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The objective of this study was to explore the predictive value of electrocardiogram (ECG) based on intelligent analysis algorithm
for atrial fibrillation (AF) in elderly patients undergoing coronary artery bypass grafting (CABG). Specifically, 106 elderly patients
with coronary heart disease who underwent CABG in the hospital were selected, including 52 patients with postoperative AF (AF
group) and 54 patients without arrhythmia (control group). Within 1-3 weeks after operation, the dynamic ECG monitoring
system based on Gentle AdaBoost algorithm constructed in this study was adopted. After the measurement of the 12-lead P
wave duration, the maximum P wave duration (Pmax) and minimum P wave duration (Pmin) were recorded. As for
simulation experiments, the same data was used as the back-propagation algorithm. The results showed that for the detection
accuracy of the test samples, the Gentle AdaBoost algorithm showed 93.7% accuracy after the first iteration, and the Gentle
AdaBoost algorithm was 16.1% higher than the back-propagation algorithm. Compared with the control group, the detection
rate of arrhythmia in patients after CABG was significantly lower (P < 0:05). Bivariate logistic regression analysis on Pmax and
Pmin showed as follows: Pmax: 95% confidential interval (CI): 1.024-1.081, P < 0:05; Pmin: 95% CI: 1.036-1.117, P < 0:05. The
sensitivity of Pmax and Pmin in predicting paroxysmal AF was 78.2% and 73.4%, respectively; the specificity of them was
80.1% and 85.6%, respectively; the positive predictive value was 81.2% and 83.4%, respectively; and the negative predictive
value was 79.5% and 75.3%, respectively. In conclusion, the generalization ability of Gentle AdaBoost algorithm was better
than that of back-propagation algorithm, and it can identify arrhythmia better. Pmax and Pmin were important indicators of
AF after CABG.

1. Introduction

Atrial fibrillation (AF) is a common kind of arrhythmia.
Arrhythmia refers to the abnormal speed and uniformity of
heart beating and mainly manifests as too fast, too slow, or
irregular heart beating [1, 2]. When AF occurs, the rapid and
irregular electrical signals will cause the fibrillation of the right
ventricle and the left atrium so that they cannot contract nor-
mally, the blood in the atrium cannot all enter the ventricle,
and the atrium and ventricle cannot coordinate normally [3].
AF affects 2.5 million people in the United States, 4.5 million
in the European Union, and more than 8 million in China.
The cumulative incidence was 2.2% in males and 1.7% in
females. AF shows a higher incidence in patients with heart
failure and valvular disease, and about 70% of AF is secondary

to patients with organic heart disease. In addition, it is easy to
occur during the perioperative period of coronary artery
bypass grafting (CABG) [4–6]. At present, the pathogenesis
of AF is not clear. The main reason is the abnormal atrial mus-
cle structure caused by heart or systemic diseases, leading to
atrial remodeling or atrial muscle ischemia. Medical studies
have confirmed that AF is related to age, CABG, heart disease,
blood transfusion, and chronic diseases [7].

The diagnosis of AF mainly includes the electrocardiogra-
phy (ECG) examination and physical examination. ECG refers
to the heart wave curve recorded by placing the guiding elec-
trode on the surface of the body [8–10]. In every cardiac cycle,
the excitatory signal from antrum room node is spread in a
fixed way to atrium and ventricle so that the whole heart is
excitatory. The excitation can induce bioelectric changes in
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the conduction process which then spread to the whole body
through the conductive cell and humoral fluid. Accordingly,
in every cardiac cycle, all parts of the body surface will produce
regular electrical signals [11]. Parsi’s [12] team described a
method based on finding and countingmultiple types of repet-
itive features in atrial fibrillation cycle waveform, and applying
means to classify them, so as to achieve high accuracy predic-
tion of atrial fibrillation. P wave is the atrial depolarization
wave generated in the depolarization process of left atrium,
right atrium, and atrial septum, which can fully reflect the
potential changes of the excitation signal in the atrial conduc-
tion process. The generation of ECG depends on the bioelec-
trical changes of cardiomyocytes, and the cardiomyocyte
electrical activity on the body surface becomes the potential
value at each moment of electrocardiogram, and the two are
closely related [13].

ECG is a recognizedmethod in themedical field to diagnose
AF. However, most ECG physicians in China today are inexpe-
rienced, and there are very few doctors who can read ECG skill-
fully and accurately [14]. Additionally, the reliability of
automatic diagnosis of most 12-lead ECGs is still very low
[15, 16]. Therefore, a more effective method is urgently needed
to complete the automatic recognition of ECG. With the rapid
development of the computer intelligence technology, the Gen-
tle AdaBoost algorithm has made great achievements in the
medical field and has been widely used in the diagnosis and
treatment of cardiovascular and cerebrovascular diseases [17].

The innovation of this work was the Gentle AdaBoost
algorithm-based ECG. First, the characteristics of the ECG
were extracted, and then, the classification model was
trained by deep learning. Finally, the trained model was used
to automatically identify the premature ventricular contract
(PVC) of AF after CABG in 106 elderly patients, aiming to
analyze the predictive value of ECG based on Gentle Ada-
Boost algorithm for AF after CABG in elderly patients.

2. Materials and Methods

2.1. Research Subjects. In this study, 106 elderly patients with
coronary heart disease in the hospital from November 20,
2018, to May 20, 2020, were selected, including 58 males
and 48 females, with an average age of 62:35 ± 9:64 years
old. Of the 106 elderly patients, there were 52 patients with
new atrial fibrillation after CABG (AF group) and 54
patients without CABG (control group). This study had
been approved by the committee of hospital, and patients
and their families had understood the research situation
and signed the informed consent form.

Inclusion criteria are as follows: (1) patients with no AF
before CABG, (2) patients with no postoperative hypokale-
mia, (3) patients aged over 55, and (4) patients whose AF
was detected by the dynamic body surface ECG.

Exclusion criteria are as follows: (1) patients whose AF
was caused by electro-physiological examination and cardiac
angiography, (2) those accompanied by severe infections
and trauma, (3) those complicated with malignant tumors,
(4) those with incomplete ECG data, and (5) those combined
with cardiomyopathy, aortic dissection, and congenital heart
disease.

2.2. The ECG Data Acquisition Method. All the patients with
coronary heart disease were monitored dynamically for 24
hours by ECG monitoring system based on Gentle AdaBoost
algorithm within 1-3 weeks after CABG. The paper speed
was 25mm/s, and the gain was 10mm/Mv. Then, they were
manually detected. The computer analysis results of refer-
ence instruments and referring to the patient’s life records
were adopted to form a result report.

2.3. Data Measurement and Its Standard. The ECG measur-
ing software was used to measure the P wave duration of
each lead in the ECG of the 52 elderly patients with coronary
heart disease. Figure 1 shows the width (s) and amplitude
(mm) of the negative part of the P wave terminal potential
of lead V1 (PTFV1). The measurement standards are as fol-
lows. The starting point of P wave measurement is at the
intersection of P wave starting point and equipotential line,
and the end point of P wave measurement is at the intersec-
tion of P wave ending point and equipotential line. The time
limit of P wave in each lead is measured separately with a
stable heart cycle at baseline, and three P waves with clear
graphics are continuously measured in each lead, and the
average value is taken as the time limit of P wave in that lead.
After the 12-lead P wave time limit was measured, the lon-
gest and shortest time limit refers to the maximum P wave
duration (Pmax) and the minimum P wave duration (Pmin),
respectively.

2.4. ECG Based on Gentle AdaBoost Algorithm. The intelli-
gent analysis of ECG mainly includes three steps: pretreat-
ment of ECG, feature extraction of ECG, and ECG
analysis. Figure 2 shows the flowchart of ECG based on Gen-
tle AdaBoost algorithm. ECG pretreatment mainly included
ECG filtering, removing 55Hz power frequency interference,
and correcting baseline drift. Feature extraction required to
locate the P wave peak first and then calculate the wave
group width and other characteristic parameters step by
step. The ECG analysis in this work focused on automatic
recognition of PVC. PVC refers to the arrhythmia ventricu-
lar premature beat. It occurs when the sinus excitation has
not been transmitted to the ventricle; a pacemaker in the
ventricle is excited in advance, leading to ventricular depo-
larization. Long-term ECG monitoring of PVC can predict
cardiac abnormalities and prevent them from happening.

In this work, Gentle AdaBoost algorithm is used to con-
struct a strong classifier to classify ECG. One is arrhythmia,
and the other is other categories. In this work, R peak is
extracted by wavelet transform, and six positions of P wave,
Q wave, Q wave, S wave, S wave, and T wave are extracted.
The Gentle AdaBoost algorithm was described as fol-
lows [18].

For the given m abnormal training samples, (X1,Y1)...,
(Xm,Ym), Yi ∈ f−1,+1g, and -1 represents PVC, and +1 rep-
resents other arrhythmia types. The weight of the initializa-
tion training sample was Wi = 1/m, ð1, 2, 3; ;⋯,mÞ, and the
classifier met FðXÞ = 0. For all the input samples, the most
suitable weak classifier FN ðXÞ was found after n times, so
that the mean error of samples was the minimum, and then,
FðXÞ + f nðXÞ⟶ FðXÞ was updated. Next, the weight
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Wiexpð−YifnðXiÞÞ⟶Wi of the sample was updated and
unified to meet ∑m

i=1Wi = 1.Finally, a strong classifier FðXÞ
= sign ð∑N

n=1 f nðXÞÞ was obtained.

2.5. Simulation Experiment of the Gentle AdaBoost
Algorithm-Based ECG. 1242 arrhythmias were collected from
the MIT-BIH ECG database in this work, of which 254 were
PVCs, 854 were normal beats, and the rest were other types
of arrhythmias. The same data was used for simulation exper-
iments in this work to verify the performance of the Gentle
AdaBoost algorithm. In this study, MATLAB is used to simu-
late the BP algorithm of neural network and Gentle AdaBoost
algorithm, with 621 data as training samples and another 621
data as test samples. There were 124 cases of PVC in the train-
ing samples and also 105 cases of PVC in the test samples.
Then, the simulation experiment was conducted after the
exchange of training samples and test samples. The input node
of the back-propagation algorithm was 10, the output node
was 2, the learning rate was set as 0.2, and the variance of
the target mean was 0.002. The number of iterations of the
Gentle AdaBoost algorithm was set to 100.

The hardware configuration and software configuration
of the test environment in this work were defined as follows.
The server is Windows Server 2013 server, the processor is
i7, the memory is 2G, the main frequency is 2.6GHz, a
100M network card is added, and the access bandwidth is
2M. The operating system is Windows Server 2013, and
the database version is SQL Server 2015. The server side is
a web site, and a Windows IIS server is used to set up the
web site.

2.6. Evaluation Methods. Two experienced ECG clinicians in
hospital diagnosed the cardiac rhythm status of patients with
coronary heart disease according to ECG results. If the two
physicians have the same diagnosis, that is the gold standard.
In case of inconsistency, a third expert could be invited for
arbitration. Next, the unified results of the three experts were
taken as the gold standard. Then, the results of the Gentle
AdaBoost algorithm were compared with the gold standard
to evaluate the accuracy of the Gentle AdaBoost algorithm
in detecting arrhythmia.

2.7. Statistical Methods. SPSS 21.0 was used for statistical
analysis of the data. The calculated data conforming to nor-
mal distribution were represented by the mean ± standard
deviation (−X ± S), and the t-test was adopted. The noncon-
forming data were expressed as the percentage (%), and χ2

test was used. Binary logistic regression was used for multi-
variate analysis, and receiver operating characteristic
(ROC) curve was used to evaluate the predictive value of
related indicators for AF after CABG. P < 0:05 indicated sig-
nificant differences.

3. Results

3.1. Simulation Results of Back-Propagation and Gentle
AdaBoost Algorithms. In the simulation experiment, the
error of the back-propagation algorithm and the Gentle
AdaBoost algorithm on the training samples was both 0.

For the detection accuracy of test samples, the back-
propagation algorithm got 82.1% accuracy after the first iter-
ation. The Gentle AdaBoost algorithm got 93.7% accuracy
after the first iteration and got two weak classifiers. The
accuracy rate of Gentle AdaBoost algorithm is 11.6% higher
than that of back propagation algorithm, as shown in
Figure 3. The simulation results suggested that the generali-
zation ability of the Gentle AdaBoost algorithm was better
than that of the back-propagation algorithm. Faced with
the ever-changing ECG waveform, the Gentle AdaBoost
algorithm can better identify arrhythmia.

3.2. Baseline Data of Patients in Both Groups. In the AF
group, there were 52 patients, with an average age of 63:87
± 8:85 years and an average weight of 76:28 ± 8:27 kg. Of
the 52 patients, there were 25 male patients (48.1%), 27
female patients (51.9%), 24 smoking patients (46.2%), 25
drinking patients (48.1%), 24 diabetes patients (46.2%), 27
cases (51.9%) with hypertension, 25 cases (48.1%) with myo-
cardial infarction, and 41 cases (78.9%) with three-vessel dis-
ease. In the control group, there were 54 patients, with an
average age of 61:25 ± 7:12 years and an average body
weight of 78:15 ± 9:21 kg. Of the 54 cases, there were 33 male
patients (61.1%), 21 female patients (38.9%), 25 smoking
patients (46.3%), 26 drinking patients (48.1%), 26 diabetes
patients (48.2%), 28 cases (51.9%) with hypertension, 25
cases (46.3%) with myocardial infarction, and 43 cases
(79.6%) with three-vessel disease. There was no statistical
difference in preoperative basic data of patients between
the two groups (P > 0:05), as shown in Table 1 and Figure 4.

3.3. Detection Rate of Arrhythmia. Of the 52 patients with
cardiac arrhythmia after CABG, the incidence of supraven-
tricular arrhythmia was the highest (86.5%), followed by

SQ
PR

QT

T
P

QRS

ST 

Figure 1: Schematic diagram of P wave duration. P represents the
exciting process of left and right atria; QRS is the part of
electrocardiographic wave, which reflects the potential changes of
two ventricles during the propagation of excitement; PR is the
time interval from the wave starting point to the wave group
starting point; T is a waveform with a longer band and lower
amplitude after QRS complex; ST refers to the waveform from
the end of S wave to the beginning of T wave; QT refers to the
waveform from the end of Q wave to the beginning of T wave.
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AF (19.2%). Both the supraventricular speed and ventricular
tachycardia were short paroxysmal, as shown in Figure 5.
There were 3 patients who could not recover the autonomic
rhythm during the operation and required temporary pace-
maker, 5 having pacing for 2 days, 2 having pacing for 3
days, and 1 with recovered autonomous cardiac rhythm after

3 weeks. Compared with the control group, the detection
rate of arrhythmia after CABG was significantly reduced
(P < 0:05).

3.4. Multivariate Analysis of AF and Control Groups. The
univariate analysis results of statistically significant indica-
tors (gender, Pmax, Pmin, P wave terminal potential of lead
V1 (PTFV1), and anterior-posterior diameter (LAD)) were
analyzed by binary logistic regression. The results showed
that Pmax, Pmin, and PTFV1 were important indicators to
predict the occurrence of postoperative AF (Pmax: 95% CI:
1.024-1.081, P < 0:05; Pmin: 95% CI: 1.036-1.117, P < 0:05;
PTFV1: 95% CI: 0.000-0.402, P < 0:05) (Table 2).

3.5. Predictive Value of Pmax, Pmin, and PTFV1 for AF after
CABG. ROC curve was used to evaluate the predictive value
of Pmax and Pmin for paroxysmal AF. The results showed
that the area under the curve of Pmax was 0.892 to predict
the occurrence of postoperative AF. The optimal critical
value was determined by Youden index to be 125.7ms, and
Pmax ≥ 125:7ms. The sensitivity, specificity, positive predic-
tive value, and negative predictive value of Pmax to predict
the occurrence of paroxysmal AF were 78.2%, 80.1%,
81.2%, and 79.5%, respectively. The area under the curve
(AUC) of Pmin was 0.823 to predict the occurrence of post-
operative AF, and the optimal critical value was determined
by Youden index to be 108.5ms, and Pmin ≥ 108:5ms. The
sensitivity, specificity, positive predictive value, and negative
predictive value of Pmin to predict the occurrence of postop-
erative AF were 73.4%, 85.6%, 83.4%, and 75.3%, respec-
tively. The AUC of PTFV1 for predicting paroxysmal atrial
fibrillation was 0.628, and the best critical value determined
by Joden index was -0.015mms. The sensitivity, specificity,
positive predictive value, and negative predictive value of
PTFV1 ≤ −0:015mms for predicting paroxysmal AF were
61.3%, 72.8%, 67.2%, and 63.6%, respectively (Table 3 and
Figure 6).
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Input End

Electrocardiogram signal

Calculate characteristic
parameters

P wave group detectionFilter out power frequency
interference

Correct baseline drift

Automatic identification of
premature ventricular

contract

Figure 2: ECG based on Gentle AdaBoost algorithm.
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Figure 3: Accuracy rate of the back-propagation and Gentle
AdaBoost algorithm. ∗ represented significant difference
compared with back-propagation algorithm (P < 0:05).

Table 1: Comparison of age and weight between atrial fibrillation
group and control group.

Project AF group Control group t value P value

Age (years) 63:87 ± 8:85 61:25 ± 7:12 1.895 0.062

Weight (kg) 76:28 ± 8:27 78:15 ± 9:21 12.438 0.053
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4. Discussion

AF is a common kind of arrhythmia, and its incidence is
increasing in recent years. There are many influencing fac-
tors of AF after CABG, including systemic hypokalemia,
hyperthyroidism, cardiac valvular disease, heart failure,
and ischemic heart disease [19, 20]. The incidence of AF
after CABG is high, and it can be quickly diagnosed
according to clinical manifestations, signs, and ECG [21].
For a long time, ECG has been the most commonly used
method for diagnosing and screening AF in clinic [22].
Traditional ECG data mostly rely on manual feature
extraction, and the subjectivity is high. For example, the
results are not accurate when they feel fatigue due to long
time work, reducing the reliability of ECG report. More-
over, arrhythmias in many patients have no obvious rules,
often one-time or intermittent, and some only appear at
night without obvious clinical manifestations, which can-

not be accurately captured by traditional ECG. With the
continuous development of computer intelligence technol-
ogy, ECG automatic analysis system is gradually applied in
China. In this work, the patients were monitored by Gen-
tle AdaBoost algorithm-based ECG continuously to accu-
rately identify all kinds of arrhythmias, assisting
clinicians in effective and accurate reading of ECG
[23].The diagnosis results of ECG by 2 electro-
cardiologists were used as the gold standard to evaluate
the accuracy of Gentle AdaBoost algorithm in monitoring
arrhythmias. The results showed that the incidence of sup-
raventricular arrhythmia was the highest (86.5%), followed
by AF (19.2%), and both supraventricular tachycardia and
ventricular tachycardia were short parturient. Such results
suggest that the Gentle AdaBoost algorithm-based ECG
can meet the requirements for detecting supraventricular
arrhythmia and AF, which is consistent with the research
results of Yanagisawa et al. [24].
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Figure 4: Comparison of baseline data between the two groups: (a) sex, smoking, and drinking; (b) diabetes mellitus, hypertension,
myocardial infarction, and three-vessel disease.
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Compared with the control group, the detection rate of
arrhythmia after CABG was significantly reduced (P < 0:05
). This suggests that after CABG, blood supply to myocar-
dium is significantly improved, and some or all functions
of myocardial cells are restored. After revascularization of

the right coronary artery, the incidence of supraventricular
arrhythmia was significantly reduced.

Pmax and Pmin are important indicators to predict the
occurrence of postoperative AF (Pmax: 95% CI: 1.024-
1.081, P < 0:05; Pmin: 95% CI: 1.036-1.117, P < 0:05). The
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Figure 5: Comparison of arrhythmias between the two groups: (a) comparison of sinus rhythm, sinus bradylosis, sinus tachycardia, sinus
arrest, and AF; (b) comparison of ventricular tachycardia, supraventricular speed, and PVC. ∗ represented significant difference compared
with the AF group (P < 0:05).

Table 2: Multivariate logistic regression analysis of patients with and without AF.

Variable Mean deviation Wald value B value OR value 95% CI P value

Pmax (ms) 0.015 22.324 0.067 1.047 1.024-1.081 <0.05
Pmin (ms) 0.017 28.417 0.084 1.084 1.036-1.117 <0.05
PTFV1 (mm·s) 6.317 5.261 -13.21 0.000 0.000-0.402 <0.05
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internal mechanism of the prediction of Pmax and Pmin on
postoperative AF is mainly that P wave duration represents
the time of atrial depolarization. When the electrical signals
in the left and right heart rooms and single atrial are abnor-
mal, it will lead to atrial electrical remodeling, which is man-
ifested as prolonged P wave duration in electrocardiogram.
AF itself can lead to atrial enlargement, atrial structural
remodeling, and systolic remodeling. When atrial enlarge-
ment is abnormal, cardiac ECG vector will change signifi-
cantly, which is the main factor leading to the increase of
absolute values of Pmax and Pmin. The AUC for Pmax to
predict the occurrence of postoperative AF was 0.892. The
optimal critical value was determined by Youden index to
be 125.7ms, and Pmax ≥ 125:7ms. The AUC for Pmin to
predict the occurrence of postoperative AF was 0.823, and
the optimal critical value was 108.5ms using Youden index.
The optimal critical value in this work was superior to the
traditional critical value obtained by Eerikäinen et al. [25]
in terms of the predictive ability of AF.

5. Conclusion

With the improvement of people’s living standard and edu-
cation level, people gradually realize the importance of
health, and the demand for medical conditions and services
increases accordingly. In this work, ECG based on the Gen-
tle AdaBoost algorithm was constructed to predict the
occurrence of AF in 106 elderly patients with coronary heart

disease undergoing CABG. The generalization ability of the
Gentle AdaBoost algorithm was found to be better than that
of the back-propagation algorithm. In the face of the chang-
ing ECG waveform, the Gentle AdaBoost algorithm can bet-
ter identify arrhythmia. Pmax and Pmin were proved to be
important indicators of AF after CABG. The shortcoming
of this work was that the quality of the included ECG data
was different, which increased the measurement error in P
wave duration and amplitude. In addition, it was a single-
center study with a small sample size, so it was necessary
to expand the sample size and include high-quality data for
in-depth discussion in the later stage. All in all, ECG is sim-
ple to operate and low in cost. Choosing the best prediction
index can provide clinicians with early warning of atrial
fibrillation after coronary artery bypass grafting. I hope that
it can better serve the clinic in the future and help clinicians
to complete clinical practice more efficiently.
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Table 3: The predictive value of Pmax and Pmin for the occurrence of postoperative AF.

Variable AUC 95% CI
Sensitivity

(%)
Specificity

(%)
Positive predictive value

(%)
Negative predictive

value (%)
The optimal critical value

(%)

Pmax (ms) 0.892
0.852-
0.912

78.2 80.1 81.2 79.5 125.7

Pmin (ms) 0.823
0.715-
0.834

73.4 85.6 83.4 75.3 108.5

PTFV1
(mm·s) 0.628

0.587-
0.653

61.3 72.8 67.2 63.6 -0.015
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Figure 6: ROC curves of Pmax and Pmin to predict postoperative AF.
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