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Starting from December 2019, the global pandemic of coronavirus disease 2019 (COVID-19) is continuously expanding and has
caused several millions of deaths worldwide. Fast and accurate diagnostic methods for COVID-19 detection play a vital role in
containing the plague. Chest computed tomography (CT) is one of the most commonly used diagnosis methods. However, a
complete CT-scan has hundreds of slices, and it is time-consuming for radiologists to check each slice to diagnose COVID-19.
This study introduces a novel method for fast and automated COVID-19 diagnosis using the chest CT scans. The proposed
models are based on the state-of-the-art deep convolutional neural network (CNN) architecture, and a 2D global max pooling
(globalMaxPool2D) layer is used to improve the performance. We compare the proposed models to the existing state-of-the-
art deep learning models such as CNN based models and vision transformer (ViT) models. Based off of metric such as area
under curve (AUC), sensitivity, specificity, accuracy, and false discovery rate (FDR), experimental results show that the
proposed models outperform the previous methods, and the best model achieves an area under curve of 0.9744 and accuracy
94.12% on our test datasets. It is also shown that the accuracy is improved by around 1% by using the 2D global max pooling
layer. Moreover, a heatmap method to highlight the lesion area on COVID-19 chest CT images is introduced in the paper.
This heatmap method is helpful for a radiologist to identify the abnormal pattern of COVID-19 on chest CT images. In
addition, we also developed a freely accessible online simulation software for automated COVID-19 detection using CT images.
The proposed deep learning models and software tool can be used by radiologist to diagnose COVID-19 more accurately and
efficiently.

1. Introduction

In December 2019, unexplained illness attacked Wuhan,
which was subsequently confirmed to be caused by a novel
coronavirus called SARS-CoV-2, and the infection caused
by it was named COVID-19. The World Health Organiza-
tion (WHO) declared the new type of coronavirus infection
as a Public Health Emergency of International Concern
(PHEIC) on January 31, 2020. The cumulative number of
COVID-19 infections worldwide has exceeded 110 million,
and the death toll has stood over 2.6 million [1].

COVID-19 has many similarities with common respi-
ratory viral infections. The main clinical manifestations

are dry cough, fever, fatigue, and dyspnea. Some cases
may have a sore throat, chest pain, myalgia, and diarrhea
[2, 3]. Severe cases may rapidly develop into acute respira-
tory distress syndrome (ARDS), sepsis, and renal failure
[4]. The “Next-Generation” sequencing (NGS) and reverse
transcription-polymerase chain reaction (RT-PCR) test are
the most commonly used methods for COVID-19 detec-
tion. However, NGS and RT-PCR tests are accurate only
when properly performed by health care professionals.
The rapid COVID tests and self-tests can miss some cases.
The inadequate sensitivity of the RT-PCR test may result
in false negatives and more potential infections [5]. The
research in [6] showed that the joint detection of nucleic
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acid and antibodies could increase the true positive rate of
COVID-19. The study in [7] found that among 1014 sus-
pected cases, the positive rate of RT-PCR test and lung CT
was 59% and 88%, respectively, indicating that lung CT has
a higher sensitivity to COVID-19. In [8], it is shown that
for suspected cases with a negative nucleic acid test, chest
CT examination is necessary to improve the accuracy of diag-
nosis. The main chest CT manifestations of COVID-19 are
bilateral, peripheral/subpleural, posterior ground-glass opac-
ity, crazy paving pattern, and consolidation. Some patients
may have air bronchogram, bronchial wall thickening, lung
nodules, pleural effusion, pleural thickening, lymphadenopa-
thy, and other abnormalities [9–11].

At present, image processing, computer vision, and arti-
ficial intelligence (AI) have been extensively used in medical
imaging and digital health applications [12–18] due to their
excellent performance on image classification and target
detection [19, 20]. These techniques are used in various
medical diagnostic applications such as lung nodules classi-
fication based on CT images [21], heart rhythm monitoring
[22], brain tumor classification from MRI images [23], and
breast cancer detection using histopathology images [24].
These methods can help physicians speed up the analysis,
arrive at a more accurate diagnosis, and develop appropriate
treatment.

The motivation of this study is to design a fast, accurate,
and automated method for COVID-19 detection using the
CT scans. Fast diagnostic method can curb and control the
spread of COVID-19. In this paper, several deep transfer
learning models for COVID-19 detection based on chest
CT images are proposed. The proposed models can be used
as a supplement or alternative to the RT-PCR test in high
incidence areas for faster and more accurate COVID-19
diagnosis.

The contributions of this paper are summarized as fol-
lows in bullet points:

(i) A large and specialist verified dataset is used for
training, validation, and testing. The dataset was
collected from Wuhan Red Cross Hospital during
the pandemic from January to March 2020. A large
and practical dataset is crucial in machine learning

(ii) Convolutional neural network architectures such as
VGG19 and ResNet50V2 are used for COVID-19
detection based on CT images. In addition, we pro-
posed an improvement to use the 2D global max
pooling layer instead of the commonly used flatten
layer or 2D global average pooling layer to help fea-
ture extractions. Experimental results show that the
accuracy is improved by around 1% by using the
2D global max pooling, and the VGG19 model with
the 2D global max pooling layer has the best
performance

(iii) Additionally, we compare the proposed models to
the state-of-the-art models in the literature, includ-
ing ViT, MobileNetV2, InceptionResNetV2, and
ResNet152V2. The proposed VGG19+MaxPool2D

model outperforms the previous methods and can
achieve an accuracy rate of 94.12%.

(iv) We introduce a heatmap method to highlight the
lesion area on the COVID-19 chest CT images.
Results show that a clear heatmap on the lesion area
can be obtained using the proposed models. This
heatmap method is helpful for a radiologist to iden-
tify the abnormal pattern of COVID-19 on chest CT
images faster. Compared to the existing literature
such as [25], the proposed transfer learning based
models achieve a better accuracy and more reason-
able lesion area heatmap

(v) We developed a freely accessible online software for
COVID-19 detection and lesion area localization
using CT image. Using this software requires no
programming or machine learning background.
The proposed models and software tool can be used
to accelerate and improve the accuracy of diagnosis
of COVID-19, which can help control the pandemic

The rest of the paper is organized as follows. The related
works on COVID-19 detection using AI is presented in Sec-
tion 2. In Section 3, the datasets used in this study are intro-
duced. Section 4 describes the proposed deep learning
models. The training and validating process of all models
are also described in Section 4. In Section 5, experimental
results (inference results on the test dataset) for all proposed
models are presented. Comparison between the proposed
models and the other state-of-the-art techniques is also
given. Section 6 introduces a heatmap method to visualize
the abnormal pattern in the COVID-19 CT images. In Sec-
tion 7, we describe a newly developed online software for
COVID-19 detection. Finally, concluding remarks are given
in Section 8.

2. Related Works and Background

The AI-based COVID-19 detection has become a hot spot
and has attracted many researchers recently. A comprehen-
sive review of AI-based COVID-19 detection literature was
provided in [26]. In [27], the authors compared ten tradi-
tional convolutional neural networks to distinguish
COVID-19 from non-COVID-19: AlexNet, VGG-16, VGG-
19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18,
ResNet-50, ResNet-101, and Xception. Among these models,
ResNet-101 performed the best and could identify COVID-
19 with an AUC of 0.994. However, a comparatively small
dataset with 1020 CT slices is used. Hence, a larger dataset
is needed to validate their results. The authors in [28] pro-
posed integrating chest CT findings with clinical history of
patients for diagnosing COVID-19. In this study, a CNN is
used for CT image-based diagnosis, and a multilayer percep-
tron (MLP) is used to classify COVID-19 based on the clini-
cal history. By combining the CNN and MLP results, the
authors state that the proposed algorithm achieves an AUC
of 0.92. In [29], the authors developed a deep learning classi-
fier based on ResNet50. The designed model could distin-
guish COVID-19 from other lung pathologies, such as lobar
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bacterial pneumonia, atypical or viral pneumonia, lung can-
cer, and infectious bronchiolitis, and achieved an AUC of
0.956 on an independent testing dataset. Similarly, a new
multiclassification deep learning model was proposed for
diagnosing COVID-19, pneumonia, and lung cancer chest
diseases [30]. Four architectures were considered in this
paper: VGG19, ResNet152V2, ResNet152V2+Gated Recur-
rent Unit (GRU), and ResNet152V2+Bidirectional GRU
(Bi-GRU). The authors found that VGG19 performed the
best and achieved 98.05% accuracy. An efficient deep learn-
ing technique to detect COVID-19 patterns in chest CT
images named EfficientCovidNet is proposed in [31] for
COVID-19 classification using CT images. The limitation
in [29–31] is that it does not analyze an entire 3D dataset
of DICOM images since the open-source data only contains
the slices with pathological alterations of the lungs. More
diverse datasets are needed to evaluate these techniques.

The researchers in [32] implemented the DenseNet201
model with transfer learning for COVID-19 detection based
on chest CT images. The proposed model achieves an accu-
racy of 96.25% on their test dataset. In [33], the authors pro-
posed a computer-aided diagnosis (CAD) system to detect
COVID-19 based on several methods, including deep end-
to-end learning, deep feature extraction, and principal com-
ponent selection. In [25], the authors proposed a two steps
COVID-19 classification using a 3D CT volume. Firstly,
the ResNet50 model is used to classify each CT image, and
then, an AI method fuses image-level predictions to diag-
nose COVID-19 on a 3D CT volume. All works mentioned
above have reasonable accuracy for COVID-19 classifica-
tion. However, these models only output classification
results (COVID-19 or non-COVID-19), but do not provide
any information on the lesion area or the abnormal pattern
in the CT images.

In [34], a light CNN model based on the SqueezeNet was
introduced for distinguishing COVID-19 from other
community-acquired pneumonia or healthy cases. The class
activation mapping (CAM) method is used to understand
the behavior of the CNN models. It is shown in the paper
that most of the activation is localized on the lesion part of
the lung CT image. Compared to [25], the proposed models
in our work provide a more accurate COVID-19 detection
results and more reasonable lesion area localization results
due to more complicated models, transfer learning, and a
larger dataset.

There are also some studies focused on the impact of
COVID-19. The researchers in [35] implemented a machine
learning technique for predicting the death and cure rates of
patients. In [36], an analysis of socioeconomic impacts of
COVID-19 on public health is presented. Machine learning
and data mining strategies are used in the analysis.

More details of related studies are provided in Table 1.

3. Datasets for the Study

We retrospectively collected 768 chest CT images (160639
CT slices) from 309 patients, including 20 patients without
lung disease and 289 patients with COVID-19. The CT
images are collected in Wuhan Red Cross Hospital from Jan-

uary to March 2020, and each chest CT image consists of
300 slices approximately. The CT slices are originally in
DICOM format, and we converted them to JPG format with
size 224∗224 pixels using the software Miele-LXIV. All slices
were reviewed by senior respiratory specialists in Wuhan
Union Hospital and labeled as three classes: non-COVID-
19, COVID-19, or unclear (cannot be used to decide
COVID-19). In this paper, we formulate the COVID-19
detection problem as a binary classification problem. There-
fore, only slices that are labeled as non-COVID-19 and
COVID-19 are used. Examples of the CT slices in the data-
sets are shown in Figure 1: Figures 1(a)–1(d) are examples
of CT slides from COVID-19 patients, and Figures 1(e)–
1(f) are examples of CT slides from non-COVID-19
patients.

The CT slices are split into training, validation, and test
datasets. The 148,129 CT slices from the first 280 patients
are randomly split into training and validation dataset, with
the ratio of number of slices to be 4 : 1. The training set con-
tains 118,506 slices (including 38,938 slices in non-COVID-
19 and 79,568 slices in COVID-19). The validation set con-
tains 29,623 slices (including 7,933 slices in non-COVID-19
and 19,890 slices in COVID-19). The rest of the 12,510 slices
from 29 patients are used as test sets (including 6,136 slices
in non-COVID-19 and 6,374 slices in COVID-19). Note that
the slices in the test dataset are never seen by the model dur-
ing training and validating process, since they are from dif-
ferent patients. Therefore, the inference results on the test
dataset is an unbiased estimate of the skill of the trained
model.

4. Proposed Deep Learning Models for COVID-
19 Detection

4.1. Proposed Models. The convolutional neural network
(CNN) architecture is popular in computer vision and image
classification problems due to its particular convolutional
layer [37–41]. The main advantage of using convolutional
layers is its high-level feature extraction ability in images.

In this study, we investigated the VGG19 and
ResNet50V2 CNN architectures. The aim is to explore their
performance in COVID-19 diagnosis using CT scans. We
also proposed using a 2D global max pooling layer instead
of the commonly used flatten layer or 2D global average
pooling layer to improve the performance. Additionally, we
compare the proposed models with the other existing state-
of-the-art techniques such as Vision Transformer, Mobile-
Net, InceptionResNetV2, and ResNet152V2. Details of the
deep learning models used in this study are provided below.

4.1.1. VGG19 CNN Models. The VGG19 architecture is a
widely used deep sequential CNN model. In our work, we
use the transfer learning method, and the pretrained convo-
lutional layers of VGG19 architecture are used. The Ima-
geNet weights are used to initialize the weights of the
convolutional layers. Note that using the pretrained convolu-
tional layers is a practical and common approach for improv-
ing the performance in deep learning problems [41, 42].
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Table 1: Summary of related work on deep learning based COVID-19 detection.

Ref. Class Subjects Models
Sens.
(%)

Spec.
(%)

Prec.
(%)

Acc.
(%)

AUC
(%)

Ardakani, Kanafi
et al. [27]

COVID-19/other pneu. 108/86 ResNet-101 100.00 99.02 N/A 99.51 99.40

Mei, Lee et al. [28]
COVID-19/non-

COVID-19
419/486 ResNet-18 84.30 82.80 N/A N/A 92.00

Javor, Kaplan et al. [29] COVID-19/other pneu. 209/209 ResNet-50 84.40 93.70 N/A N/A 95.60

Silva, Luz et al. [31]
COVID-19/non-

COVID-19
276/115 EfficientCovidNet N/A N/A N/A 87.68 90.15

Jaiswal, Gianchandani
et al. [32]

COVID-19/non-
COVID-19

1263/
1230

DenseNet201 N/A 96.21 96.29 96.25 97.00

Attallah, Ragab et al.
[33]

COVID-19/non-
COVID-19

347/397 Other CNN 95.90 93.70 N/A 94.70 98.00

Polsinelli, Cinque
et al. [25]

COVID-19/non-
COVID-19

460/397 Other CNN 87.55 81.95 85.01 85.03 N/A

(a) (b)

(c) (d)

(e) (f)

Figure 1: Examples of COVID-19 and non-COVID-19 CT images. (a–d) A 76-year-old male with confirmed COVID-19. (e–f) A 31-year-
old female with non-COVID-19.
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At the end of the convolutional layers, a flatten layer, a
dense layer, a dropout layer, and a densely connected clas-
sifier are appended. We use a block diagram to conclude
the structure of the proposed VGG19 based models as in
Figure 2. In the state-of-the-art VGG19 architecture, the
flatten layer is used to convert the output (with dimension
7 × 7 × 512) of the last convolutional layer and maxPoolin-
gLayer to 1-dimensional linear vector (dimension 1 ×
25088). In this study, a 2D global average pooling layer

or a 2D global max pooling layer is used as an alternative
to the flatten layer. The 2D global average/max pooling
layer is used to average/max all the values in the pooled
feature map after the last convolutional layer and max
pooling layer. Figure 3 is a visual representation of what
this process looks like. Experimental results in Section 5
show that using 2D global max pooling can improve the
performance for COVID-19 detection. More details about
the VGG19 architecture can be found in [41, 42].

conv2D (64, 3x3)

conv2D (64, 3x3)

maxPooling2D (2x2)

conv2D (128, 3x3)

conv2D (256, 3x3)

conv2D (256, 3x3)

conv2D (256, 3x3)

conv2D (256, 3x3)

conv2D (512, 3x3)

conv2D (512, 3x3)

conv2D (512, 3x3)

conv2D (512, 3x3)

conv2D (128, 3x3)

maxPooling2D (2x2)

maxPooling2D (2x2)

maxPooling2D (2x2)

flatten/global/AvgeragePooling2D/globalMaxPooling2D

Dense

Dropout (0.5)

Sigmoid Activation

COVID-19
or

non-COVID-19

Figure 2: Structure of VGG19 based model.
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4.1.2. ResNet50V2 CNN Models. The ResNet model initially
proposed in [43] utilized the residual learning framework.
The residual learning framework helps in resolving the gra-
dient vanishing problem in deep CNN. In our ResNet50V2
based CNN model, the pretrained convolutional layers of
ResNet50V2 architecture are used. The ImageNet weights
are used to initialize the convolutional layers.

Similar to the proposed VGG19 based models, the out-
put of the last convolutional layer of ResNet50V2 is passed
to the flatten layer, 2D global average pooling layer, or 2D
global max pooling layer. Finally, a dense layer, a dropout
layer, and a densely connected classifier are appended. The
architecture of the ResNet50V2 based models is presented
in Figure 4.

More details about the ResNet architecture can be found
in [43].

4.1.3. Other State-of-the-Art Deep Learning Models. In this
study, we compared the proposed VGG19 and ResNet based
models to several state-of-the-art deep learning models:
Vision Transformer (ViT), MobileNetV2, InceptionRes-
NetV2, and ResNet152V2.

The ViT model is based on the architecture of trans-
former originally designed for text or natural language pro-
cessing. The researchers in [39] show that by dividing
images into patches, the transformer can be applied to
sequences of image patches for image classification tasks. It
is shown that ViT attains excellent results compared to the
state-of-the-art CNN when the training dataset is large.
The detail architecture of the multihead attention, and ViT
can be found in [39].

MobileNetV2 is a light-weight deep CNN architecture
with 52 convolutional layers and 1 fully connected layer.
The new depthwise separable convolution is used to reduce
the weight in the architecture. MobileNetV2 has advantages
such as faster computation and lower latency; therefore, it is
used widely in mobile applications. More details about the
MobileNet architecture can be found in [44].

InceptionResNetV2 is a deep CNN architecture with 164
layers. It is based on the Inception architecture and incorpo-
rates the residual connections from ResNet. The Inception
part performs multiple convolutions on the same level with
different filter sizes to reduce computational costs. The
ResNet part utilizes the residual learning framework to help

resolving the gradient vanishing problem. More details
about the InceptionResNet architecture can be found in [45].

ResNet152V2 is similar to ResNet50V2 but has different
residual blocks scheme and different number of residual
blocks. More details about the ResNet152V2 architecture
can be found in [43].

4.2. Training of the Proposed Models. The general procedure
of the training process is given in Algorithm 1. The prepro-
cessing in Algorithm 1 step 2 includes data normalization
and data augmentation. The data normalization is applied
to both training and validation data. The normalization

2D global average/max pooling

Pooled feature maps with dimension 7x7x512 1x512

Figure 3: Process of 2D global average or max pooling.

conv2D (64, 7x7)

conv2D (64, 1x1)

conv2D (64, 3x3)

conv2D (256, 1x1)

conv2D (128, 1x1)

conv2D (256, 1x1)

conv2D (256, 3x3)

conv2D (1024, 1x1)

3x

6x

4x

3x

conv2D (512 1x1)

conv2D (512, 3x3)

conv2D (2048, 1x1)

conv2D (128, 3x3)

conv2D (512 1x1)

flatten/global/AveragePooling2D/globalMaxPooling2D

averagePooling2D(2x2)

Dense

Dropout (0.5)

Sigmoid Activation

COVID-19
or

non-COVID-19

Figure 4: Structure of ResNet50V2 based model.
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consists of two steps: (1) resize all the images to standard
size using the basic bilinear interpolation image resizing
method: 224 pixels height and 224 pixels width. Resizing is
needed to keep up the computation limitations. (2) Normal-
ize the value of each pixel in the image based on the model
requirements: for the VGG19 and ViT models, the normal-
ized value is between 0 and 1. For the ResNet, MobileNet,
and InceptionResNet models, the pixel value is normalized
to between -1 and 1.

The data augmentation preprocessing is applied only to
the training datasets. Data augmentation is a technique used
to increase the amount of data by applying random transfor-
mation on existing CT images to create slightly modified
copies. It is a commonly used method to solve the overfitting
problem during the training, especially when the dataset is
small. In our study, the following random transformation
is applied: (1) randomly rotate the image from -40 to 40
degrees; (2) randomly shift the image horizontally (left or
right) by 0 to 8 pixels; (3) randomly shift the image vertically
by 0 to 15 pixels (up and down); and (4) randomly apply
shearing transformation from 100% (no shearing) to 110%.
Note that shearing is to distort the image along the x or y
axis to create the perception angles; (5) randomly zooming
the image from 100% (no zooming) to 110%; and (6) ran-
domly flip the image horizontally or/and vertically. Some
examples of the augmented images are shown in Figure 5:
An example of the original CT slice that labeled as
COVID-19 is shown in Figure 5(a). Examples of augmented
CT slice such as vertically flipped, rotated, and shifted in
horizontal direction are shown in Figures 5(b)–5(d),
respectively.

After preprocessing, we train the model using the train-
ing dataset. Each iteration of the training process is called an
epoch. The number of epochs is set to 100 in this study.
Since the COVID-19 detection is formulated as a binary
classification problem, we use the binary cross-entropy func-
tion as the loss function for weight update during the train-
ing process. The binary cross-entropy loss function is
defined in

Loss yð Þ = −
1
N
〠
N

i=1
yi log p yið Þð Þ + 1 − yið Þ log 1 − p yið Þð Þ,

ð1Þ

where y = ½y1y2y3,⋯,yi�, and yi is the label for the i
th image

(label 1 for COVID-19 and label 0 for non-COVID-19),

and pðyiÞ is the predicted probability of the ith image being
COVID-19. Since the model is doing binary classification,
the accuracy of the model is defined as the percentage of
the predicted values that match with the actual values for
the binary labels.

The flowchart of the overall COVID-19 recognition sys-
tem design is presented in Figure 6. Other parameters of the
system and the simulation environment are given below:

(1) The batch size is set to 32 in the training and validat-
ing process. The number of steps per epoch is calcu-
lated to be the total number of images divided by the
batch size

(2) Transfer learning is used to optimize the deep learn-
ing models. The ImageNet weights are used to ini-
tialize the weights in the convolutional layers in all
CNN models. For the ViT model, the multihead
attention layers are initialized by the ImageNet
weights

(3) For all models, the binary cross-entropy function
mentioned in Equation (1) is used as the loss func-
tion, and we use the Adam optimizer to update the
weights of the models. The initial learning rate is
set to 1e-4

(4) When training the CNN models, we first freeze the
weights in the convolutional layers and only trained
the dense layers for 5 epochs. This is to ensure that
the pretrained ImageNet weights in the convolu-
tional layers will be not messed up by the randomly
initialized weights in the dense layer. Then, the con-
volutional layers are jointly trained with the base
layers for 95 epochs

(5) When training the ViT model, we first freeze the
weights in the multihead attention blocks and only
trained the dense layer for 5 epochs. Then, all the
layers are jointly trained for 95 epochs

(6) The training, validating, and testing process are per-
formed using a Windows 10 desktop with an NVI-
DIA GeForce RTX 2060 Graphic card. For the
CNN models, the simulation is performed in Python
3.6 environment with tensorflow 2.1.0. For the ViT,
the simulation is performed in Python 3.8 environ-
ment with tensoflow 2.8.0

1. Shuffle all the CT images in each class randomly.
2. Pre-processing: apply both data normalization and augmentation on the CT images in the training data set; apply only the normal-
ization on the CT images in the validation data set.
3. Train the model on the training data set and evaluate the model on the validation data set (100 epochs):

(3.1) First, we freeze the pre-trained layers (such as the convolutional layers in VGG19 and ResNet50V2, and the multi-head atten-
tion blocks in ViT). The CT images are used to train the dense layer for 5 epochs

((3.2) Then all layers are unfrozen. All layers are jointly trained for 95 epochs.
4. Return the trained model and retain the evaluation scores.

Algorithm 1: Train the proposed models.
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4.3. Results of Training and Validation. The training and
validating process of the proposed VGG19 based models are
indicated in Figures 7(a)–7(c). It is shown that the VGG19
with flatten layer, VGG19 with 2D global average pooling
layer and VGG19 with 2D global max pooling layer achieve
training accuracy of 99.60%, 99.61%, and 99.64%, respectively.
And the validation accuracy for the proposed VGG19 based
models is 98.45%, 98.69%, and 99.07%, respectively.

The training and validating process of the proposed
ResNetV2 based models are presented in Figures 7(d)–7(f).

The proposed ResNet50V2 with flatten layer, ResNetV2 with
2D global average pooling layer, and ResNet50V2 with 2D
global max pooling layer achieve training accuracy of
99.70%, 99.83%, and 99.70, respectively. And the validation
accuracy for the proposed ResNet50V2 based models is
98.89%, 98.67%, and 98.88%, respectively.

The training and validation process of the state-of-the-
art benchmarking models are indicated in Figures 7(g)–
7(j). The ViT, MobileNetV2, InceptionResNetV2, and
ResNet152V2 achieve training accuracy of 87.06%, 99.74%,
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Figure 5: Examples of the augmented images. (a) original image; (b) flipped image; (c) randomly rotated image; and (d) randomly shifted
image.
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Figure 6: Flowchart of COVID-19 recognition system design.
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Figure 7: Continued.
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99.91%, and 99.79%, respectively. And the validation accu-
racy for the four benchmarking models is 88.42%, 96.15%,
98.84%, and 97.55%, respectively.

The training time and number of parameters for all
models are indicated in Table 2. Note that using a 2D
global average/max pooling layer instead of the flatten
layer can decrease the number of learning parameters in
the model.

5. Experimental Results

The classification performance of the proposed models is
evaluated on the test dataset. Note that the performance on
the test data set will be the performance of the models on
the CT images it has never seen before. Therefore, it is an
unbiased performance measure of the proposed models.

For each model, the following performance metrics are
calculated based on the inference results on the test dataset:
sensitivity, specificity, accuracy, false discovery rate (FDR),
and area under curve (AUC). The metrics and terms in the
equations are defined as follows:

(i) Sensitivity: Sensitivity is the ability of the model to
correctly identify the patients with a COVID-19. It
is mathematically defined as in Equation (2)

(ii) Specificity: Specificity is the ability of the model to
correctly identify the people without COVID-19. It
is mathematically defined as in Equation (3).

(iii) Accuracy: Accuracy is the ability of the model to
make a correct decision on whether the people are
with COVID-19 or non-COVID-19. It is mathe-
matically defined as in Equation (4).

(iv) False discovery rate (FDR): FDR is the ratio of the
number of false positive (COVID-19) results to the
number of total positive results. It is mathematically
defined as in Equation (5).
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Figure 7: Accuracy and loss plot of all models for training and validation datasets.

Table 2: Characteristic of the models used in the study.

Parameters
(106)

Training time per
epoch (second)

VGG19 with flatten layer 32.87 1707

VGG19 2D globalAvgPooling 20.29 1704

VGG19 2D globalMaxPooling 20.29 1690

ResNet50V2 with flatten layer 74.95 1446

ResNet50V2 2D
globalAvgPooling

24.61 1449

ResNet50V2 2D
globalMaxPooling

24.61 1440

ViT 87.85 1863

MobileNetV2 2.26 1454

InceptionResnetV2 55.12 2080

ResNet152V2 59.38 2543
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Figure 8: Receiver operating characteristic for all models
(evaluated on the test datasets).
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Figure 9: Confusion matrix of all models.

Table 3: Diagnostic performance for the deep learning models.

AUC Sensitivity Specificity Accuracy FDR

VGG19 with flatten layer 0.974 90.97% 96.05% 93.46% 4.01%

VGG19 2D globalAvgPooling 0.976 91.18% 95.49% 93.29% 4.55%

VGG19 2D globalMaxPooling 0.977 91.40% 96.95% 94.12% 3.11%

ResNet50V2 with flatten layer 0.955 88.01% 95.84% 91.85% 4.35%

ResNet50V2 2D globalAvgPooling 0.963 87.67% 97.51% 92.49% 2.67%

ResNet50V2 2D globalMaxPooling 0.973 91.54% 96.48% 93.96% 3.57%

ViT 0.872 74.02% 86.25% 80.02% 15.17%

MobileNetV2 0.957 89.54% 91.26% 90.38% 9.66%

InceptionResnetV2 0.969 90.19% 96.19% 93.13% 3.91%

ResNet152V2 0.947 87.17% 94.54% 90.78% 5.69%
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(v) Area under curve: The area under the ROC curve
measures the usefulness of the model. In general, a
greater area under the curve means a more valuable
and accurate model

Sensitivity = TP
TP + FN

, ð2Þ

Specificity = TN
TN + FP

, ð3Þ

Accuracy = TP + TN
TP + TN + FP + FN

, ð4Þ

FDR =
FP

TP + FP
, ð5Þ

where the TP (number of true positive), TN (number of true
negative), FP (number of false positive), and FN (number of
false negative) in Equations (2)–(5) are defined as below in
bullet points [46]:

(i) TP (number of true positive): An output is called
true positive when the model recognizes the CT
image as positive (COVID-19), and the actual CT
image is positive. The total number of images that
are true positive is defined as TP

(ii) TN (number of true negative): An output is called
true negative when the model recognizes the CT
image as negative (non-COVID-19), and the actual
CT image is negative. The total number of images
that are true negative is defined as TN

(iii) FP (number of false positive): An output is called
false positive when the model recognizes the CT
image as positive, and the actual CT image is nega-
tive. The total number of images that are false pos-
itive is defined as FP

(iv) FN (number of false negative): An output is called
false negative when the model recognizes the CT
image as negative, and the actual CT image is

Heatmap for VGG19 with 2D global 
average pooling

(a) Heatmap for VGG19 with 2D global average pooling

Heatmap for VGG19 with 2D global 
max pooling

(b) Heatmap for VGG19 with 2D global max pooling

Heatmap for ResNet50V2 with 2D global 
average pooling

(c) Heatmap for ResNet50V2 with 2D global average pooling

Heatmap for ResNet50V2 with 2D global 
max pooling

(d) Heatmap for ResNet50V2 with 2D global max pooling

Figure 10: Heatmap and lesion area recognition for proposed models.
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positive. The total number of images that are false
negative is defined as FN

Figure 8 represents ROC curves for all proposed models
and state-of-the-art benchmarking models. It is shown that
the proposed VGG19 with 2D global max pooling layer
model has the best ROC performance and achieves an
AUC of 0.97744. We can also see that the proposed
VGG19 with 2D global max pooling outperforms the state-
of-the-art models such as ViT, MobileNetV2, InceptionRes-
NetV2, and ResNet152V2. By comparing the AUC among
the proposed VGG19 (or ResNet50V2) with flatten layer,
VGG19 with 2D global average pooling layer, and VGG19
with 2D global max pooling layer, it is shown that using
2D global max pooling layer has the largest AUC. Besides,
we use Youden’s index to obtain the thresholds and evaluate
the confusion matrix, sensitivity, specificity, accuracy, and
FDR for all models on the test dataset. A confusion matrix
is a table that contains TN, FP, FN, and TP values and is
used to describe the performance of a classification model.
The confusion matrix results are presented in Figures 9(a)–
9(j), and Table 3 indicates the diagnostic performance of
all models. Observations from Table 3 are concluded as
below:

(1) The proposed three VGG19 based models could distin-
guish COVID-19 from non-COVID-19 with accuracy
93.29%-94.12%. The proposed three ResNet50V2 based
models achieve accuracy 91.85%-93.96%

(2) The best accuracy performance was achieved by
VGG19 with 2D global max pooling with accuracy
94.12%, and it outperforms the benchmarking
models (ViT, MobileNetV2, InceptionResNetV2,
and ResNet152V2 with accuracy 80.02%, 90.38%,
93.13%, and 90.78%, respectively)

(3) By comparing the performance among VGG19 (or
ResNet50V2) with flatten layer, VGG19 with 2D global
average pooling layer, and VGG19 with 2D global max
pooling, we found that using 2D global max pooling
layer improves the accuracy by around 1%

(4) The best sensitivity performance is achieved by
VGG19 and ResNet50V2 with 2D global max pooling
layer (with specificity 91.40% and 91.54%, respec-
tively). The best specificity is achieved by VGG19 with
2D global max pooling and ResNet50V2 with 2D
global average pooling (with specificity 96.95% and
97.51%, respectively). The best FDR is achieved by
VGG19 with 2D global max pooling and ResNet50V2
with 2D global average pooling (with FDR 3.11% and
2.67%, respectively).

Note that running the prediction on the test set (includ-
ing 12510 CT slices) to label the CT slices only takes around
80 to 120 seconds. Therefore, these fast predictions can be
used to accelerate the diagnosis of COVID-19.

6. Visualizing the Abnormal Pattern

This study also introduces a heatmap method to visualize
the abnormal pattern in the COVID-19 CT image. The
method is based on the class activation map (CAM) visuali-
zation techniques: a score of how vital each pixel is for clas-
sification is computed using a gradient method [47]. A
heatmap image can be generated from the scores to indicate
each pixel’s importance for the abnormal pattern. The gen-
erated heatmap results for our proposed CNN models are
shown in Figure 10. The highlighted region indicates a
higher possibility for an abnormal pattern such as ground-
glass opacity, crazy paving pattern, and consolidation. The
abnormal pattern visualization heatmap results can be

click on “Choose File”
button to open a CT
image for COVID-19
detection

click on the “Recognize
Image” button for COVID-
19 detection and pattern
recognition

Detection results: COVID-19 or non-COVID

Figure 11: Online software for COVID-19 detection and pattern recognition.
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helpful for radiologist to identify the COVID-19 using CT
image more accurately and efficiently.

7. Online Software for COVID-19 Detection

In order to present the developed COVID-19 classification
models and make them helpful in assisting COVID-19
detection, we also developed a freely accessible online simu-
lation software for COVID-19 detection. The proposed
VGG19 with 2D global max pooling model is used in the
software. Classification of a new CT image in the software
can be performed by click on the “Choose File” button to
select the CT image and then click on the “Recognize Image”
button to generate output. As a result, using the software
requires no programming and machine learning experience.
The intuitive interface allows for COVID-19 detection and
visualization of abnormal patterns in the CT image, as
shown in Figure 11.

Note that the online software is currently running on our
own desktop server. Please email us to get the link to the
software if interested.

8. Conclusion

In this paper, several deep learning models are designed and
evaluated for fast and automated COVID-19 diagnosis using
the chest CT scans. Six architectures are presented in this
study: VGG19 with flatten layer, VGG19 with 2D global
average pooling layer, VGG19 with 2D global max pooling
layer, ResNet50V2 with flatten layer, ResNet50V2 with 2D
global average pooling layer, and ResNetV2 with 2D global
max pooling layer. We showed that by using the 2D global
max pooling layer instead of the flatten layer or 2D global
average pooling layer, we can improve the accuracy for
COVID-19 detection by around 1%. Through extensive
experiments performed on the test dataset, the VGG19 with
2D global max pooling layer model outperforms other pro-
posed models and achieved 94.12% accuracy, 91.40% sensi-
tivity, 96.95% specificity, 3.11% FDR, and 0.9744 AUC. We
also compare the proposed model with various existing
state-of-the-art techniques, such as ViT, MobileNet, Incep-
tionResNetV2, and ResNet152V2 on the test dataset, and
found superior diagnostic accuracy.

Moreover, we introduced a heatmap method to highlight
the lesion area of the COVID-19 chest CT images, which
helps identify the abnormal pattern in COVID-19 chest
CT images. We also developed a freely accessible online sim-
ulation software for COVID-19 detection using CT images.
The proposed method and software can accelerate the radi-
ology checking process, and the classification speed can be
as quick as 1.1ms per CT image. It is important to efficiently
and correctly diagnose the disease early to help control the
epidemic.
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