domain knowledge. The
key discoveries in this study can be summarized as follows:

(i) The proposed deep learning framework with iso-
lated and concatenated convolution processes

False positive rate
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Figure 5: The ROC curves and AUCs of several CNN models.

Table 4: The classification results of several CNN models.

Model Accuracy Sensitivity Specificity

EfficientNet 83.7% (95%CI ± 1:5%) 13.0% (95%CI ± 13:1%) 99.6% (95%CI ± 0:8%)
MobileNet v2 81.6% (95%CI ± 1:0%) 3.7% (95%CI ± 4:6%) 99.2% (95%CI ± 13:1%)
ResNet50 79.6% (95%CI ± 3:6%) 20.4% (95%CI ± 19:8%) 93.7% (95%CI ± 8:0%)
ShuffleNet v2 82.0% (95%CI ± 1:2%) 24.1% (95%CI ± 19:0%) 95.0% (95%CI ± 4:6%)
SqueezeNet 82.7% (95%CI ± 1:4%) 13.0% (95%CI ± 11:8%) 98.3% (95%CI ± 1:6%)
Ours 88.1% (95%CI ± 3:6%) 51.8% (95%CI ± 13:4%) 96.3% (95%CI ± 2:8%)
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Figure 6: Examples of the visualization results.

Table 5: The classification results on another OCTA dataset.

Model Accuracy Sensitivity Specificity

EfficientNet 68.2% (95%CI ± 5:3%) 56.7% (95%CI ± 21:0%) 64.8% (95%CI ± 12:7%)
MobileNet v2 66.2% (95%CI ± 5:2%) 68.9% (95%CI ± 24:0%) 53.7% (95%CI ± 22:0%)
ResNet50 75.8% (95%CI ± 2:7%) 62.2% (95%CI ± 16:1%) 69.4% (95%CI ± 25:3%)
ShuffleNet v2 73.8% (95%CI ± 3:3%) 62.2% (95%CI ± 30:1%) 71.3% (95%CI ± 16:0%)
SqueezeNet 57.0% (95%CI ± 5:0%) 0.9% (95%CI ± 17:4%) 98.2% (95%CI ± 3:6%)
Ours 76.0% (95%CI ± 5:8%) 76.2% (95%CI ± 11:8%) 75.9% (95%CI ± 14:3%)
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significantly improved the accuracy of DR
classification

(ii) Fusing the information from the original OCTA
image and labeled images that indicate the FAZ
and vessel parts, which work as domain knowledge,
provided more features and helped to lessen the DR
classification errors

(iii) Visualization analysis confirmed that the FAZ and
the vascular region around it contain more useful
information, such as the shape of the FAZ and the
density of vessels around it, than the surrounding
areas to distinguish DR samples from normal
samples

The proposed analysis not only demonstrated the effec-
tiveness of the deep learning algorithm and multilevel infor-
mation fusion on DR diagnosis but also highlighted a
potential indicator for DR in OCTA images. Hence, it was
found that images with a larger FAZ area or a smaller den-
sity of vessels around the FAZ may be highly associated with
the risk of DR in fundus screening. In the future, a study will
be conducted on larger multicenter datasets, and the poten-
tial of the proposed deep learning framework in other
related biomedical image analysis applications will also be
explored.

Data Availability

The OCTA-500 dataset is publicly available at http://ieee-
dataport.org/open-access/octa-500. The U-Net framework
can be accessed through https://github.com/bubbliiiing/
Semantic-Segmentation/tree/master/Unet_Mobile. The full
code of the proposed method is available at https://github
.com/liyuatbjut/OCTA-Analysis.
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