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Infectious diseases pose a serious threat to human life, the Genome Wide Association Studies (GWAS) can analyze susceptibility
genes of infectious diseases from the genetic level and carry out targeted prevention and treatment. The susceptibility genes for
infectious diseases often act in combination with multiple susceptibility sites; therefore, high-order epistasis detection has
become an important means. However, due to intensive computational burden and diversity of disease models, existing
methods have drawbacks on low detection power, high computation cost, and preference for some types of disease models.
Furthermore, these methods are exposed to repeated query and model inversion attacks in the process of iterative
optimization, which may disclose Single Nucleotide Polymorphism (SNP) information associated with individual privacy.
Therefore, in order to solve these problems, this paper proposed a safe harmony search algorithm for high-order gene
interaction detection, termed as HS-DP. Firstly, the linear weighting method was used to integrate 5 objective functions to
screen out high-order SNP sets with high correlation, including K2-Score, JS divergence, logistic regression, mutual
information, and Gini. Then, based on the Differential Privacy (DP) theory, the function disturbance mechanism was
introduced to protect the security of individual privacy information associated with the objective function, and we proved the
rationality of the disturbance mechanism theoretically. Finally, the practicability and superiority of the algorithm were verified
by experiments. Experimental results showed that the algorithm proposed in this paper could improve the detection accuracy
to the greatest extent while guaranteeing privacy.

1. Introduction

The prevention and treatment of infectious diseases is an
important and long-term task for human beings. The Genome
Wide Association Studies (GWAS) can analyze susceptibility
genes from the whole gene range and carry out targeted pre-
vention and treatment of infectious diseases, which is of great
significance for the long-term development of human beings.
More and more studies showed that the interaction between
genes is the main cause of genetic variation in infectious dis-
eases [1]. Detection of gene interaction refers to the search
for multiorder gene site combinations affecting diseases to

determine the pathogenic cause and genetic mechanism,
which has become an important research direction in Genome
Wide Association Studies (GWAS) [2, 3].

Thousands of methods for identifying gene interactions
have been studied, and they can be divided into exhaustive
[4], random [5], filtering [6], modeling [7], and intelligent
methods [8]. The exhaustive method identifies genes that
interact by combining all the possibilities. The random
method extracts only partial gene combinations from the data
to analyze the disease model. The former method has compre-
hensiveness and completeness, but the calculation burden is
too heavy, and the detection accuracy of the latter still needs
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to be improved. The filtering method is a combination of
exhaustive and filtering method, while reducing the computa-
tional burden, still misses some important combinations of
gene interactions. Modeling is based on traditional machine
learning methods, which use probabilistic methods to identify
gene interactions, but this method still cannot detect gene
combinations with marginal effects.

The latest breakthrough for identifying gene interactions
in GWAS is swarm intelligence search method, which makes
full use of the information contained in current optimization
parameters to generate final new search results, and has
become one of the most popular methods, for example,
AntEpiSeeker [9], IEACO [10], FHSA-SED [11], IOBLPSO
[12], DECMDR [13], and other methods.

Although swarm intelligence search method has the
advantages of controllable time complexity compared with
other methods, it still faces many serious problems. First,
the evaluation function design of swarm intelligence method
is unreasonable [14]. The evaluation function is not selected
from multiple dimensions, so the auxiliary optimization
search strategy has defects. Second, the accuracy of identify-
ing the results of gene interactions still needs to be improved
[15]. Last but not least, there are privacy risks associated
with identifying multiorder genetic interactions [16, 17].
As shown in Figure 1, there are risks of privacy disclosure
in the input, training, and output stages of genetic data. In

the data input stage, the untrusted third party launches
repeated query attack to obtain the original data information
for many times and locate the individuals by combining
these information with the background knowledge. In the
model training stage, the attacker can obtain the gradient
and some key parameters directly related to the original data
through various means such as model inversion, so as to
mine more personal information based on the background
knowledge. This process is an indirect privacy breach. In
the data output stage, the untrusted third party obtains more
genetic detection result information by differential privacy
budget attack. Combining this information with a genetic
history of medical visits for certain diseases can target indi-
viduals. Therefore, the privacy security of genetic data needs
to be solved urgently.

Therefore, in order to solve the above problems, this
paper proposed a safe Harmony Search (HS) algorithm for
high-order gene interaction detection. Firstly, the linear
weighting method was used to integrate various objective
functions, including K2-Score, JS divergence, logistic regres-
sion, mutual information, and Gini, to screen out the Single
Nucleotide Polymorphism (SNP) solution set with high cor-
relation. Then, to protect the privacy security of sensitive
information, we introduced the function disturbance mech-
anism and analyzed the rationality of this mechanism. Spe-
cific contributions are as follows:
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Figure 1: The privacy disclosure of high-order gene interaction detection.

2 Computational and Mathematical Methods in Medicine



(i) Select fitness functions from different dimensions to
overcome the difficulty of poor detection results
caused by gene interaction among functions in the
same gradient. Use the linear weighted sum method
to combine these functions in the same gradient
direction for comprehensive evaluation of the iden-
tified multiorder gene combinations

(ii) Propose a privacy protection mechanism to solve
the problem of privacy disclosure in high-order
gene interaction identification. Specifically, this
mechanism interferes with the polynomial coeffi-
cients of the objective optimization function rather
than simply adding noise to the result, achieving
the balance between privacy and utility

(iii) Theoretical and experimental results show that HS-
DP can not only identify the accuracy of gene inter-
action but also protect the security of SNP informa-
tion associated with individual privacy

The remainder of the paper is organized as follows. Section
2 overviews the related works. List the preliminaries of this
paper in Section 3. In Section 4, we introduce our algorithm
in detail. The experimental evaluations and results are dis-
cussed in Section 5. Finally, Section 6 summarizes the paper.

2. Related Work

Gene interaction refers to the influence of the interaction
between two or more single nucleotide polymorphisms (or
genes) on the phenotype. Epistasis is one of the important
genetic factors affecting complex diseases. The swarm intelli-
gence search algorithm is widely used in the interactive recogni-
tion of SNPs because it can efficiently and quickly search for
feasible solutions within a given range. Commonly used swarm
intelligence search algorithms include particle swarm optimiza-
tion algorithm, differential evolution algorithm, artificial bee
colony algorithm, and ant colony optimization algorithm.

In the study of Particle Swarm Optimization (PSO),
Yang et al. [18] proposed an Odds Ratio-Based binary Parti-
cle Swarm Optimization (OR-BPSO) method to evaluate the
risk of breast cancer. BPSO provides the combinational
SNPs with their corresponding genotype, called SNP bar-
codes, with the maximal difference of occurrence between
the control and breast cancer groups. Chuang et al. [19] pro-
posed IPSO algorithm to improve the reliability of PSO for
the identification of the best protective SNP barcodes associ-
ated with breast cancer. The top five SNP barcode results are
retained for computing the next SNP barcode with a one-
SNP increase for each processing step. Shang et al. [12] pro-
posed an improved opposition-based learning particle
swarm optimization for the detection of SNP-SNP interac-
tions. The proposed algorithm enhances the global explora-
tion capability and also avoids premature convergence. The
particles cover a wider search space and perform in-depth
search on highly suspicious SNP sets. Chuang et al. [20]
applied an evolutionary algorithm to facilitate statistical
methods in the analysis of associated variations for disease
susceptibility. The Gauss particle swarm optimization algo-

rithm was used to detect and identify the best protective
association (i.e., combinations of SNPs with genotypes) with
breast cancer. Yang et al. [21] proposed a PSO-Based Multi-
factor Dimensionality Reduction approach (PBMDR). MDR
was used to detect multilocus interactions based on the PSO
algorithm. Chuang et al. [22] proposed to combine chaotic
graphs with PSO methods to detect the interaction of SNPs
in high-dimensional datasets, where chaotic graphs help
the PSO algorithm to avoid falling into local optima.

In the study of Differential Evolution (DE). Yang et al.
[13] proposed a new algorithm which combines the DE
algorithm with a Classification-based Multifactor Dimen-
sionality Reduction (CMDR), termed DECMDR. Yang
et al. [23] proposed a catfish Taguchi-based binary differen-
tial evolution (CT-BDE) algorithm for identifying SNP-SNP
interactions. In the search space, the catfish effect prevents
the premature convergence of the population, and the Tagu-
chi method improves the search ability of the BDE algo-
rithm. Guan et al. [24] proposed a fast evolutionary
optimization method named search-history-guided differen-
tial evolution. This method applies the search history mem-
orized in a binary space partitioning tree to enhance its
power for selecting feature combinations. Guan et al. [25]
proposed a two-stage algorithm DEseeker to detect epistatic
effects. This scheme can identify hidden SNPs, but it takes
too much time to execute in large-scale datasets.

In the study of Artificial Bee Colony (ABC). Yang et al.
[26] proposed a method of superiority mining based on
the artificial bee colony algorithm to optimize the Bayesian
network. The algorithm is applied to the Bayesian network
heuristic search strategy. Li et al. [27] proposed and formu-
lated a decomposition-based upper interactive multiobjec-
tive artificial bee colony algorithm. Two objective functions
are formulated to characterize various upper models and a
rank probability model based on the fast nondominated
ranking method is proposed. After that, a local search algo-
rithm based on mutual information was proposed.

In the study of Ant Colony Optimization (ACO). Wang
et al. [9] proposed a new tool for discovering apparent inter-
actions in large-scale case control studies, which uses a two-
stage optimization program. Moreover, Wang et al. [28]
developed AntEpiSeeker2.0. By looking at pheromone distri-
bution across pathways, epistasis-associated pathways can be
easily identified. Sinnott-Armstrong et al. [29] implemented
ACO MDR on the GPU. The performance advantages of
GPUs combined with the computational efficiency of heuris-
tic evolutionary algorithms can solve larger-scale problems.
Li et al. [30] proposed a novel approach which could find a
gene-gene interaction model consists of a flexible number
of susceptible loci based on ACO strategy. The proposed
method becomes a potential solution for finding the com-
plex association rules between susceptible SNP subsets and
common human diseases in the future. Shang et al. [31]
introduced an algorithm based on ACO, which by incorpo-
rating heuristic information into ant decision rules. Intro-
duce heuristic information in the search process, and
perform a chi-square test during the iteration. When the
iterative process is completed, sort and use postprocedures
to filter. Jing and Shen [32] proposed a multiobjective
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ACO algorithm to detect genetic interactions, which com-
bines the standard logistic regression and Bayesian network
methods, and also design a memory-based multiobjective
ACO algorithm. Liu et al. [33] proposed a flexible two-
stage method (called HiSeeker) to detect high-level interac-
tions. In the screening phase, HiSeeker uses chi-square test
and logistic regression model. In the search phase, exhaus-
tive search and search based on ant colony optimization
are used. HiSeeker can detect high-level interactions more
efficiently and effectively. Sapin et al. [34] introduced an
ACO-based algorithm called to identify all possible binding
sites of transcription factors from upstream of coexpressed
genes, this algorithm uses the powerful optimization capa-
bilities of ACO, which can not only improve the accuracy
of the results but also achieve very high speeds. Sun et al.
[35] proposed an algorithm based on ACO and a new fitness
function value, which combines Bayesian networks and
mutual information to detect SNP-SNP interactions. Guan
et al. [36] proposed a new ACO algorithm based on auto-
matic adjustment mechanism to solve the problem of com-
binatorial explosion of stratum by mining apparent
interaction from large-scale data. The mechanism automati-
cally adjusts the behavior of artificial ants based on real-time
feedback information, so that the algorithm can run to the
best state. Guan improved and proposed SEPACO [37], a
self-evolved parameter based on ACO algorithm.

3. Preliminaries and Backgrounds

In this section, we will introduce the related concepts and
background knowledge of the HS algorithm and the Differ-
ential Privacy (DP) mechanism.

3.1. HS Algorithm. The HS algorithm is inspired by the
music-making process of jazz musicians, who improvise
the pitches of their instruments in search of perfect harmony
[38]. It is a group-based metaheuristic algorithm, whose idea
is to realize the cognition of unknown complex problems
through information exchange and learning among individ-
uals in a group. More precisely, harmony and its tonal set are
analogous to the candidate solution and its decision variable
set X = ðx1, x2,⋯xNÞ, respectively. In addition, the measure-
ment of harmony’s pleasurable state by the audience’s aes-
thetic evaluation corresponds to an objective function f ð⋅Þ.
Each attempt by a musician to progressively improve har-
mony by producing some new pitch corresponds to the
application of search operators that change the value of
some decision variable during each iteration of the harmony
search. The musician’s memory is where good harmony is
stored, similar to the solution, called HM in the harmony
algorithm.
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HS algorithm has been used in gene interaction recogni-
tion. Tuo’s team pioneered the FHSA-SED approach [11],
which is an integrated HS and local search approach for
identifying 2-order gene interaction recognition studies. In
this method, K2 score and Gini score were selected to repre-
sent SNP loci, and local search algorithm with two-
dimensional Tabu table was used to screen some disease
models with strong epistatic effects. Although FHSA-SED
has higher detection accuracy than other intelligent algo-
rithms, its rationality still needs to be verified. In 2017, this
team proposed validation in a AMD, to demonstrate the
rationality and research ability of HS algorithms for identify-
ing gene interactions [39]. However, the experimental results
show that the accuracy of this method still needs to be
improved. Recently, the team expanded the research content
and proposed MP-HS-DHSI algorithm [40]. A new evalua-
tion standard of harmony target is designed and G-test is
integrated as verification method. In general, this method
greatly improves the detection accuracy but ignores the data
security problem, and the comprehensiveness of the objec-
tive evaluation function still needs to be considered. On this
basis, we propose a safe HS algorithm for high-order gene
interaction detection.

3.2. Differential Privacy. DP is a set of mechanisms devel-
oped for data analysis on sensitive data. By obfuscating data-
base query results, the privacy of data at the personal level is
realized and the query results are approximately correct.
Before we introduce the definition of differential privacy,
let us first agree on some symbols.

Define dataset as the D, each row of the data takes a
value in this set. The number of rows in our fixed database
is n, then, a database x is an element in the power set Dn

(the set composed of all subsets of D. The query is defined
as a function q, enters the database x, and outputs certain
values. MðxÞ is the random mechanism attached to the
query q, Enter a database x to get a randomized query result.
x is the database random variable, Xi represents the content
of the i-th row of the database. p is the mapping defined on
the database row. Pr is the probability distribution.

Definition 1. (ε-Differential Privacy) [41]. If for each pair of
databases x and x’ with only one row that are not the same,
and the output y of each possible MðxÞ, all satisfy

Pr M xð Þ = y½ � ≤ eε Pr M X ′
� �

= y
h i

, ð2Þ

where ε > 0, and δ represents the event that the ratio of the
probabilities for two adjacent datasets x, y cannot be
bounded by eε after adding a privacy preserving mechanism.
With an arbitrarily given δ, a privacy preserving mechanism
with a larger ε gives a clearer distinguish ability of neighbor-
ing datasets and hence a higher risk of privacy violation.

After introducing the definition of difference, we will
introduce three different noising mechanisms for differential
privacy.
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3.2.1. Laplace Mechanism. The Laplace mechanism is a
mechanism that satisfies differential privacy and is mainly
used in counting queries. And, the query returns a vector
of nonnegative integers, and only the case where the query
returns a nonnegative integer is considered here. We now
define a quantity called l1 sensitivity.

Definition 2. (Sensitivity) [42]. The l1 sensitivity of a func-
tion f : Dn ⟶ Rk.

Δf =max x,y∈Dn

x−yk k1=1
f xð Þ − f yð Þk k1,: ð3Þ

where Δf means single record changes the output of f ,
how much can be changed at most. Δf can be used to con-
trol the amplitude of noise.

Define the Laplace mechanism for any function f : Dn

⟶ Rk as

ML x, f ⋅ð Þ, εð Þ = f xð Þ + Y1,⋯, Yð Þk, ð4Þ

where Yi is an independent and identically distributed
(iid) random variable sampled from Yi ~ LapðΔf /εÞ.
3.2.2. Gaussian Mechanism. The Gaussian mechanism
mainly provides differential privacy protection for numerical
data. The Laplace mechanism provides a strict ðε, 0Þ −DP,
while the Gaussian mechanism provides a relaxed ðε, δÞ −
DP mechanism.

For any δ ∈ ð0, 1Þ, σ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln ð1:25/δÞp

Δf /ε, noisy Y ~N
ð0, σ2Þ satisfies ðε, δÞ −DP.

P M xð Þ ∈ Sð Þ ≤ eεP M yð Þ ∈ Sð Þ + δ, ð5Þ

where MðxÞ = f ðxÞ + Y , there are three main parameters
here. The standard deviation of the Gaussian distribution σ,
which determines the scale of the noise. ε indicates the pri-
vacy budget, which is negatively correlated with noise. δ rep-
resents the relaxation term. For example, if it is set to 10−5, it
means that the probability of 10−5 can only be tolerated,
which violates strict differential privacy.

3.2.3. Exponential Mechanism. Exponential mechanism is
used for differential privacy protection of nonnumerical
data. The overall idea of the exponential mechanism is that
when a query is received, it does not output a Oi result
exactly but returns the result with a certain probability value,
thereby achieving differential privacy. And this probability
value is determined by the scoring function, the output
probability of the high score is high, and the output proba-
bility of the low score is low.

Definition 3. (Utility function sensitivity). Utility function
u : Dn ×O⟶ℝ, mapping (database-query output) to util-
ity score, we define the sensitivity of the utility function u as

Δu ≡maxr∈R maxx,y: x−yk k1≤1 u x, oð Þ − u y, oð Þj j: ð6Þ

Exponential mechanism MEðx, u,OÞ. The probability of
selecting and outputting a result o ∈O is proportional to
exp ðεuðx, oÞ/2ΔuÞ. But exp ðεuðx, oÞ/2ΔuÞ does not express
the probability value, so it is necessary to normalize all pos-
sible values to get the corresponding probability value.

Pr Oi½ � = exp ε D,Oið Þ/2Δuð Þ
∑jexp ε D,Oj

� �
/2Δu

� � : ð7Þ

Finally, choose an output with a higher utility score with
a higher probability.

4. Our Proposed HS-DP Scheme

Current studies on gene interactions are still focused on iden-
tifying 2-order gene interactions, but lack of higher-order gene
interactions. In addition, few researchers have focused on the
security of gene interaction GWAS based. In order to solve
the current problems, a framework for high-order gene inter-
action detection HS-DP based on secure harmony search is
proposed in this paper. This framework provides privacy guar-
antee for high-order gene interactions, not only effectively pre-
serves privacy information in training data but also ensures
the availability of the framework through adaptive functional
perturbation mechanism. As shown in Figure 2, HS-DP
mainly consists of 7 steps, including standardized data input,
data quality control, multiobjective memory seize design, lin-
ear combination, differential perturbation, verification, and
outputting results. Some of the key steps are detailed below.
In addition, the definition of high-order gene interaction and
specific problems will also be introduced in the following.

4.1. High-Order Gene Interaction. Studies have shown that
almost no phenotypic characteristics of an individual are deter-
mined by a single gene, so gene-gene (or gene-environment
interaction) has important theoretical and practical signifi-
cance in explaining individual characteristics. High-order gene
interaction is defined as the combinations of at least K SNPs
affecting phenotype or disease genes. We expressed the gene
interactions process as R = fS,G, Ag, where S = fS1, S2 ⋯ , Si
g represented SNP typing, G = fG11,G12,⋯,Gijg represented
interaction between Gi and Gj corresponding genes, and A =
fA1,A2 ⋯ , Aig represented association results. The K-order
gene interaction represents the recognition of SNP interaction
results of the order of 3n. Among them, when Gmn > θ, Gmn
is called the result with the main effect, and when Gab < θ,
Gab is the result of the edge effect.

4.2. Problem Statement. Let the set of gene variables X = f
X1, X2,⋯, Xig includes S = fS1, S2,⋯, Sjg SNP marker for
N individuals. For high-order gene interaction detection
algorithms, the temporal Oð f ðnÞÞ and spatial SðnÞ complex-
ity of the algorithm increases exponentially in 3n detection
demand. There are three ways in which neural network
training data may reveal genetic privacy. In the data input
phase, one attacker A initiates AK = fAK1, AK2,⋯, AKng
attacks, including repeated query, to obtain the original
SNP data information I1, I2,⋯In for several times and locate
individuals based on the background information KN = f
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KN1, KN2,⋯, KNng. In the model training stage, A can
obtain gradients and some key parameters fα, θ,⋯, μg
directly related to the original data through AK = fAK1,
AK2,⋯, AKng such as model inversion, so as to mine more
personal information based on KN = fKN1, KN2,⋯, KNng.
In the data output stage, A obtains more genetic detecting
results information through AK = fAK1, AK2,⋯, AKng
such as differential privacy budget. Combining this informa-
tion with the genetic history of visits for certain diseases can
identify individuals.

4.2.1. K2-Score. Initially, the Bayesian network (BN) is a
graphical statistical model that represents the dependence of
some random variables, and its reasoning model by directed
acyclic graph, where nodes denote random variables and edges
denote dependence between two link nodes. BN is also used to
identify gene interaction among SNP, which calculates the
association of variants and genetic genotype. In general, there
are directed links from SNPMi to genotype status T whenMi
associates with T. From more than 20 kinds of BN models
[40], HS-DP selects K2-score to assess the effects of SNP com-
binations and genotype. More details about K2-score based on
Bayesian Network are introduced in literature [40]. The K2-
score function can be written as Equation (8). In a word, lower
K2-score value shows more stronger association between SNP
combinations and the genetic phenotype.

k2 − Score =
YN
n=1

I − 1ð Þ!
Mi + I − 1ð Þ!

Yi
i=1

Min!

 !
: ð8Þ

4.2.2. JS Divergence. JS divergence, derived from Kullback-
Leibler (KL) divergence [43], refers to the metric of symmetry
between two probability distributions.

In GWAS, JS divergence can be used to measure SNP
genotype deviation between case data and control data. For a
SNP combination, the genotype distribution of case and con-
trol was set as ρcase and ρcontrol, respectively. JS divergence
between ρcase and ρcontrol can be expressed by Equation (9).

JS = 0:5 〠
I

i=1
〠
2

j=1

nij
ni

log
2nij
ni

 !
, ð9Þ

where ρcase and ρcontrol represent the ratio of the i-th genotype
combination in the case and control samples, respectively. In
general, when looking for gene interaction, the larger the JS
divergence value is, the greater the difference between the
genotype of the case group and the control group is, and the
stronger the association between SNP combination and dis-
ease status is, that is, the gene pair has epistatic effect.

4.2.3. Logistic Regression. Logistic regression method is often
used to identify the interactions with SNPs with strong epi-
static effects [44]. Let M1 and M2 denote two SNPs and Y is
the result of gene interactions. In two-order SNPMi andMj,
HS-DP adopts a logistic regression model to identify the
association between (Mi and Mj) and disease status D (1
for yes and 0 for no) as follows:

log
P D = 1 ∣ Mi,Mj

� �� �
P D = 0 ∣ Mi,Mj

� �� �
 !

= α0 + αiMi + αjMj + dMiMj,

ð10Þ

where αi and αj are the main effects for SNP Mi and Mj,
respectively. Using the Newton-Raphson method to search
the optimization value L̂F of the maximum likelihood of
Equation (10) iteratively.
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Figure 2: HS-DP overview.
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4.2.4. Mutual Information. HS-DP fits mutual information
to identify which combinations are true gene interactions.
Mutual information has become one of the widely used
functions for measuring the correlation of two variables
[45]; thus, the formula can be written as

MI M ; Tð Þ =H Mð Þ +H Tð Þ −H M, Tð Þ, ð11Þ

in which HðMÞ is the entropy of M, HðTÞ is the entropy of
T . HðM, TÞ is the joint entropy of M and T . M is the posi-
tion of a variant that is a SNP combination, and T is the
genetic phenotype.

The definition of entropy and the joint entropy can be
written as

H Mð Þ = − 〠
3

i1=1
⋯ 〠

3

in=1
p Mi1

,⋯,Min

� �
· log p Mi1

,⋯,Min

� �� �
, ð12Þ

H Tð Þ = −〠
1

i=0
p tið Þ ⋅ log p tið Þð Þ, ð13Þ

H M, Tð Þ = − 〠
3

i1=1
⋯ 〠

3

in=1
〠
1

i=0
p Mi1

,⋯,Min
, ti

� �
⋅ log p Mi1

,⋯,Min
, ti

� �� �
,

ð14Þ
where n is the number of SNPs in SNP combinations,

and t is the label of samples, and then, p represents the prob-
ability distribution function. In general, higher mutual infor-
mation value shows more stronger association between SNP
combinations and the genetic phenotype.

4.2.5. Gini Score. The Gini index is a measure of dispersion
that can be used to measure the impure nature of data par-
titions or the inequality between values of frequency distri-
butions [46]. The correlation problem of gene interactions
is essentially a dichotomous problem and can therefore be
measured by the Gini coefficient. The Gini index is a diver-
sity index, specifically defined as

Gini = 〠
I

i=1
ρi ⋅ 1 − 〠

J

j=1
ρ2i,j

 !
, ð15Þ

where ρi,jðρi,j = nij/niÞ is the estimated probability that the
i-th genotype combination is actually associated with pheno-
type yj. ð1 − ∑J

j=1ρ
2
i,jÞ represents the estimated probability of

genotype combinations being misclassified as phenotypic yj.
ρiðρi = ni/LÞ is the percentage of the i-th genotype combina-
tion in the sample set. The smaller the Gini coefficient is, the
stronger the correlation between SNP combination and phe-
notype is, that is, the gene has epistasis.

4.3. Functional Differential Perturbation. HS-DP utilized the
linear weighted sum method to perform the above multiple
fitness assessment functions. Weight allocation is one of
the most important steps in the composition process. In this
study, formula (16) is used to assign the appropriate weight,
and the calculation process is as follows:

Power =
True SNPs
∑n=1SNPs

, ð16Þ

mins∈S 〠
T

i=1
Woi

f sð Þ, ð17Þ

Wi =
Poweri

∑i=1Power
, 〠

m

i

Wi = 1, ð18Þ

where equation (17) is the objective optimization func-
tion of HS-DP; however, literature [47] had confirmed that
the objective function directly related to the original data
in optimization problems will leak data privacy information.
The objective function of HS-DP is not only directly related
to the original data, but also its results are directly related to
privacy information. On this basis, this paper proposed a
general differential privacy function perturbation framework
for the study of high-order gene interactions in GWAS to
solve the privacy leakage problem.

Before introducing the specific content of this method,
we would first introduce the preliminaries. Let O be a set
of n objectives fO1,O2,⋯,Ong and i genes. For each goal
O = ðOi1,Oi2,⋯,Oid , f iÞ, we assume no loss of generality,
f i ≥ 0. Our goal is to build an O-based regression model (also
known as the objective function F) that takes the predictions
of F as inputs and outputs S1, S2,⋯, SM . HS-DP shows that
F is a linear regression model parameterized byW, andW is
an N-dimensional vector, where the number of j-th ðj ∈ f1
, 2,⋯, ngÞ is equal to the weight of f i in F. To evaluate the
accuracy of W, we define a cost function W∗ with Oi and
W as inputs. According to the definition of linear regression
cost function, the equation of parameter W∗ is as follows:

W∗ = arg min
W

〠
i

n=1
F f i,Wð Þ: ð19Þ

Definition 4. (ϵ-differential privacy). The randomized algo-
rithm A satisfies ϵ-differential privacy, if for any output R
of A and for any two neighbor databases, we have

Pr A D1ð Þ = R½ � ≤ e
Ð
⋅ Pr A D2ð Þ = R½ �: ð20Þ

The regression task for genetic data returns the parame-
ter W∗ that minimizes the objective optimization function
F =mins∈S∑

T
i=1Woi

f ðsÞ. Releasing W∗ directly would com-
promise the privacy of information that reveals gene data.
In general, our method perturbs and optimizes the function
objective to protect the analysis results rather than directly
perturb the regression results. However, the key issue is
how to protect differentiated private information. According
to the Stone-Weierstrass Theorem [47], we use the polyno-
mial of F as follows.

ψi = WS1
1 W

S2
2 ⋯WSn

n ∣ 〠
n

m

Sm = i

( )
, ð21Þ
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where ψi denotes the set of all products of W1,⋯,Wn.
Therefore, the optimization function F is formula (22).

〠
I

i=0
〠
φ∈ψi

ηφ f i
ψ Wð Þ, ð22Þ

where ηφ f i
is the coefficient of ψðWÞ. The function perturba-

tion mechanism proposed by HS-DP injects noise into this
polynomial coefficient and then obtains the model parame-
ter W of the optimized function F, as shown in algorithm 1.

Theorem 1. Let G and G ’ be any two adjacent datasets of
genes (Assume G and G ’ differ in the last tuple), and F and
F ’ be the objective functions of regression analysis of G and
G’. The polynomial are F =∑I

i=1∑φ∈ψi
∑Gi∈G

ηφ f i
ψðWÞ and F

′ =∑I
i=1∑φ∈ψi

∑Gi∈G′
ηφ f ′i

ψðWÞ, respectively. Then, the inequal-
ity is ∑I

i=1∑φ∈ψi
k∑Gi∈D

ηφ f i
−∑G′i∈Dηφ f ′i

k
1
≤ 2 max

f
∑I

i=1∑φ∈ψi

kηφ f i
k
1
.

Proof. Algorithm 1 satisfies ϵ-differential privacy.

pr F ∣ G½ �
pr F ∣G′
h i =

QI
i=1
Q

φ∈ψi
exp ε ⋅ ∑f i∈G

ηφ f i
− ηφ

��� ���
1
/Δ

�
QI

i=1
Q

φ∈ψi
exp ε ⋅ ∑f ′ i∈G ′

ηφ f ′ i
− ηφ

��� ���
1
/Δ

�

≤
YI
i=1

Y
φ∈ψi

exp
ε

Δ
⋅ 〠

f i∈G
ηφ f i

− 〠
f i′∈G′

ηφ f
i
′

������
������
1

0
@

1
A,

=
YI
i=1

Y
φ∈ψi

exp
ε

Δ
⋅ ηφGn

− ηφGn
′

��� ���
1

	 

,

= exp
ε

Δ
⋅
YI
i=1

Y
φ∈ψi

ηφGn
− ηφGn

′

��� ���
1

 !
,

≤ exp
ε

Δ
⋅ 2 maxG〠

I

i=1
〠
φ∈ψi

ηφf i

��� ���
1

 !
,

= exp εð Þ:

ð23Þ

4.4. G-Test. At the above stage, multiorder gene combina-
tions strongly associated with disease or phenotypic status
have been screened out. At this stage, G-test statistical
method [48] was used to verify the significance level of can-
didate high-order gene combinations.

G-test is a logarithmic likelihood ratio test, and X2 test is
the approximation of the second order Taylor expansion of
logarithmic likelihood ratio test. It can be understood that
the G-test is more accurate than the X2 test in some scenar-
ios. Logarithmic likelihood ratio statistics are difficult to cal-
culate, so the X2 test is widely used. But the G-test is now
more widely used when computational power is sufficient.
In this paper, we redefined the calculation process of G-
test for gene interaction in GWAS, as follows:

G = 2〠
I

i=1
〠
J

j=1
OijPij, ð24Þ

Input:D: SNP dataset
k: the number of SNPs in the combinations.
ϵ: Privacy budget
F: Objective function
HMCR:
PAR:
MaxFEs: the number of iterations
Step 1. Initialize the key parameters of HS algorithm.
Step 2. Calculate the five value of each harmony X by linear weighted sum method.
Step 3. Apply the functional differential perturbation.

for each 0 ≤ ido
for each φ ∈ ψido
set ηφ=ηφ + Laplace

End for
End for
Set Δ = 2 max

S
∑I

i=1∑φ∈ψi
kηφ f i

k
1

Let F =∑I
i=1∑φ∈ψi

ηφ f i
ψðWÞ

Compute W∗ = arg min
W

∑i
n=1F

Step 4. Update the value of harmonies by ranking and iterating.
Step 5. G-test stage.
Calculate G test for each SNP subset left in step 1.
Output: the set of k-order gene combinations that have a strong association with disease model.

Algorithm 1: HS-DP.
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Pij =
a ln

Oij

eij
, 〠

J

j=1
Oij > ζ

0, otherwise

8>><
>>: , ð25Þ

where Oij is the observed number of genotype I when the
disease state is yj, eij is the corresponding expected number
of genotype I when the disease state is yj, which can be cal-
culated according to the Hardy-Weinberg principle [49].

5. Experimental Analysis

In order to protect the privacy of high-order gene interac-
tions and improve the power, a HS-DP framework was pro-
posed in this paper. The above sections have described the
main content of HS-DP. In this section, we will verify the
performance of this framework through comparing the dif-
ferent algorithms by virtual simulation experiment, still
including the source of dataset and the experimental operat-
ing environment.

5.1. Experimental Setup. There are two types of datasets,
simulated and real, of which the simulated dataset was gen-
erated by the GAMETES 2.0 software [50]. The sample size
of case and control was 4000, respectively, and the SNP
number changed within 5000. There were 8 disease models
in total, among which models 1-4 were marginal effect
models (reference literature [51]. Models 5-8 are generated
from the penetrance table with no marginal effect. In addi-
tion, we selected age-related macular degeneration (AMD)
[52] datasets to judge the practical performance of HS-DP.
The framework was trained in a 64-bit Intel(R) Xeon(R) Sil-
ver 4210R CPU @ 2.40GHz processor and 32GB RAM sim-
ulation environment. And, we used Python 3.6 as the
primary programming language in Windows 10. In addition,
since the interaction results of the simulated dataset are the
last three SNPs, in order to ensure the actual effect of the
framework, we distorted this order. Taking the identification
of third-order gene interactions as an example, we selected
DualWMDR [53] and EDCF [54] algorithms as the compar-
ison algorithms to test the performance of HS-DP proposed
in this paper.
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Figure 3: The accuracy of with-marginal effect models.
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5.2. Accuracy Comparison Based on Simulated Datasets

5.2.1. With Marginal Effect. For models 1 to 4 with marginal
effects, we conducted experiments on 9 types of SNP data-
sets of different sizes. The experimental results are shown
in Figure 3.

As can be seen from Figure 3, DualWMDR can identify
gene combinations when the number of SNPS in model 1 is
400, 600, and 1000, and model 4 is 400, 600, 800, 1000, and
2000. In other cases, all of the accuracies are 0. It can be con-
cluded that DualWMDR cannot identify most disease
models with marginal effects. Although EDCF detects the
epistatic combination of genes in most models with higher
accuracy than DualWMDR, the accuracy of the algorithm
gradually decreases with the increase of data size. The HS-
DP algorithm proposed in this paper identifies epistatic gene
interactions in 4 disease models and 9 datasets, and the accu-
racy of the algorithm does not significantly decrease with the
increase of SNP size. This is because the harmony search
algorithm introduced by HS-DP enhances the search ability
of HS-DP for high-order combinations, and five fitness

functions integrated that vary on different gradients, which
can retain the candidate solution set to the maximum.

5.2.2. Without Marginal Effect. For models 5 to 8 without
marginal effect, we conducted experiments on 9 datasets of
different sizes. The experimental results are shown in
Figure 4. From Figure 4, experimental results concluded that
DualWMDR can find the epistatic genes of without-
marginal effect models and 9 kinds of datasets. And the
accuracy of DualWMDR does not decrease with the amount
of data, it showed that this algorithm is available and has a
certain ability to deal with large-scale data. Although EDCF
algorithm has high accuracy, it ignores the privacy protec-
tion in the research of gene interaction and still has the
problem of privacy disclosure. The HS-DP algorithm intro-
duces a differential privacy protection mechanism to solve
this problem, meanwhile the detection accuracy is still as
high as over 99%.

Based on Figures 3 and 4, it can be concluded that the
HS-DP algorithm proposed in this paper not only meets
the accuracy requirements of multiple disease models and
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Figure 4: The accuracy of without-marginal effect models.
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datasets of different sizes but also protects the privacy and
security.

5.3. Real Datasets. We tested the accuracy of HS-DP by being
applied on age-related macular degeneration (AMD) real
datasets. AMD is the leading cause of blindness in middle-
aged and elderly people and is a common eye disease. We
downloaded AMD data from the official website of WTCCC,
which contained 96 case individuals and 50 control individ-
uals with 103611 SNPS. Through quality control, the number
of SNP is 96607. Klein et. al [55] reported two interaction
results most relevant to AMD, rs380390 and rs1329428. After
the initialization parameters, the HS-DP framework took
these two results as the main effect SNPS to search for the cor-
responding third-order gene interaction results in AMD. The
results are shown in Table 1.

These are the results of three-order gene interactions on
AMD datasets. These SNPs are located in a number of impor-
tant genes and perform important functions. For example, the
CFH gene on chromosome 1 encodes a protein that plays a
key role in regulating complement activation. The PCDH9
gene encodes cadherin-associated neuronal receptors and we
hypothesized that it is involved in specific neuronal connec-
tions and signal transduction. In addition, other combinations
of SNPS associated with AMD have been found, but their bio-
logical explanation requires further research.

6. Conclusion and the Future Work

In order to solve the problem of privacy leakage, improve
detection performance, and reduce the detection burden of
high-order gene interaction, a secure high-order gene inter-
action detection framework is proposed in this paper. The
framework designed objective function perturbation mecha-
nisms for intelligent algorithms to identify high-order gene
interaction combinations. This mechanism added noise
according to the distribution characteristics of polynomial
data of objective function. In addition, we optimized the
process of detecting epistasis by swarm intelligence algo-
rithm and proposed a harmony search algorithm suitable
for identification of high-order gene interactions. Experi-
mental evaluations built on simulated and real datasets con-
firm the accuracy of our framework. In the future, our work
will be expanded in the following areas. On the one hand,
training convergence is accelerated to improve model accu-
racy. On the other hand, other noise mechanisms based on

differential privacy need to be studied to protect the security
of sensitive information from multiple perspectives. Finally,
the study of HS-DP on large-scale datasets is also our future
research direction.
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