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In this study, we analyzed the effect of mother-to-child transmission (MTCT) of hepatitis B virus (HBV) and human
immunodeficiency virus (HIV) on the transmission dynamics of their coinfection to make a recommendation based on reasons
to public health sector, policy makers, and programme implementers. We proved that the solutions of the sub and full models
are positive and bounded. The effective reproduction numbers of the models are derived using the next generation matrix
method. The disease-free and endemic equilibria of the submodels and the coinfection model are computed, and the stability
of those equilibria is analyzed using Routh-Hurwitz criteria after computing the associated effective reproduction numbers. We
performed a sensitivity analysis to show the influence of different parameters on the effective reproduction number of HBV-
HIV/AIDS coinfection model, and we identified the most sensitive parameters are τ2 and α1, which are the rate of MTCT of
HIV and treatment rate for HBV infected class, respectively. The numerical simulation of the model is done using MATLAB
and the findings from the simulations are discussed. From the results of numerical simulations, we observed that an increase
in the rates of MTCT of HBV and HIV exacerbated HBV-HIV/AIDS coinfection, while a decrease in the rates of MTCT of
these infections would decline the number of cases, minimize the spread, and help to eliminate HBV-HIV/AIDS coinfection
from the society gradually.

1. Introduction

Hepatitis B is a liver infection caused by HBV. It affects
everyone including expectant women and their newly born
children globally. The main routes of transmission are verti-
cal transmission (MTCT), contact with infected blood,
semen, and other bodily fluids [1, 2]. MTCT, by which
HBV is transmitted from infected mothers to their infants,
during pregnancy, at birth, or postnatally (during childcare
or through breast milk), contributes significantly to the per-
sistence of the high number of HBV carriers globally [3–6].
The chance of MTCT amongst infants born to HBV infected
mothers is ranges from 10 to 40% in HBeAg negative
mothers and greater than 90% in HBeAg positive mothers

with HBV deoxyribonucleic acid (DNA) levels greater than
200,000 IU/ml [7]. Elimination of MTCT of HBV has been
identified as a global public health priority. To prevent
MTCT of HBV, World Health Organization advises uni-
versal immunization with at least three doses of HBV vac-
cine as first-line prevention against around birth infection
for all newborns. Newborns should get their first dose of
the vaccine along with hyperimmune hepatitis B immuno-
globulin (HBIG) at birth [6]. However, in many resource-
constrained countries, the initial dose is provided as a pentava-
lent vaccine in the EPI (Expanded Program on Immunization)
program at 6 weeks of age, and therefore babies from birth to
six weeks of age are not protected against vertical transmis-
sion [8].
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HIV also affects everyone including expectant women
and their newly born children globally. It is a causative agent
for acquired immunodeficiency syndrome (AIDS) which
damages both humoral and cellular immunity resulting in
increased susceptibility of the host to a wide range of [9,
10]. The main routes of transmission of HIV are the same
as that of HBV [9, 11, 12]. MTCT, by which HIV is trans-
mitted from infected mothers to their infants, contributes
significantly to the persistence of the high numbers of HIV
carriers globally [13, 14]. Without prevention, the chance
of MTCT of HIV is 15–25% in developed countries and
25–35% in developing countries [15]. Primary HIV protec-
tion, theminimization of unintended pregnancies, good access
to HIV diagnosis and counselling, the start of treatment, viral
suppression for mothers living with HIV, safe delivery prac-
tices, good infant feeding practices, and access to postnatal
antiretroviral (ARV) prophylaxis for infants are all important
factors in the prevention of MTCT of HIV [16, 17]. Coinfec-
tion increases the morbidity and mortality beyond those
caused by either infection alone. People coinfected with both
infections have a higher tendency of developing cirrhosis of
the liver, higher levels of HBV DNA, reduced rate of clearance
of hepatitis B e antigen (HBeAg), and more likely to die than
either infection alone [18, 19]. Thus, it is important to consider
and study the effect of MTCT which contributes significantly
to the persistence of the high number of HBV and HIV car-
riers globally.

In the field of epidemiology, models are important tools in
the study of extremely complex communicable diseases.
Recently, numerous scholars are concentrated on the study
of the transmission dynamics of a particular and coinfection
of various diseases and how the diseases might be effectively
managed and potentially eliminated. Wodajo and Mekonnen
[20] proposed a mathematical model to study the dynamics
of hepatitis B virus infection under the administration of vac-
cination and treatment, where HBV infection is transmitted in
two ways through vertical and horizontal transmission. Their
results show that the combined efforts of vaccination, effective
treatment, and interruption of transmission make elimination
of the infection plausible and may eventually lead to the erad-
ication of the virus. Omondi et al. [21] developed a mathemat-
ical model describing the dynamics of HIV transmission by
incorporating sexual orientation of individuals. They investi-
gated the effect of the introduction of preexposure prophylaxis
(PrEP) on the dynamics of the HIV. The results show that the
introduction of PrEP has a positive effect on the limitation of
the spread of HIV. Melese and Alemneh [22] developed a
transmission dynamics model for VL–HIV coinfection by
splitting the population into ten compartments. From the
result they achieved, the authors concluded that increasing
the rate of visceral leishmaniasis (VL) recovery (ϕ1), the recov-
ery rate for VL–HIV Coinfection (ϕ2), removing reservoirs (c1
), and minimizing the contact rate (βh) are important in con-
trolling the transmission of individual and coinfection disease
of VL and HIV. Teklu and Rao [23] proposed and analyzed a
realistic compartmental mathematical model on the spread
and control of HIV/AIDS-pneumonia coepidemic incorporat-
ing pneumonia vaccination and treatment for both infections
at each infection stage in a population. The authors showed

that pneumonia vaccination and treatment against disease
have positive effect in decreasing pneumonia and coepidemic
disease expansion and reducing the progression rate of HIV
infection to the AIDS stage.

However, mathematical models formulated to study the
codynamics of HBV and HIV/AIDS are few in the literature,
although the coexistence between the two infections exists.
In our review of the literature, we found only three mathemat-
ical models of HBV-HIV/AIDS coinfection and we used them
as the basis for our developed model as follows: Bowong et al.
[24] developed a deterministic model for HBV and HIV coin-
fection. In their model, the authors did not consider treatment
for all infections rather intended only on prevention against
HBV infection. Nampala et al. [25] formulated an epidemio-
logical model of hepatotoxicity and antiretroviral healing
effects in HBV-HIV coinfection. The authors used numerical
techniques to study the healing as well as toxic effect of the
recently used HBV-HIV therapy, and as a result formulated
a desirable combination for treating the effect of HBV and
HIV infections. These authors concentrated on hepatotoxicity
and treatment effects in their model rather than including pro-
tection strategies against all infections. The combined effect of
vaccination and treatment on the transmission dynamics of
HBV-HIV/AIDS coinfection has been studied by Endashaw
and Mekonnen [26]. Their model subdivides the total popula-
tion into ninemutually exclusive compartments depending on
the disease status. The model has no recovery compartment
for those who are recovered from HBV infection naturally.
Moreover, the authors did not consider the effect of MTCT
of both HBV and HIV infections on the transmission dynam-
ics of the coinfection of these two viruses rather focusing on
the horizontal transmission alone. They obtained results
showing that vaccination against hepatitis B virus infection,
treatment of hepatitis B and HIV/AIDS infections, and
HBV-HIV/AIDS infection at the highest possible rate are very
essential to control the spread of HBV-HIV/AIDS coinfection
as an important public health problem. We motivated by a
study conducted by Endashaw and Mekonnen [26] and
extended it by considering a recovery compartment for those
individuals who are recovered from HBV infection naturally
and MTCT of both HBV and HIV which are not considered
in their study. Moreover, to the authors’ knowledge, none of
the authors of these existing coinfection models have consid-
ered the effect of MTCT of hepatitis B virus and HIV on the
coinfection dynamics of HBV-HIV/AIDS. As a result, we
examine the effect of MTCT of HBV and HIV on the trans-
mission dynamics of the coinfection of these two viruses with
medical interventions. This extended model will be used to
evaluate the effect of MTCT of both infections on their cody-
namics model with preventive (vaccination) and therapeutic
(treatment) intervention strategies.

2. Baseline Model Description and Formulation

We grouped the entire population NðtÞ into ten compart-
ments as those who are susceptible to both diseases ðP1ðtÞÞ
, immune to HBV after vaccination ðP2ðtÞÞ, only infected
with HBV ðP3ðtÞÞ, only infected with HIV ðP4ðtÞÞ, infected
with both HBV and HIV ðP5ðtÞÞ, those who are receiving
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HBV treatment ðP6ðtÞÞ, those who are receiving HIV treat-
ment ðP7ðtÞÞ, HBV-HIV/AIDS treated section ðP8ðtÞÞ, indi-
viduals with suppressed viral load ðP9ðtÞÞ, and HBV
recovered class ðP10ðtÞÞ. The entire population at time t,
denoted by N(t), is given by

N tð Þ = P1 tð Þ + P2 tð Þ + P3 tð Þ + P4 tð Þ + P5 tð Þ + P6 tð Þ
+ P7 tð Þ + P8 tð Þ + P9 tð Þ + P10 tð Þ: ð1Þ

(i) The newly immunized individuals enter into the
immunized compartment P2 at a constant recruit-
ment rate Λ

(ii) The P4ðtÞ compartment rises because of HIV
infected newborns at a rate ð1 − d2Þτ2P4 and the
transfer of individuals from P1ðtÞ and P2ðtÞ com-
partments by the infection rate λ2. It is supposed
that an accurate contact of P4 compartment with
both P1 and P2 classes lead to the birth of infected
neonates with a rate of τ2. Of these newly born but
infected neonates a fraction d2 dies during the
birth due to the infection and the remaining com-
plementary fraction ð1 − d2Þ enter into P4 class.
Similarly, the P3ðtÞ class increases due to HBV
infected newborns at a rate ð1 − d1Þτ1P3 and the
entering of individuals from P2ðtÞ compartment
by the force of infection λ1. It is assumed that the
real contact among P3 and P2 classes lead to the
birth of infected neonates with a rate of τ1. Of
these newly born but infected neonates a fraction
d1 dies during birth due to the infection and the
remaining complementary fraction ð1 − d1Þ enters
into P3 class

(iii) The combination among people is the same and
become infected with HBV and HIV by the force
of infection λ1 and λ2, respectively

(iv) The efficacy of the vaccine wanes out at a rate ω
and the natural recovery rate of individuals from
HBV infection in HBV-only infected class is r2

(v) The susceptible class rises due to the recruitment
of unimmunized individuals, the transfer of natu-
rally recovered individuals from recovered class,
and the transfer of individuals whose vaccine effi-
cacy wanes

(vi) Individuals in P1 and P2 compartments get HIV
infection by the force of infection λ1, whereas indi-
viduals in P2 acquire HBV infection by the force of
infection λ2. Individuals in HBV-only infected
class get HIV infection by force of infection λ2
within a brief period of time before an infection
with the first strain (HBV) has been established
and an immune response has developed. Similarly,
individuals in HIV-only infected class get HBV
infection by force of infection λ1 within a brief

period of time before an infection with the first
strain (HIV) has been established and an immune
response has developed.

(vii) Individuals in P3 and P5 progress to P6 and P8
classes, respectively, after getting treatment. The
proportion ζ of individuals in P4 progress to P7
due to the treatment rate α2 and the remaining
proportion ð1 − ζÞ of individuals progress to P5
by force of infection λ1 before an infection with
the first strain (HIV) has been established and an
immune response has developed

(viii) Individuals who are recovered from HBV infection
naturally in HBV-HIV/AIDS coinfected class enter
in to HIV-only infected class at a rate r1

(ix) Since the effective treatment reduces the viral load
of the infected individuals in P6,P7, and P8 classes
to the required undetectable level, individuals in
these compartments progress to a suppressed viral
load class at the progress rate θ1, θ2, and θ3,
respectively

(x) If the vaccine efficacy not wanes, people who are
immunized against HBV infection are susceptible
to HIV-only

(xi) Due to the fact that there may be no immunity to
loss life whether or not one is unwell or healthy,
the natural death rate for individuals in different
classes is the same

(xii) Recovered class increases due to a transfer of natu-
rally recovered individuals from HBV infected
class and decreases due to the progress of HBV
recovered individuals to the susceptible class

(xiii) Those persons who get rid of HBV infection due to
natural immunity in P3 class enter into the recov-
ered class at rate of r2, but they do not susceptible
to reacquiring the infection because they devel-
oped antibodies that protect them from HBV
infection for the rest of their lives.

Using Table 1 and the model assumptions, the flow dia-
gram for the transmission dynamics of the full model is
given by:

From the flow diagram of the model in Figure 1, the
dynamical system of the model is

dP1
dt

= 1 − ηð ÞΛ + ωP2 + r3P10 − λ1 + λ2 + d0ð ÞP1,

dP2
dt = ηΛ − λ2 + ω + d0ð ÞP2,

dP3
dt = 1 − d1ð Þτ1P3 + λ1P1 − r2 + α1 + λ2 + d3 + d0ð ÞP3,
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dP4
dt = 1 − d2ð Þτ2P4 + λ2 P1 + P2ð Þ + r1P5

− ζα2 + 1 − ζð Þλ1 + d4 + d0ð ÞP4,

dP5
dt = 1 − ζð Þλ1P4 + λ2P3 − r1 + α3 + d5 + d0ð ÞP5,

dP6
dt = α1P3 − θ1 + d0ð ÞP6,

dP7
dt = ζα2P4 − θ2 + d0ð ÞP7,

dP8
dt = α3P5 − θ3 + d0ð ÞP8,

dP9
dt = θ1P6 + θ2P7 + θ3P8 − d0P9,

dP10
dt = r2P3 − r3 + d0ð ÞP10,

ð2Þ

where the force of infection associated with HBV infection is
given by

λ1 = h1
P3 + P5ð Þ

N
: ð3Þ

and the force of infection associated with HIV infection is
given by

λ2 = h2
+P4 + P5ð Þð

N
, ð4Þ

with initial conditions,

P1 0ð Þ > 0, P2 0ð Þ > 0, P3 0ð Þ > 0, P4 0ð Þ > 0, P5 0ð Þ > 0, P6 0ð Þ
> 0, P7 0ð Þ > 0, P8 0ð Þ > 0, P9 0ð Þ > 0, and P10 0ð Þ > 0:

ð5Þ

2.1. Positivity of the Solutions and Boundedness of the
Solution Region of the Full Model (1)

Theorem 1. At the initial conditions (5), the solutions of the
dynamical system (2) are nonnegative for time t > 0 in the
region

Ω = P1, P2, P3, P4, P5, P6 , P7 , P8, P9, P10ð Þ ∈ℝ10
+:

È É ð6Þ

Proof. Let us take the first differential equation from the
dynamical system (2)

dP1
dt

= 1 − ηð ÞΛ + ωP2 + r3P10 − λ1 + λ2 + d0ð ÞP1: ð7Þ

A separable first order ordinary differential equation of
(7) for the variable P1 is

dP1
dt

+ λ1 + λ2 + d0ð ÞP1 = 1 − ηð ÞΛ + ωP2 + r3P10: ð8Þ

Now taking the integrating factor e
Ð
ðλ1+λ2+d0Þdt , we get

P1 tð Þ = e− λ1+λ2+d0ð Þt 1 − ηð ÞΛ + ωP2 + r3P10ð Þ
ð
e λ1+λ2+d0ð Þtdt

� �
:

ð9Þ

Table 1: Model Parameters and their descriptions.

Parameters Descriptions

d0 Natural death rate

Λ Rate of recruitment of individuals into immunized
compartment

d1
Probability of death of newborns infected with HBV

at birth

d2
Probability of death of newborns infected with HIV

at birth

τ1 Rate of MTCT of HBV

τ2 Rate of MTCT of HIV

d3 Mortality rate related to hepatitis B virus

d4 Death rate due to HIV/AIDS

d5 Mortality rate due to coinfection

α1
Rate of treatment for hepatitis B virus infected

individuals

α2
Rate of treatment for ζ proportion of HIV/AIDS

patients

α3 Rate of treatment for those who are coinfected

λ1 Infection related with hepatitis B virus

λ2 Infection related with HIV/AIDS

r1
A rate of return of HBV infected population from P3

class naturally to former status

r2
A rate of return of HBV infected population from

coinfected class to former status

η Fraction of vaccinated population

ζ Fraction of HIV/AIDS patients entering to treatment
compartment.

θ1
The transfer rate of HBV patients to suppressed viral

load compartment after treatment

θ2
The transfer rate of HIV/AIDS patients to suppressed

viral load class after treatment

θ3
The transfer rate of coinfected population to
suppressed viral load class after treatment

h1 Contact rate for HBV

h2 Contact rate for HIV

ω The waning rate of vaccine efficacy

r3
The transfer rate of HB recovered individuals to

susceptible class
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Integrating and simplifying (9) gives us

P1 tð Þ = C1e
− λ1+λ2+d0ð Þt + 1 − ηð ÞΛ + ωP2 + r3P10

λ1 + λ2 + d0

� �
: ð10Þ

where C1 is constant.

After rearranging and computing (10) at ðtÞ = 0 we get

C1 = P1 0ð Þ − 1 − ηð ÞΛ + ωP2 + r3P10
λ1 + λ2 + d0

� �
ð11Þ

Substituting (11) in (10) we get

P1 tð Þ = P1 0ð Þe− λ1+λ2+d0ð Þt + 1 − ηð ÞΛ + ωP2 + r3P10
λ1 + λ2 + d0

Á 1 − e− λ1+λ2+d0ð Þt
� �

:

ð12Þ

which is the solution of (7).
Since, P1ð0Þ > 0, e−ðλ1+λ2+d0Þt > 0 and ð1 − ηÞΛ + ωP2 + r3

P10/λ1 + λ2 + d0 > 0 for t ≥ 0, equation is positive. Therefore,
P1ðtÞ = P1ð0Þe−ðλ1+λ2+d0Þt + ð1 − ηÞΛ + ωP2 + r3P10/λ1 + λ2 +
d0ð1 − e−ðλ1+λ2+d0ÞtÞ > 0

Following the same procedure, P2ðtÞ > 0, P3ðtÞ > 0, P4ðtÞ
> 0, P5ðtÞ > 0, P6ðtÞ > 0, P7ðtÞ > 0, P8ðtÞ > 0, P9ðtÞ > 0, and
P10ðtÞ > 0. Hence, from the above proof, we can conclude that
whenever the initial values of the systems are all positive, then
all the solutions of the dynamical system (2) are positive.

Theorem 2. The dynamical system (2) is positively invariant
in the region

Ω = P1, P2, P3, P4, P5, P6 , P7 , P8, P9, P10ð Þ ∈ℝ10
+ : N ≤

Λ

d0

� �
ð13Þ

Proof. The dynamics of total population NðtÞ with respect to
time t is computed as

dN
dt =Λ − d0N + τ1 − d1τ1 + d3ð Þð ÞP3

+ τ2 − d2τ2 + d4ð Þð ÞP4 − d5P5

ð14Þ

In the absence of mortality due to HBV infection, HIV/
AIDS, and HBV-HIV/AIDS coinfection and comparing
both sides of the equation (14) using standard comparison
theorem,

dN
dt

≤Λ − dN: ð15Þ

The solution for the inequality (15) after some steps
becomes

N tð Þ ≤N 0ð Þe−d0t + Λ

d0
1 − e−d0t
� �

: ð16Þ

As t⟶∞, the population size NðtÞ⟶Λ/d0 whenever
Nð0Þ ≤Λ/d0. This implies

(1 – d2) 𝜏2P4

(d0 + d4) P4

(d0 + d5) P5

(d0 + d3) P3

(1 – 𝜂) Λ

𝜁𝛼2P4 d0P7

d0P9

𝛼1P3P3

𝛼3P5

r1P5

P5

d0P8d0P1

r3P10 r2P3P10

d0P2

𝜔P2
P2

𝜂Λ

𝜆2P3

𝜆1P1

𝜆2P1𝜆2P2

(1 – 𝜁)  𝜆1P4

(1 – d1) 𝜏1P3

P1

d0P6

d0P10

𝜃2P7

𝜃3P8P8

𝜃1P6

P7

P9

P6

P4

Figure 1: Flow diagram of the full model.
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0 ≤N tð Þ ≤ Λ

d0
: ð17Þ

The inequality (17) shows that all the feasible solutions of
the components of a dynamical system (2) with initial condi-
tions enter the region Ω = fðP1, P2, P3, P4, P5, P6, P7, P8, P9,
P10Þ ∈ℝ10

+ : N ≤Λ/d0g for all t > 0. Thus, the region Ω is
positively invariant.

3. Analysis of the HBV and HIV/
AIDS Submodels

To lay down the foundation for the analysis of model (2), it
is important to observe the dynamics of the submodels in
advance.

3.1. HBV-Only Submodel. From the model (2), the HBV-
only submodel is obtained by setting P4 = P5 = P7 = P8 = P9
= P10 = 0. Thus, we have the following dynamical system

dP1
dt

= 1 − ηð ÞΛ + ωP2 + r3P10 − λ1 + d0ð ÞP1,

dP2
dt

= ηΛ − ω + d0ð ÞP2,

dP3
dt = 1 − d1ð Þτ1P3 + λ1P1 − r2 + α1 + d3 + d0ð ÞP3,

dP6
dt = α1P3 − d0P6,

dP10
dt

= r2P3 − r3 + d0ð ÞP10,

ð18Þ

where the force of infection is

λ1 = h1
P3
N1

: ð19Þ

with initial conditions,

P1 0ð Þ > 0, P2 0ð Þ > 0, P3 0ð Þ > 0, P6 0ð Þ > 0, and P10 0ð Þ > 0:
ð20Þ

The total population of the dynamical system (18) is
given by

N1 tð Þ = P1 tð Þ + P2 tð Þ + P3 tð Þ + P6 tð Þ + P10 tð Þ: ð21Þ

3.1.1. Positivity of the Solutions and Boundedness of the
Solution Region of HBV-Only Submodel. As we did in sub-
section 2.1, it is important to prove that all the solutions of
the dynamical system (18) with positive initial conditions
remain positive and the solution region is bounded. This fact
is verified in theorem 3 and 4 as follows:

Theorem 3. The solutions of the dynamical system (18) with
positive initial conditions are positive for time t ≥ 0 in the
region

Ω1 = P1, P2, P3, P6 , P10ð Þ ∈ℝ5
+

È É
: ð22Þ

Proof. Taking dP1/dt = ð1 − ηÞΛ + ωP2 + r2P3 − ðλ1 + d0ÞP1
from the dynamical system (18) we get

dP1
dt + λ1 + d0ð ÞP1 = 1 − ηð ÞΛ + ωP2 + r2P3: ð23Þ

Equation (23) is a separable first order ordinary differen-
tial equation for the variable P1. After integrating and some
simplifications, we get the solution

P1 tð Þ = P1 0ð Þe− λ1+d0ð Þt + 1 − ηð ÞΛ + ωP2 + r2P3
λ1 + d0

1 − e− λ1+d0ð Þt
� �

:

ð24Þ

Since, P1ð0Þ > 0, e−ðλ1+d0Þt > 0 and ð1 − ηÞΛ + ωP2 + r2P3
/λ1 + d0 > 0 for t ≥ 0, the solution we found is positive. Fol-
lowing the same procedure, P2ðtÞ > 0, P3ðtÞ > 0, P6ðtÞ > 0,
and P10ðtÞ > 0. Therefore, the solutions of the dynamical
system are positive whenever the initial values positive.

Theorem 4. The dynamical system (18) is positively invariant
in the region

Ω1 = P1, P2, P3, P6 , P10ð Þ∈ℝ5
>+ : N1 ≤

Λ

d0

� �
: ð25Þ

Proof. The dynamics of total population N1ðtÞ with respect
to time t is computed as

dN1
dt =Λ − d0N1 − d3P3: ð26Þ

In the absence of mortality due to HBV infection and
comparing both sides of equation (26) using standard com-
parison theorem, we obtain

dN1
dt ≤Λ − d0N1: ð27Þ

After some steps the solution for equation (27) is

N1 tð Þ ≤N1 0ð Þe−d0t + Λ

d0
1 − e−d0t
� �

: ð28Þ

As t⟶∞, the population size N1ðtÞ ≤Λ/d0
This implies 0 ≤N1ðtÞ ≤Λ/d0, which shows all the feasi-

ble solutions of the model (18) with initial conditions enter
the region Ω1 = fðP1, P2, P3, P6, P10Þ ∈ℝ5

+ : N1 ≤Λ/d0g.
Thus, the region Ω1 is bounded.

3.1.2. Disease-Free Equilibrium Point (DFE) of HBV-Only
Submodel. At DFE point it is assumed that there is no disease
in the population. The DFE of the dynamical system (18)
represented by E0

1 is obtained by setting the right-hand side
of the dynamical system equal to zero, providing that fP3 =
P6 = 0g. After some simple calculation, E0

1 is equal to
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E0
1 =

Λ ω + d0 1 − ηð Þð Þ
d0 ω + d0ð Þ , ηΛ

ω + d0
, 0, 0, 0

� �
: ð29Þ

3.1.3. Effective Reproduction Number of HBV-Only Submodel.
The effective reproduction number of hepatitis B infected
individuals, denoted by R1

eff that of the dynamical system
(18), is defined as the expected number of secondary cases
produced by one typical infection joining in a population
made up of both susceptible and nonsusceptible hosts during
its infectious period [27, 28]. It is obtained by taking the spec-
tral radius of the matrix FV−1 = ðρðFV−1ÞÞ = ½∂F iðE0

1Þ/∂xj�
½∂viðE0

1Þ/∂xj�−1 of the dynamical system (18) [28, 29], where
F i is the rate of appearance of a new infection in the compart-
ment i, vi is the transfer of infection from one compartment i
to another, and E0

1 is the disease-free equilibrium point.
The corresponding Jacobian matrices of F and V com-

puted at DFE point E0
1, respectively, are given as follows:

F = 1 − d1ð Þτ1 ω + d0ð Þ + h1 ω + d0 1 − ηð Þð Þ
ω + d0

� �
, ð30Þ

and

V = r2 + α1 + d3 + d0½ �: ð31Þ

From this, it follows that

R1
eff = ρ FV−1À Á

= 1 − d1ð Þτ1 ω + d0ð Þ + h1 ω + d0 1 − ηð Þð Þ
ω + d0ð Þ r2 + α1 + d3 + d0ð Þ :

ð32Þ

3.1.4. Local Stability Analysis of the Disease-Free Equilibrium
Point of HBV-Only Submodel

Theorem 5. The disease-free equilibrium point E0
1 = ðΛðω

+ d0ð1 − ηÞÞ/d0ðω + d0Þ, ηΛ/ω + d0, 0, 0, 0Þ of the dynamical
system (18) is locally asymptotically stable if the effective
reproduction number R1

eff < 1.

Proof. The Jacobean matrix of the dynamical system (18) at
the DFE point E0

1 is

J1 E0
1

À Á
=

−d0 ω 0 0 r3

0 − ω + d0ð Þ 0 0 0
0 0 − r2 + α1 + d3 + d0ð Þ 0 0
0 0 α1 −d0 0
0 0 r2 0 − r3 + d0ð Þ

2
666666664

3
777777775
:

ð33Þ

After some steps, the roots of (33) are

λ1 = λ2 = −d0, λ3 = − ω + d0ð Þ, λ4 = − r3 + d0ð Þ,
λ5 = − r2 + α1 + d3 + d0ð Þ: ð34Þ

This shows all the eigenvalues of the Jacobean matrix
have negative real parts when R1

eff < 1
Hence, the disease-free equilibrium E0

1 = ðΛðω + d0ð1
− ηÞÞ/d0ðω + d0Þ, ηΛ/ω + d0, 0, 0, 0Þ of the dynamical sys-
tem (18) is locally asymptotically stable if the effective repro-
duction number R1

eff < 1 and unstable otherwise.

3.1.5. Global Stability Analysis of the Disease-Free
Equilibrium Point of HBV-Only Submodel

Theorem 6. The disease-free equilibrium point E0
1 = ððΛðω

+ d0ð1 − ηÞÞ/d0ðω + d0Þ, ηΛ/ω + d0, 0, 0, 0ÞÞ of the dynami-
cal system (18) is globally asymptotically stable in the feasible
region Ω1 if the effective reproduction number R1

eff < 1.

Proof. Consider the following LaSalle-Lyapunov candidate
function:

f1 = u1P3, ð35Þ

where u1 = 1/r2 + α1 + d3 + d0:
The time derivative of (35) along the solution path yields

_f1 = u1 1 − d1ð Þτ1P3 +
h1P1P3
N1

− r2 + α1 + d3 + d0ð ÞP3

� �

= u1 1 − d1ð Þτ1 +
h1P1
N1

− r2 + α1 + d3 + d0ð Þ
� �

P3

ð36Þ

Since the state variables of the model when the HBV is
endemic in the population do not exceed the state variables
of the model in a population free of HBV, at the disease-
free equilibrium E0

1 = ðr2 + α1 + d3 + d0/r2 + α1 + d3 + d0, η
Λ/ω + d0Þ, 0, 0, 0: with R1

ef f = ðð1 − d1Þτ1ðω + d0Þ + h1ðω +
d0ð1 − ηÞÞÞ/ðω + d0Þðr2 + α1 + d3 + d0Þ, _f1 can be simplified
as follows:

_f1 ≤ u1 1 − d1ð Þτ1 +
h1P

0
1

N1
0 − r2 + α1 + d3 + d0ð Þ

� �
P3: ð37Þ

Substituting h1 = ðR1
eff ðω + d0Þðr2 + α1 + d3 + d0Þ − ðω

+ d0Þð1 − d1Þτ1/ω + d0ð1 − ηÞÞ in (37) and simplification
gives us _f1 ≤ u1ðr2 + α1 + d3 + d0ÞðR1

eff − 1ÞP3. After
substituting u1 we get _f 1 ≤ ðR1

eff − 1ÞP3.
This shows that _f1 < 0 when R1

eff < 1. Furthermore, _f1 = 0
if and only if P3 = 0 or R1

eff = 1 and ððΛðω + d0ð1 − ηÞÞ/d0ð
ω + d0ÞÞ, ðηΛ/ω + d0Þ, 0, 0, 0Þ is the only singleton set in fð
P1, P2, P3, P6, P10Þ ∈Ω1 :

_f1 = 0g. Thus, by LaSalle’s invari-
ance principle [30], the DFE E0

1 = ððΛðω + d0ð1 − ηÞÞ/d0ðω
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+ d0ÞÞ, ðηΛ/ω + d0Þ, 0, 0, 0Þ is globally asymptotically stable if
R1

eff < 1.

3.1.6. Existence of Endemic Equilibrium (EE) of HBV-Only
Submodel. Suppose that E∗

1 = ðP1
∗, P2

∗, P∗
3, P∗

6, P∗
10Þ be

an arbitrary EE equilibrium point of HB-only submodel
(18), which occurs when the disease persists in the society.
After long steps we obtained the endemic equilibrium point
E∗

1 = ðP1
∗, P2

∗, P∗
3, P∗

6, P∗
10Þ.

where

and

The associated force of infection of the dynamical system
(18) is given by λ1

∗ = h1P3
∗

N1
∗ : ð40Þ

where

After substituting P∗
3 and N1

∗ in (40) and simplifying it
we got

λ1
∗ =

d0 ω + d0ð Þ r2 + α1 + d3 + d0ð Þ R1
ef f − 1

À Á
α1 + d0ð Þ ω + d0 1 − ηð Þð Þ + d0η α1 + d3 + d0ð Þ − d0η 1 − d1ð Þτ1

:

ð42Þ

Equation (42) shows that λ1
∗ > 0 if R1

eff > 1. Hence, the
endemic equilibrium point E∗

1 of HBV-only submodel (18)
exists whenever R1

eff > 1.

3.1.7. Local Stability of the Endemic Equilibrium Point of
HBV-Only Submodel

Theorem 7. The endemic equilibrium point E∗
1 = ðP1

∗, P2
∗,

P∗
3, P∗

6 , P∗
10Þ of the model (18) is locally asymptotically stable

if R1
eff > 1.

Proof. The Jacobian matrix of (18) at the endemic equilib-
rium E∗

1 is

J1 E∗
1ð Þ =

− E1 + d0ð Þ ω −E2 0 r3

0 − ω + d0ð Þ 0 0 0
E1 0 − E3 + E2ð Þ 0 0
0 0 α1 −d0 0
0 0 r2 0 − r3 + d0ð Þ

0
BBBBBBBB@

1
CCCCCCCCA
, ð43Þ

P1
∗ = Λ r3 + d0ð Þ ω + d0 1 − ηð Þð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ

λ1
∗ ω + d0ð Þ r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ − r2r3ð Þ + d0 ω + d0ð Þ r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ ,

P2
∗ = ηΛ

ω + d0
,

P3
∗ = λ1

∗Λ r3 + d0ð Þ ω + d0 1 − ηð Þð Þ
λ1

∗ ω + d0ð Þ r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ − r2r3ð Þ + d0 ω + d0ð Þ r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ ,

P∗
6 =

α1λ1
∗Λ r3 + d0ð Þ ω + d0 1 − ηð Þð Þ

λ1
∗d0 ω + d0ð Þ r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ − r2r3ð Þ + d0

2 ω + d0ð Þ r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ ,

ð38Þ

P∗
10 =

r2λ1
∗Λ r3 + d0ð Þ ω + d0 1 − ηð Þð Þ

λ1
∗ r3 + d0ð Þ ω + d0ð Þ r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ − r2r3ð Þ + d0 ω + d0ð Þ r3 + d0ð Þ2 r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ

ð39Þ

N1
∗ = λ1

∗ Λ/d0ð Þ ω + d0 1 − ηð Þð Þð Þ r3 + d0ð Þ α1 + d0ð Þ + d0r2ð Þ + ηd0 r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ − r2r3d0ð Þ +Λ r3 + d0ð Þ ω + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ
λ1

∗ ω + d0ð Þ r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ − r2r3ð Þ + d0 ω + d0ð Þ r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ :

ð41Þ
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where

Let λi be the eigenvalues of J1ðE∗
1Þ where i =1, 2, 3, 4, 5.

The corresponding characteristic equation of (43) is

λ + d0ð Þ λ + ω + d0ð Þð Þ z3λ
3 + z2λ

2 + z1λ + z0
À Á

= 0, ð45Þ

This implies the first two eigenvalues of (45) are λ1 = −
d0 < 0 and λ2 = −ðω + d0Þ < 0. But, the algebraic sign of the
remaining three eigenvalues is determined using Routh–Hur-
witz stability criterion from the characteristic polynomial

z3λ
3 + z2λ

2 + z1λ + z0 = 0, ð46Þ

where
z3 = 1 > 0, z2 = E1 + E2 + E3 + r3 + 2d0
z1 = ðE1 + d0ÞðE2 + E3 + r3 + d0Þ + ðE2 + E3Þðr3 + d0Þ,

and z0 = ðE1 + d0ÞðE2 + E3Þðr3 + d0Þ.
The sign of the coefficients z0, z1, and z2 of the charac-

teristic polynomial z3λ
3 + z2λ

2 + z1λ + z0 = 0 is positive if
R1

eff > 1. In addition to that z1z2 − z0z3 > 0. Thus, by
Routh–Hurwitz stability criterion the endemic equilibrium
E∗

1 is stable if R
1
eff > 1 and unstable if R1

eff < 1.

3.1.8. Global Stability of the Endemic Equilibrium Point of
HBV-Only Submodel

Theorem 8. The endemic equilibrium point E∗
1 = ðP1

∗, P2
∗,

P∗
3, P∗

6 , P∗
10Þ of the dynamical system (18) is globally asymp-

totically stable if R1
eff > 1.

Proof. Consider the following LaSalle-Lyapunov candidate
function:

L1 P1, P3ð Þ = b1 P1 − P1∗ð Þ2 + b2 P3 − P3∗ð Þ2, b1 > 0, b2 > 0:
ð47Þ

Differentiating L1ðP1, P3Þ with respect to time gives

_L1 P1, P3ð Þ = 2b1 P1 − P1
∗ð Þ

Á 1 − ηð ÞΛ + ωP2 + r3P10 −
h1P3
N1

+ d0

� �
P1

� �
+ 2b2 P3 − P3

∗ð Þ
Á 1 − d1ð Þτ1P3 +

h1P3
N1

P1 − r2 + α1 + d3 + d0ð ÞP3

� �
:

ð48Þ

Substituting ð1 − ηÞΛ + ωP2 + r3P10 = ððh3P∗
3/N1

∗Þ + d0Þ
P1

∗and ðr2 + α1 + d3 + d0Þ − ð1 − d1Þτ1 = h1P
∗
3/N1

∗ with N1
≈N1

∗ in (48) yields:

_L1 P1, P3ð Þ = 2b1 P1 − P1
∗ð Þ h1P

∗
3

N1
∗ P1

∗ + d0P1
∗ −

h1P3
N1

P1 − d0P1

� �

+ 2b2 P3 − P3
∗ð Þ h1P3

N1
P1 −

h1P3
N1

∗ P1
∗

� �

= −2b1d0 P1 − P1
∗ð Þ2 − 2b1h1

N1
P3 P1 − P1

∗ð Þ2

+ 2h1
N1

P3
∗ − P3ð Þ P1 − P1

∗ð Þ b1P1
∗ − b2P3ð Þ

≤ 0 if P3 ≥
b1P1

∗

b2
, P1 ≥ P1

∗, P3 ≤ P∗
3:

ð49Þ

This implies _L1ðP1, P3Þ ≤ 0, and it vanishes if and only if
P1

∗ = P1, P3
∗ = P3, and P1

∗ = b2P3/b1
This shows that E∗

1 = ðP1
∗, P2

∗, P∗
3, P∗

6, P∗
10Þ is the

largest compact invariant singleton set in fðP1
∗, P2

∗, P∗
3,

P∗
6, P∗

10Þ ∈Ω1 : _L1 = 0g
Hence, by LaSalle’s invariance principle [30], the

endemic equilibrium E∗
1 is globally asymptotically stable

in the invariant region whenever R1
ef f > 1.

3.2. HIV/AIDS-Only Submodel. This submodel is obtained
by setting P2 = P3 = P5 = P6 = P8 = P9 = P10 = 0. Thus, we
have the following dynamical system

dP1
dt

=Λ − λ2 + d0ð ÞP1,

E1 =
h1P

∗
3

N1
∗ =

Λ ω + d0ð Þ r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ R1
ef f − 1

À Á
Λ/d0ð Þ ω + d0 1 − ηð Þð Þ r3 + d0ð Þ α1 + d0ð Þ + d0r2ð Þ + ηd0 r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ − r2r3d0ð Þ ,

E2 =
h1P1

∗

N1
∗

= h1 ω + d0 1 − ηð Þð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ ω + d0 1 − ηð Þð Þ r3 + d0ð Þ α1 + d0ð Þ + d0r2ð Þ + ηd0 r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ − r2r3d0ð Þ
ω + d0 1 − ηð Þð Þð Þ r3 + d0ð Þ α1 + d0ð Þ + d0r2ð Þ + ηd0 r3 + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ − r2r3d0ð Þ +Λ r3 + d0ð Þ ω + d0ð Þ r2 + α1 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ ω + d0ð Þ r2 + α1 + d3 + d0ð Þ R1

ef f − 1
À Á ,

E3 = 1 − d1ð Þτ1 − r2 + α1 + d3 + d0ð Þ: ð44Þ
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dP4
dt = 1 − d2ð Þτ2P4 + λ2P1 − ζα2 + d4 + d0ð ÞP4,

dP7
dt

= ζα2P4 − d0P7,
ð50Þ

where the force of infection is given by

λ2 =
h2P4
N2

: ð51Þ

with initial conditions, P1ð0Þ > 0, P4ð0Þ > 0, and P7ð0Þ > 0
The total population of the dynamical system (50) is

given by:

N2 tð Þ = P1 tð Þ + P4 tð Þ + P7 tð Þ: ð52Þ

3.2.1. Positivity of the Solutions and Boundedness of the
Solution Region of HIV/AIDS-Only Submodel. Here, we
proved that all the solutions of the dynamical system (50)
with positive initial conditions remain positive and the solu-
tion region is bounded as follows:

Theorem 9. The solutions of the dynamical system (50) with
positive initial conditions are positive for time t ≥ 0 in the
region

Ω2 = P1, P4, P7ð Þ ∈ℝ3
+

È É ð53Þ

Proof. Taking dP1/dt =Λ − ðλ2 + d0ÞP1 from the dynamical
system (50), we get

dP1
dt

+ λ2 + d0ð ÞP1 =Λ: ð54Þ

(54) is a separable first order ordinary differential equa-
tion for the variable P1. After some steps we got the solution

P1 tð Þ = P1 0ð Þe− λ2+d0ð Þt + Λ

λ2 + d0
1 − e− λ2+d0ð Þt
� �

: ð55Þ

Since, P1ð0Þ > 0, e−ðλ2+d0Þt > 0 and Λ/ðλ2 + d0Þ > 0 for t
≥ 0, the solution we found is positive. Following the same
procedure, P4ðtÞ > 0 and P10ðtÞ > 0. Therefore, the solutions
of the model (50) are positive whenever the initial values
positive.

Theorem 10. The dynamical system (50) is positively invari-
ant in the region

Ω2 = P1, P4, P7ð Þ∈ℝ3
>+ : N2 ≤

Λ

d0

� �
: ð56Þ

Proof. The dynamics of total population N2ðtÞ with respect
to time t is computed as

dN2
dt

=Λ − d0N2 − d4P4: ð57Þ

In the absence of mortality due to HIV infection and
comparing both sides of equation (57) using standard com-
parison theorem, we obtain

dN2
dt

≤Λ − d0N2: ð58Þ

After some steps the solution for the inequality (58) is

N2 tð Þ ≤N 0ð Þe−d0t + Λ

d0
1 − e−d0t
� �

: ð59Þ

As t⟶∞, the population size N2ðtÞ ≤Λ/d0
This implies 0 ≤N2ðtÞ ≤Λ/d0 which shows all the feasi-

ble solutions of the model (50) with initial conditions enter
the region

Ω2 = P1, P4, P7ð Þ ∈ℝ3
+ : N2 ≤

Λ

d0

� �
: ð60Þ

Thus, the region Ω2 is positively invariant.

3.2.2. Existence of the Disease - Free Equilibrium Point of
HIV/AIDS-Only Submodel. The disease-free equilibrium
point of HIV/AIDS-only submodel (50), represented by
E0

2 = ðP1
0, P4

0, P7
0Þ, is obtained by setting the right-hand

side of all the components of the model equal to zero, pro-
viding that P4 = 0. It is equal to

E0
2 = P1

0, P4
0, P7

0À Á
= Λ

d0
, 0, 0

� �
: ð61Þ

3.2.3. Effective Reproduction Numbers of HIV/AIDS-Only
Submodel. In the same way that we have shown in sub sec-
tion 3.1.3, the effective reproduction number of HIV/
AIDS-only infected individuals is

R2
eff =

1 − d2ð Þτ2 + h2
ζα2 + d4 + d0

: ð62Þ

3.2.4. Local Stability Analysis of the Disease-Free Equilibrium
Point of HIV/AIDS-Only Submodel

Theorem 11. The disease-free equilibrium point E0
2 = ðΛ/

d0, 0, 0Þ of the dynamical system (50) is locally asymptotically
stable if the effective reproduction number R2

eff < 1.

Proof. The Jacobean matrix of the dynamical system (50) at
the DFE point E0

2 = ðΛ/d0, 0, 0Þ is

J2 E0
2

À Á
=

−d0 −h2 0
0 1 − d2ð Þτ2 + h2 − ζα2 + d4 + d0ð Þ 0
0 ζα2 −d0

2
664

3
775:

ð63Þ
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The corresponding characteristic equation of (63) is

− d0 + λð Þ −h2 0
0 − ζα2 + d4 + d0ð Þ − h2 + 1 − d2ð Þτ2ð Þ + λð Þ 0
0 ζα2 − d0 + λð Þ

��������

��������
= 0:

ð64Þ

After some necessary steps, the roots of the characteristic
equation (64) are λ1 = λ2 = −d0 and λ3 = −ðζα2 + d4 + d0Þ
+ h2+ð1 − d2Þτ2.

The simplified value of λ3 = ðζα2 + d4 + d0ÞðR2
ef f − 1Þ.

Clearly, λ3 is negative if R
2
eff < 1. This shows that all the

eigenvalues of (64) have negative real parts when R2
eff < 1.

Hence, the disease-free equilibrium E0
2 = ðΛ/d0, 0, 0Þ of the

dynamical system (50) is locally asymptotically stable if the
effective reproduction number R2

eff < 1 and unstable otherwise.

3.2.5. Global Stability Analysis of the Disease-Free
Equilibrium Point of HIV/AIDS-Only Submodel

Theorem 12. The disease-free equilibrium point E0
2 = ðΛ/

d0, 0, 0Þ of the dynamical system (50) is globally asymptoti-
cally stable in the feasible region Ω2 if the effective reproduc-
tion number R2

eff < 1.

Proof. To prove the global asymptotic stability of the disease-
free equilibrium point, we used LaSalle-Lyapunov candidate
function as follows:

LetW2 be a LaSalle-Lyapunov candidate function such that

W2 = i1P4: ð65Þ

where

i1 =
1

ζα2 + d4 + d0
: ð66Þ

The time derivative of (65) along the solution path yields

_W2 = i1 _P4 = i1 1 − d2ð Þτ2 +
h2P1
N2

− ζα2 + d4 + d0ð Þ
� �

P4:

ð67Þ

Since the state variables of the model when the HIV/AIDS
is endemic in the population do not exceed the state variables
of the model in a population free of HIV/AIDS, at the
disease-free equilibrium E0

2 = ðΛ/d0, 0, 0Þ with R2
eff < 1, _W2

can be simplified as
_W2 ≤ i1ðð1 − d2Þτ2 + h2ðP1

0/N2
0Þ − ðζα2 + d4 + d0ÞÞP4.

Substitution of i1 and simplification gives

_W2 ≤ R2
ef f − 1

À Á
P4: ð68Þ

Inequality (68) shows that _W2 < 0when R2
ef f < 1. Further-

more, _W2 = 0 if and only if P4 = 0 or R2
ef f = 1 and ðΛ/d0, 0, 0Þ

is the only singleton set in fðP1, P4, P7Þ ∈ℝ3
+ ∈Ω2 : _W2 = 0g.

Thus, by LaSalle’s invariance principle, the DFE E0
2 = ðΛ/d0,

0, 0Þ is globally asymptotically stable if R2
eff < 1.

3.2.6. Existence of Endemic Equilibrium Point of HIV/AIDS-
Only Submodel. Suppose that E∗

2 = ðP∗
1, P∗

4, P∗
7Þ be an

arbitrary endemic equilibrium point of HIV/AIDS-only sub-
model (50), which occurs when the disease persists in the
society. After long steps we obtained the endemic equilib-
rium point

E∗
2 =

Λ ζα2 + d0ð Þ
d0 ζα2 + d4 + d0ð Þ R2

ef f − 1
À Á

+ ζα2 + d0
À Á ,

 

Λ R2
ef f − 1

À Á
ζα2 + d4 + d0ð Þ R2

ef f − 1
À Á

+ ζα2 + d0
,

Λζα2 R2
ef f − 1

À Á
d0 ζα2 + d4 + d0ð Þ R2

ef f − 1
À Á

+ ζα2 + d0
À Á

!
:

ð69Þ

The associated force of infection of the dynamical system
(50) is given by

λ2
∗ = h2P4

∗

N2
∗ , ð70Þ

where

N2
∗ = h2Λ ζα2 + d0ð Þ

d0 ζα2 + d4 + d0ð Þ ζα2 + d4 + d0ð Þ R2
ef f − 1

À Á
+ ζα2 + d0

À Á :
ð71Þ

We can show the existence of the endemic equilibrium
point of the model by substituting P∗

4 and N2
∗ in (70). After

substitution we got

λ2
∗ = d0 ζα2 + d4 + d0ð Þ R2

eff − 1
À Á

ζα2 + d0
: ð72Þ

Clearly, λ2
∗ > 0 if R2

ef f > 1. Hence, an endemic equilib-
rium point E∗

2 = ðP∗
1, P∗

4, P∗
7Þ of the dynamical system

(50) exists whenever R2
eff > 1

3.2.7. Local Stability of the Endemic Equilibrium Point of
HIV/AIDS-Only Submodel

Theorem 13. The endemic equilibrium E∗
2 = ðP∗

1, P∗
4, P∗

7Þ
of the model (50) is locally asymptotically stable if R2

eff > 1.

Proof. The Jacobian matrix of the model (50) at the endemic
equilibrium point E∗

2 is

J2 E∗
2ð Þ =

− F1 + d0ð Þ −F2 0
F1 F3 0
0 ζα2 −d0

0
BB@

1
CCA, ð73Þ

where
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F1 = ððd0ðζα2 + d4 + d0ÞðR2
ef f − 1ÞÞ/ζα2 + d0Þ, F2 = ðζα2

+ d4 + d0Þ, and F3 = ð1 − d2Þτ2
The corresponding characteristic equation of (73) is

λ3 + g2λ
2 + g1λ + g0 = 0, ð74Þ

where

g2 = F1 + 2d0 − F3, g1 = F1F2 + F1 + d0ð Þ d0 − F3ð Þ − F3d0, ð75Þ

and

g0 = F1F2d0 − F3d0 F1 + d0ð Þ: ð76Þ

The sign of the coefficients g0, g1, and g2 of the charac-
teristic polynomial λ3 + g2λ

2 + g1λ + g0 = 0 is positive if
R2

ef f > 1. In addition to that, g1g2 > g0. Thus, by Routh–
Hurwitz stability criterion the endemic equilibrium E∗

2 is
stable if R2

eff > 1 and unstable if R2
eff < 1

3.2.8. Global Stability of the Endemic Equilibrium Point of
HIV/AIDS-Only Submodel

Theorem 14. The endemic equilibrium E∗
2 = ðP∗

1, P∗
4, P∗

7Þ
of the dynamical system (50) is globally asymptotically stable
if R2

eff > 1.

Proof. Consider the following LaSalle-Lyapunov candidate
function:

L2 P1, P4ð Þ = h3 P1 − P1
∗ð Þ2 + h4 P4 − P4

∗ð Þ2, h3 > 0, h4 > 0:
ð77Þ

Differentiating L2ðP2, P4Þ with respect to time gives us

_L2 P1, P4ð Þ = 2h3 P1 − P1
∗ð Þ _P1 + 2h4 P4 − P4

∗ð Þ _P4

= 2h3 P1 − P1
∗ð Þ Λ −

h2P4
N2

+ d0

� �
P1

� �

+ 2h4 P4 − P4
∗ð Þ 1 − d2ð Þτ2P4 +

h2P4
N2

P1

�

− ζα2 + d4 + d0ð ÞP4

�
:

ð78Þ

Substituting Λ = ððh2P∗
4/N2

∗Þ + d0ÞP1
∗ and ð1 − d2Þτ2

+ ðζα2 + d4 + d0Þ = h2P
∗
4/N2

∗ with N2 ≈N2
∗in (78) yields:

_L2 P1, P4ð Þ = 2h3 P1 − P1
∗ð Þ h2P

∗
4

N2
∗ P1

∗ + d0P1
∗ −

h2P4
N2

P1 − d0P1

� �

+ 2h4 P4 − P4
∗ð Þ h2P4

N2
P1 −

h2P4
N2

∗ P1
∗

� �

= −2h3d0 P1 − P1
∗ð Þ2 − 2h2h3

N2
P4 P1 − P1

∗ð Þ2

+ 2h2
N2

P4
∗ − P4ð Þ P1 − P1

∗ð Þ h3P1
∗ − h4P4ð Þ

≤ 0 if P4 ≥
h3P1

∗

h4
, P1

∗ ≤ P1, P∗
4 ≥ P4:

ð79Þ

This implies _L2ðP1, P4Þ ≤ 0, and it vanishes if and only if
P1

∗ = P1, P4
∗ = P4, and P1

∗ = h4P4/h3
This shows that E∗

2 = ðP∗
1, P∗

4, P∗
7Þ is the largest compact

invariant singleton set in fðP∗
1, P∗

4, P∗
7Þ ∈Ω2 : _L2 = 0g

Hence, by LaSalle’s invariance principle [30], the
endemic equilibrium E∗

2 is globally asymptotically stable
in the invariant region whenever R2

ef f > 1.

4. Analysis of the HBV-HIV/AIDS Model at
Equilibrium Points

4.1. Disease-Free Equilibrium Point of HBV-HIV/AIDS
Coinfection Model. To find the DFE point, we equated the
right-hand side of the full mode (2) to zero and evaluated
it at P3 = P4 = P5 = 0. Therefore, the DFE point represented
by E0

3 is equal to:

E0
3 =

Λ ω + d0 1 − ηð Þð Þ
d0 ω + d0ð Þ , ηΛ

ω + d0
, 0, 0, 0, 0, 0, 0, 0, 0

� �
:

ð80Þ

4.2. Effective Reproduction Number of the Full Model. We
represented the effective reproduction number of the coin-
fected model by R3

ef f . To find R3
ef f , we used the next gener-

ation matrix method that was formulated in [28, 29]. In the
same way that we have shown in sub section 3.1.3, R3

ef f can
be manipulated as follows:

F =
1 − d1ð Þτ1 +

h1 ω + d0 1 − ηð Þð Þ
ω + d0

0 h1 ω + d0 1 − ηð Þð Þ
ω + d0

0 1 − d2ð Þτ2 + h2 h2

0 0 0

2
66664

3
77775,

V =
r2 + α1 + d3 + d0 0 0

0 ζα2 + d4 + d0 −r1
0 0 r1 + α3 + d5 + d0

2
664

3
775:

ð81Þ

This implies the next-generation matrix FV−1 becomes

FV−1 =

1 − d1ð Þτ1 + ω + d0 1 − ηð Þð Þh1/ω + d0ð Þ
r2 + α1 + d3 + d0

0 ω + d0 1 − ηð Þð Þh1
ω + d0ð Þ r1 + α3 + d5 + d0ð Þ

0 1 − d2ð Þτ2 + h2
ζα2 + d4 + d0

h2
r1 + α3 + d5 + d0

+ r 1 − d2ð Þτ2 + h2ð Þ
r1 + α3 + d5 + d0ð Þ ζα2 + d4 + d0ð Þ

0 0 0

2
6666664

3
7777775
:

ð82Þ

The spectral radius (the largest eigenvalue) of (82) is the
effective reproduction number of the full model. Hence, after
some steps, the spectral radius of equation (82) becomes

R3
eff = max h1 ω + d0 1 − ηð Þð Þ + ω + d0ð Þ 1 − d1ð Þτ1

ω + d0ð Þ r2 + α1 + d3 + d0ð Þ , h2 + 1 − d2ð Þτ2
ζα2 + d4 + d0

� �
:

ð83Þ

4.3. Local Stability Analysis of the Disease-Free Equilibrium
Point of the HBV-HIV/AIDS Coinfection Model
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Theorem 15. The disease-free equilibrium point E0
3 = ððh2

P∗
4/N2

∗/d0ðω + d0ÞÞ, ðηΛ/ω + d0Þ, 0, 0, 0, 0, 0, 0, 0, 0Þ of the
dynamical system (2) is locally asymptotically stable if R3

eff < 1.

Proof. The Jacobean matrix of the dynamical system (2) at
the DFE point E0

3 is

J E0
3

À Á
=

−d0 ω −h1k8 −h2k8 − h1 + h2ð Þk8 0 0 0 0 r3

0 −k1 0 −
h2dη
ω + d

−
h2dη
ω + d

0 0 0 0 0

0 0 h1k8 + k2 0 h1k8 0 0 0 0 0
0 0 0 h2 + k3 h2 + r1 0 0 0 0 0
0 0 0 0 −k4 0 0 0 0 0
0 0 α1 0 0 −k5 0 0 0 0
0 0 0 ζα2 0 0 −k6 0 0 0
0 0 0 0 α3 0 0 −k7 0 0
0 0 0 0 0 θ1 θ2 θ3 −d0 0
0 0 r2 0 0 0 0 0 0 − r3 + d0ð Þ

2
66666666666666666666666664

3
77777777777777777777777775

:

ð84Þ

where k1 = ðω + d0Þ, k2 = ð1 − d1Þτ1 − ðr2 + α1 + d3 + d0Þ, k3
= ð1 − d2Þτ2 − ðζα2 + d4 + d0Þ, k4 = ðr + α3 + d5 + d0Þ, k5 = ð
θ1 + d0Þ, k6 = ðθ2 + d0Þ, k7 = ðθ3 + d0Þ, k8 = ððω + d0ð1 − ηÞÞ/
ω + d0Þ, k9 = ðr3 + d0Þ

The characteristic equation of (84) is

d0 + λð Þ2 k1 + λð Þ k4 + λð Þ k5 + λð Þ k6 + λð Þ k7 + λð Þ
Á k9 + λð Þ t2λ

2 + t1λ + t0
À Á

= 0
ð85Þ

where

t2 = 1, t1 = r2 + α1 + d3 + d0ð Þ 1 − R1
ef f

À Á
+ ζα2 + d4 + d0ð Þ 1 − R2

ef f

À Á
,

t0 = r2 + α1 + d3 + d0ð Þ 1 − R1
ef f

À Á
ζα2 + d4 + d0ð Þ 1 − R2

ef f

À Á
:

ð86Þ

Thus, the first seven eigenvalues from the characteristic
equation (85) are λ1 = λ2 = −d0, λ3 = −ðω + d0Þ, λ4 = −ðθ3
+ d0Þ, λ5 = −ðθ2 + d0Þ, λ6 = −ðd0 + θ1Þ, λ7 = −ðr1 + α3 + d0 +
d5Þ, and λ8 = −ðr3 + d0Þ. But we determined the remaining
two eigenvalues from the characteristic polynomial t2λ

2 +
t1λ + t0 = 0using the Routh-Hurwitz stability criteria. Clearly,
t2 = 1 > 0 and both t1 and t0 are positive if R1

ef f < 1 and
R2

ef f < 1. This implies t1 and t0 are positive, if R
3
eff = max f

R1
eff , R2

effg < 1. This shows λ8 < 0 and λ9 < 0. From these
all, we see that all eigenvalues are negative.

Hence, by some algebraic manipulations together with
Routh-Hurwitz stability criteria, the disease-free equilibrium
point E0

3 of the dynamical system (2) is locally asymptoti-
cally stable if R3

eff = max fR1
eff , R2

effg < 1

4.4. Global Stability Analysis of the Disease-Free Equilibrium
Point of the HBV-HIV/AIDS Coinfection Model

Theorem 16. The disease-free equilibrium point E0
3 = ð ðΛ

ðω + d0ð1 − ηÞÞ/d0ðω + d0ÞÞ, ðηΛ/ω + d0Þ, 0, 0, 0, 0, 0, 0, 0, 0Þ

of the model (2) is globally asymptotically stable in the feasible
region Ω if the effective reproduction number R3

ef f < 1.

Proof. Consider the following LaSalle-Lyapunov candidate
function:

L =m1P3 +m2P4 + P5, ð87Þ

where

m1 =
1/2 r1 + α3 + d5 + d0ð Þ

r2 + α1 + d3 + d0
, ð88Þ

and

m2 =
1/2 r1 + α3 + d5 + d0ð Þ

ζα2 + d4 + d0
: ð89Þ

The time derivative of (87) along the solution path yields

_L =m1 1 − d1ð Þτ1P3 + h1 P3 + P5ð Þ P1
N

− h2
P4 + P5ð ÞP3

N

�

− r2 + α1 + d3 + d0ð ÞP3

�

+m2 1 − d2ð Þτ2P4 + h2 P4 + P5ð Þ P1 + P2ð Þ
N

+ rP5

�

− h1
1 − πð Þ P3 + P5ð ÞP4

N
− ζα2 + d4 + d0ð ÞP4

�

+ h1
1 − πð Þ P3 + P5ð ÞP4

N
+ h2

P4 + P5ð ÞP3
N

− r1 + α3 + d5 + d0ð ÞP5:

ð90Þ

Since the state variables of the model when the HBV-
HIV/AIDS is endemic in the population do not exceed the
state variables of the model in a population free of HBV-
HIV/AIDS, at the disease-free equilibrium E0

3 = ððΛðω +
d0ð1 − ηÞÞ/d0ðω + d0ÞÞ, ðηΛ/ω + d0Þ, 0, 0, 0, 0, 0, 0, 0, 0Þ with
R3

eff = max fðh1ðω + d0ð1 − ηÞÞ + ðω + d0Þð1 − d1Þτ1/ðω +
d0Þðr2 + α1 + d3 + d0ÞÞ, ðððω + d0Þðr2 + α1 + d3 + d0ÞÞ/ζα2 +
d4 + d0Þg, _L can be simplified as follows:

_L ≤m1 1 − d1ð Þτ1P3 + h1P3
P1

0

P1
0 + P2

0

�

+ h1P5
P1

0

P1
0 + P2

0 — r2 + α1 + d0 + d3ð ÞP3

�

+m2 1 − d2ð Þτ2P4 + h2P4
P1

0 + P2
0À Á

N

�

+ h2P5
P1

0 + P2
0À Á

N
− ζα2 + d4 + d0ð ÞP4

�
− r1 + α3 + d5 + d0ð ÞÞP5:

ð91Þ
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After simplifying (91) we got

_L ≤m1 r2 + α1 + d0 + d3ð ÞR1
ef f − 1

Á
P3

+m2 ζα2 + d4 + d0ð Þ R2
ef f − 1

À Á
P4

+ m1R
1
ef f r2 + α1 + d0 + d3ð Þ +m2R

2
ef f ζα2 + d4 + d0ð ÞÀ

− r1 + α3 + d5 + d0ð ÞÞP5:

ð92Þ

Substituting m1 and m2 (92) gives us

_L ≤
1
2 r1 + α3 + d5 + d0ð Þ R3

ef f − 1
À Á

P3

+ 1
2 r1 + α3 + d5 + d0ð Þ R3

ef f − 1
À Á

P4

+ r1 + α3 + d5 + d0ð Þ R3
ef f − 1

À ÁÀ Á
P5:

ð93Þ

This implies _L ≤ 0 when R3
eff < 1. Furthermore, _L = 0 if

and only if P3 = P4 = P5 = 0. Thus, by LaSalle’s invariance
principle [30], the largest invariant set in Ω contained in f

ðP1, P2, P3, P4, P5, P6, P7, P8, P9, P10Þ ∈ℝ10
+g is reduced to

the DFE. This proves the global asymptotic stability of the
DFE E0

3 on Ω if the effective reproduction number R3
eff <

1and unstable otherwise.

4.5. Existence and Stability of Endemic Equilibrium of HBV-
HIV/AIDS Coinfection Model. The endemic equilibrium
point of a dynamical system (2) which exists when the dis-
ease persists in the community is denoted by E∗

3 = ðP1
∗,

P2
∗, P∗

3, P∗
4, P∗

5, P∗
6, P∗

7, P∗
8, P∗

9, P∗
10 Þ. From the analy-

sis of HBV-only submodel (18) and HIV/AIDS-only submo-
del (50), there exists an endemic equilibrium point for HBV-
only submodel and HIV/AIDS-only submodel if R1

ef f > 1
and R2

ef f > 1, respectively.
This implies that the endemic equilibrium point E∗

3 for
HBV- HIV/AIDS coinfection exists because the effective
reproduction number for HBV- HIV/AIDS coinfection is
the maximum of R1

eff and R2
eff , which is greater than one.

After some steps we got E∗
3 = ðP1

∗, P2
∗, P∗

3, P∗
4, P∗

5, P∗
6,

P∗
7, P∗

8, P∗
9, P∗

10 Þ: Where

P1
∗ = Λ ω + 1 − ηð Þ λ∗2 + d0ð Þð Þ r2 + α1 + λ∗2 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ

λ∗2 + ω + d0ð Þ λ∗1 + λ∗2 + d0ð Þ α1 + λ∗2 + d3 + d0ð Þ + r2 λ∗2 + d0ð Þð Þ ,

P∗
2 =

ηΛ

λ∗2 + ω + d0
,

P∗
3 =

λ∗1Λ ω + 1 − ηð Þ λ∗2 + d0ð Þð Þ
λ∗2 + ω + d0ð Þ λ∗1 + λ∗2 + d0ð Þ α1 + λ∗2 + d3 + d0ð Þ + r2 λ∗2 + d0ð Þð Þ ,

P∗
4 =

λ∗2Λ λ∗2 + ω + d0ð Þ ω + 1 − ηð Þ λ∗2 + d0ð Þð Þ r2 + α1 + λ∗2 + d3 + d0ð Þ − 1 − d1ð Þτ1ð Þ
λ∗2 + ω + d0ð Þ λ∗1 + λ∗2 + d0ð Þ λ∗1 + λ∗2 + d0ð Þ + r2 λ∗2 + d0ð Þð Þ λ∗1 1 − ζð Þ α3 + d5 + d0ð Þ + ζα2 + d4 + d0ð Þ r1 + α3 + d5 + d0ð Þð Þ
+ λ∗2ηΛ λ∗2 + ω + d0ð Þ λ∗1 + λ∗2 + d0ð Þ α1 + λ∗2 + d3 + d0ð Þ + r2 λ∗2 + d0ð Þð Þ r1 + α3 + d5 + d0ð Þ

λ∗2 + ω + d0ð Þ λ∗1 + λ∗2 + d0ð Þ α1 + λ∗2 + d3 + d0ð Þ + r2 λ∗2 + d0ð Þð Þ λ∗1 1 − ζð Þ α3 + d5 + d0ð Þ + ζα2 + d4 + d0ð Þ r1 + α3 + d5 + d0ð Þð Þ
+ λ∗1λ

∗
2r1Λ ω + 1 − ηð Þ λ∗2 + d0ð Þð Þ

λ∗2 + ω + d0ð Þ λ∗1 + λ∗2 + d0ð Þ α1 + λ∗2 + d3 + d0ð Þ + r2 λ∗2 + d0ð Þð Þ λ∗1 1 − ζð Þ α3 + d5 + d0ð Þ + ζα2 + d4 + d0ð Þ r1 + α3 + d5 + d0ð Þð Þ ,

P∗
5 =

1 − ζð Þλ∗1P∗
4 λ∗2 + ω + d0ð Þ λ∗1 + λ∗2 + d0ð Þ r2 + α1 + λ∗2 + d3 + d0ð Þ − r2λ

∗
1ð Þ + λ∗1λ

∗
2Λ ω + 1 − ηð Þ λ∗2 + d0ð Þð Þ

r1 + α3 + d5 + d0ð Þ λ∗2 + ω + d0ð Þ λ∗1 + λ∗2 + d0ð Þ α1 + λ∗2 + d3 + d0ð Þ + r2 λ∗2 + d0ð Þð Þ ,

P∗
6 =

λ∗1α1Λ ω + 1 − ηð Þ λ∗2 + d0ð Þð Þ
ϕ + μð Þ λ∗H + q + μð Þ λ∗1 + λ∗2 + d0ð Þ α1 + λ∗2 + d3 + d0ð Þ + r2 λ∗2 + d0ð Þð Þ , P

∗
7 =

ζα2P
∗
4

θ2 + d0
,

P∗
8 =

α3λ
∗
1 1 − ζð Þ λ∗2 + ω + d0ð Þ λ∗1 + λ∗2 + d0ð Þ α1 + λ∗2 + d3 + d0ð Þ + r2 λ∗2 + d0ð Þð Þp∗4 +Λλ∗2 1 − ηð Þ λ∗2 + d0ð Þ + ωð Þð Þ

θ3 + d0ð Þ r1 + α3 + d5 + d0ð Þ λ∗2 + ω + d0ð Þ λ∗1 + λ∗1 + d0ð Þ α1 + λ∗2 + d3 + d0ð Þ + r2 λ∗2 + d0ð Þð Þ ,

P∗
9 =

α3θ3λ
∗
1 1 − ζð Þ λ∗2 + ω + d0ð Þ λ∗1 + λ∗2 + d0ð Þ α1 + λ∗2 + d3 + d0ð Þ + r2 λ∗2 + d0ð Þð ÞP∗

4 +Λλ∗2 1 − ηð Þ λ∗2 + d0ð Þ + ωð Þð Þ
d0 θ3 + d0ð Þ r1 + α3 + d5 + d0ð Þ λ∗2 + ω + d0ð Þ λ∗1 + λ∗2 + d0ð Þ α1 + λ∗2 + d3 + d0ð Þ + r2 λ∗2 + d0ð Þð Þ

+ λ∗1α1Λθ1 1 − ηð Þ λ∗2 + d0ð Þ + ωð Þ
d0 θ1 + d0ð Þ λ∗2 + ω + d0ð Þ λ∗1 + λ∗2 + d0ð Þ α1 + λ∗2 + d3 + d0ð Þ + r2 λ∗2 + d0ð Þð Þ + θ2ζα2P

∗
4

d0 θ2 + d0ð Þ ,

P∗
10 =

r2λ
∗
1Λ ω + 1 − ηð Þ λ∗2 + d0ð Þð Þ

r3 + d0ð Þ λ∗2 + ω + d0ð Þ λ∗1 + λ∗2 + d0ð Þ α1 + λ∗2 + d3 + d0ð Þ + r2 λ∗2 + d0ð Þð Þ : ð94Þ
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The local and global stability analysis of the endemic
equilibrium of the full model (2) in terms of the model
parameters analytically is difficult. Hence, we will give an
explanation of the stability analysis of E∗

3 of this model in
Section 8.

5. Sensitivity Analysis

The reason why this section is important is that it tells us
which parameters deserve the most numerical attention.
That is, it highlights which parameters should be prioritized
in prevention and controlling strategies. On the basic
parameters, we carried out sensitivity analysis using the
techniques outlined by [36, 37]. As the magnitude and direc-
tion of the sensitivity analysis result of the model parameters
in Figure 2 indicates, the most sensitive parameters are τ2
and α1, which are the rate of vertical transmission of HIV
and treatment rate for HBV infected class, respectively.
The graphical representation of sensitivity indices of R3

eff
is given as follows:

The sign of the sensitivity index of each parameter value
in Figure 2 shows that what will happen to R3

eff if the
parameter is increased or decreased. R3

eff increases when
sensitivity indices with positive signs increase, while R3

eff
decreases when sensitivity indices with negative signs
increase and vice versa. The indices in the figure also shows
that the percentage change of R3

eff for each increase value of
parameter for 1%. As the figure shows, the sensitivity indices
of τ2 and α1 are 0.88 and −0:759, respectively. These param-
eters deserve the most numerical attention. For instance,
increasing τ2 for 10% will increases R3

ef f for approximately

8.8%. On the other hand, increasing α1 for 10% will
decreases R3

eff for 7:59%. Biologically, this means that,
increasing treatment rate by 10% for HBV infected individ-
uals decreases a patient’s chance of infecting others by
approximately 7.59% during his/her infectious period. On
the other hand, a single HIV/AIDS infectious individual gets
approximately 8.8% chance to infect healthy individuals
during his/her infectious period if the rate of MTCT of
HIV increased by 10%. Hence, increasing treatment rate
for HBV infected individuals and decreasing the rate of
MTCT of HIV are very important to eliminate HBV- HIV/
AIDS coinfection.

6. Numerical Simulation

We performed the numerical simulation using the parame-
ter values in Table 2 and the following initial values.

Initially, P1ð0Þ =100,000, P2ð0Þ =1000, P3ð0Þ =10,000,
P4ð0Þ =3000, P5ð0Þ =1000, P6ð0Þ =500, P7ð0Þ =500, P8ð0Þ =
100, P9ð0Þ =200, and P10ð0Þ =750.

Numerical simulations for all models here are manipu-
lated using MATLAB numerical solver (ode45). We choose
ODE45 for the reason that the state of being exact and the
speed at which the result of numerical process of calculating
complicated system faster.

7. Results and Discussions

In this section, numerical results are manipulated for the
submodels and the coinfection model using MATLAB
numerical solver (ode45). We chose ODE45 for the reason
that the state of being exact and the speed at which the result

Sensitivity of parameters on R3
ef

0.2 0.6–0.2–0.4–0.6–0.8 0 0.4 10.8

d0

d1

d2

d3

d4

T1

T2

h1

h2

r2

𝛼1

𝛼2

𝜁

𝜂

𝜔

Figure 2: Magnitude and direction of sensitivity analysis result of parameters for the full model.
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of numerical process of calculating complicated system fas-
ter. Figure 3 has been plotted under consideration of the
effective reproduction number of the full model less than
unity. It is about the behavior of infected classes of the coin-
fection model at R3

eff = 0:49, h1 = 0:09, d0 = 0:5, and all
other associated parameters as listed in Table 2. As the figure
clearly shows, each infectious class of HBV- HIV/AIDS

coinfection model (2) converges to the disease-free equilib-
rium point of the model. The convergence of all infectious
classes to the disease-free equilibrium point of the model
shows that the disease-free equilibrium of the model is glob-
ally asymptotically stable, which indicates the absence of
HBV- HIV/AIDS coinfection in the society.

Figures 4(a), 4(b), and 4(c) are demonstrate the stability
of endemic equilibrium of HBV- HIV/AIDS coinfection
model for three different initial conditions keeping all other
associated parameters as listed in Table 2. In each case, the
effective reproduction number is greater than one and the
simulation results show the convergence of the solutions of
the model to the endemic equilibrium point. The conver-
gence of the solutions of the model to the endemic equilib-
rium point for different initial conditions indicates that the
endemic equilibrium point of the model is locally asymptot-
ically stable (i.e., the disease is spreading in the society).
Effect of the rate of MTCT of HBV on the effective repro-
duction number of HB-only submodel and HBV-HIV/AIDS
coinfection model, respectively, are shown in Figures 5(a)
and 5(b). The figures show that if the rate of MTCT of
HBV (τ1) is less than 0.02, the reproduction number of
HB-only submodel and HBV-HIV/AIDS coinfection model
are less than one, which indicates both infections die out
in the community. Whereas, if the rate of MTCT of HBV
(τ1) is greater than 0.02, the reproduction number of HB-
only submodel and HBV-HIV/AIDS coinfection model are
greater than one, which shows the infections are spreading
in the community. On the other hand, Figure 6(a) is demon-
strating the effect of the rate of MTCT of HIV on the effec-
tive reproduction number of HIV/AIDS-only submodel. The
simulation results in Figure 6(a) show that if the rate of
MTCT of HIV (τ2) is less than 0.68, the reproduction num-
ber of HIV-only submodel is less than one, which indicates
HIV infection dies out in the community. Whereas, if the
rate of MTCT of HIV (τ2) is greater than 0.68, the effective
reproduction number of HIV/AIDS-only submodel is
greater than one, which shows the infection is spreading in
the community.

Figure 5(c) shows the profile of HB-only infected indi-
viduals for different values of τ1. Three different values were
considered with increasing τ1 whose values were 0.04, 0.6,
and 0.9, respectively. It was observed that when τ1 =0.9,
there was a rapid growth in HB-only infected population
from 10000 to 13225 up to one and a half years. Thereafter,
there was a gradual decrease in the population. The gradual
decrease in the population was due to enough immunization
coverage and effective treatment applied to prevent the
spread of the infection. That means with the current preven-
tion and control lowering the number of patients is impossi-
ble within one and a half years when the transmission rate is
high. Similarly, when τ1 =0.6, the number of HB-only
infected individuals rises rapidly from 10000 to 10836 within
a year. Thereafter, there was a decline in HB-only infected
individuals as time progresses as a result of effective preven-
tion and control measures. On the other hand, we did not
observe a gradual or rapid increase in HB-only infected
individuals when τ1 =0.04, but a decrease. This is due to
the lowest vertical transmission rate of HBV and effective

Table 2: Parameter values used in numerical simulations.

Parameters Value Source

Λ 0:04∗N0 [26]

α1 0.3 [26]

d5, α3, r1 0.001, 0.015, 0.001 respectively [26]

r2 0.075 [26]

h2 0.03 [26]

θ1, θ2, θ3 0.014, 0.013, and 0.012, respectively [26]

d0 0.01 [31]

d4 0.333 [31]

τ1, d1, d3, r3 0.4, 0.01, 0.1, 0.2, respectively Assumption

τ2 0.3 [32]

d2 0.2 [32]

α2 0.6 [33]

ζ 0.396 [33]

η 0.65 [34]

h1 0.4 [34]

ω 0.1 [34, 35]
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prevention and control measures applied to forestall the
spread of the infection. That is when the transmission rate
is low, it is possible to manage the number of HB infected
individuals with the current prevention and control.

Figure 5(d) is demonstrating the effect of τ1 on HBV-
HIV/AIDS coinfected individuals. In this figure, for τ1 =
0.4, τ1 = 0.7, and τ1 = 0.9, there was a slow increase in
HBV-HIV/AIDS coinfected individuals up to thirty years
due to enough immunization coverage and effective treatment
applied to prevent the spread of the infection. However, for the
same values of τ1, there was a rapid growth of coinfected indi-
viduals to different peaks from thirty to eighty years. This indi-
cates that the current prevention and control should be
modified after thirty years. After eighty years, there was a rapid
decrease in the population. This is due to the effective preven-

tion and control measures applied to forestall the spread of the
infection and disease-induced deaths.

Figure 6(b) is about the profile of HIV/AIDS-only
infected individuals for three different values of τ2. The fig-
ure shows that when τ2 =0.3 and 0.6, the number of HIV/
AIDS-only infected individuals did not increase but
decreased due to the effective control measure applied to
forestall the spread of HIV infection. But there was a slight
increase when τ2 =0.9 within one and a half years. Thereaf-
ter, there was a decline in HIV/AIDS-only infected individ-
uals as time progresses as a result of treatment and
becomes near to zero after twenty-four years. The effect of
τ2 on HBV-HIV/AIDS coinfected individuals is examined
in Figure 6(c). As the figure shows when τ2 =0.3 and 0.6,
the number of HIV/AIDS-only infected individuals did not
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increase but decreased due to the effective control measure
applied to forestall the spread of HIV infection. But there
was a slight increase when τ2 =0.9 within one and a half
years. Thereafter, there was a decline in HIV/AIDS-only
infected individuals as time progresses as a result of treat-
ment and becomes near to zero after twenty-four years.

8. Conclusion

The importance of epidemiological models lies in their abil-
ity to provide meaningful biological interpretations and pos-

sible disease prevention and control measures. In this study,
we improved the model in [26] to show that the combined
effect of MTCT of hepatitis B virus and HIV on their cody-
namics model, which were not considered in [26]. We
derived the effective reproduction number (R3

eff ) of the
improved model and compared it with the effective repro-
duction number (RBH

eff ) in [26]. The effective reproduction
number of the improved model is R3

eff = max fðh1ðω + d0
ð1 − ηÞÞ + ðω + d0Þð1 − d1Þτ1/ðω + d0Þðr2 + α1 + d3 + d0ÞÞ, ð
h2 + ð1 − d2Þτ2/ζα2 + d4 + d0Þg. Based on the data given in
Table 2, we evaluated the numerical value of R3

eff . As the
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numerical value indicates, R3
ef f = maxf2, 0:5g = 2 which is

greater than RBH
eff =maxf0:94, 0:28g = 0:94 in [26]. This tells

us that the transmission possibility of the infection in the
improved model is high due to MTCT of both infections,
which was not observed in the previous work. This is because,
in the improved model, MTCT of hepatitis B virus and HIV
causes HBV-HIV/AIDS coinfection to spread and may cause
an epidemic, whereas, this infection will not spread, there will
be a decline in the number of cases, and will eventually die out
because one infectious case will infect less than one person on
average in his/her infectious period in [26]. We proved that
the disease-free equilibrium points of the models are locally
and globally asymptotically stable if the associated reproduc-
tion numbers are less than one and the endemic equilibrium
points of the sub and full models are locally and globally
asymptotically stable whenever the associated reproduction
numbers are greater than one. From the sensitivity analysis
calculated to show the impact of different parameters on
R3

eff , the most sensitive parameters are τ2 and α1, which are
the rate of MTCT of HIV and treatment rate for HBV infected
class, respectively. As shown in Section 8, if the rate of MTCT
of HBV (τ1) and HIV (τ2) are less than 0.02 and 0.3, respec-
tively, the coinfection of the two viruses will not spread in
the community, there will be a decline in the number of cases,
and will eventually dies out in the community. Hence, an
increase in the rates of MTCT of HBV and HIV exacerbated
HBV-HIV/AIDS coinfection, while a decrease in the rates of
MTCT of these infections would decline the number of cases,
minimize the spread, and help to eliminate the coinfection of
HBV and HIV from the community gradually. From the
numerical results, we recommend that public policymakers
and other concerned bodies must focus on decreasing the rates
of MTCT of HBV and HIV in addition to the recommenda-
tion given in the study [26] to control the spread of HBV-
HIV/AIDS coinfection. Last but not least, it should be noted
that this study did not take into account the importance of
screening in the dynamics of HBV-HIV/AIDS coinfection. It
may affect the transmission dynamics of HBV-HIV/AIDS
coinfection in a population. We leave this for future
consideration.
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