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In this paper, an antitumour model for characterising radiotherapy and immunotherapy processes at different fixed times is
proposed. The global attractiveness of the positive periodic solution for each corresponding subsystem is proved with the
integral inequality technique. Then, based on the differentiability of the solutions with respect to the initial values, the
eigenvalues of the Jacobian matrix at a fixed point corresponding to the tumour-free periodic solution are determined,
resulting in a sufficient condition for local stability. The solutions to the ordinary differential equations are compared, the
threshold condition for the global attractiveness of the tumour-free periodic solution is provided in terms of an indicator R0,
and the permanence of a system with at least one tumour-present periodic solution is investigated. Furthermore, the effects of
the death rate, effector cell injection dosage, therapeutic period, and effector cell activation rate on indicator R0 are determined
through numerical simulations, and the results indicate that radioimmunotherapy is more effective than either radiotherapy or
immunotherapy alone.

1. Introduction

Cancer is a major public health issue and the leading cause of
death worldwide. According to the World Health Organization
(WHO), there were nearly 10 million cancer-related deaths in
2020 [1]. The global cancer burden is expected to rise to nearly
21:4 million cases and 13:5 million deaths by 2030 [2].
Although numerous effective medical treatments against cancer
have been developed, cancer treatment remains a challenging
problem in neoteric medicine [3]. Host cells, or normal cells,
should be kept above their minimum level throughout the
entire body during cancer remission. As a result, modern tech-
niques, such as surgery, chemotherapy, and radiotherapy, fail to
destroy cancerous cells due to a lack of effective treatment strat-
egies. In addition, chemotherapy harms cells in the bone mar-
row (myelosuppression), hair follicles (alopecia), and digestive
tract (mucositis) under normal conditions. Therefore, chemo-
therapy depletes the immune system of the patient, leading to
dangerous infections. Therefore, many patients suffer from

the adverse effects of the treatment in addition to therapeutic
resistance and cancer recurrence.

Novel therapeutic strategies have been investigated, and
immunotherapy has been recently approved for the treatment
of various types of cancer [4]. Immunotherapy includes the
use of antigen- and nonantigen-specific substances, such as
cytokines, as well as adoptive cellular immunotherapy (ACI)
[3]. Cytokines, such as IL-2 and IFN- α, are soluble proteins that
mediate cell-to-cell communication [5]. During ACI, tissue cells
are cultured to enhance and expand the immune system. ACI
can be administered in two ways: (i) lymphokine-activated
killer (LAK) cell therapy, in which cells are extracted from
patients and cultured in vitro with high concentrations of IL-2
in peripheral blood leukocytes before being injected back into
the cancer site; and (ii) tumour-infiltrating lymphocyte (TIL)
therapy, in which cells are extracted from lymphocytes recov-
ered from the patient with cancer and incubated with high con-
centrations of IL-2 before being injected back into the patient.
The use of ACI slows or stops the spread of cancer cells to other
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parts of the body and helps the immune system become more
effective by eliminating cancer cells.

Various mathematical models have been studied for cancer
treatments with virotherapy, radiotherapy, chemotherapy, and
immunotherapy [6–11]. Based on the inhibitionmodel, Pianta-
dosi model, and autostimulation model, Antonov et al. investi-
gated impulsive tumour growth models to describe medical
interventions during cancer treatments [12]. Sigal et al. mod-
elled the effects of immunotherapy, specifically dendritic cell
vaccines and T cell adoptive therapy, on tumour growth with
and without chemotherapy [13]. The model demonstrated that
chemotherapy increases tumorigenicity, whereas CSC-targeted
immunotherapy tumorigenicity. Pratap proposed a model that
describes the nonlinear dynamics between tumour cells,
immune cells, and three forms of therapy: chemotherapy,
immunotherapy, and radiotherapy [14]. The model was used
to develop optimized combination therapy plans using optimal
control theory. Feng and Navaratna demonstrated that the ini-
tial ratio between regulatory T cells and effector T cells impacts
the tumour recurrence time and that the effectiveness of IL-2
use may reverse the immunotherapy outcome [15].

Dong et al. investigated the role of helper T cells in
the tumour immune system and proposed the following
model [16]:

dx
dt

= αx 1 − βxð Þ − xy,

dy
dt

= ω1xy − δ1y + ρyz,

dz
dt

= σ2 + ω2xz − δ2z,

8>>>>>>><>>>>>>>:
ð1Þ

where x, y, and z represent the populations of tumour cells
(TCs), effector cells (ECs), and helper T cells (HTCs), respec-
tively. The first equation describes the rate of change in the TC
population. Here, the logistic growth term αxð1 − βxÞ was
chosen, where α is the maximal growth rate of the TC popula-
tion, and 1/β is the carrying capacity of the TC biological envi-
ronment. The second equation describes the rate of change in
the EC population. ECs have an average lifespan of 1/δ1. ω1 is
the EC stimulation rate by EC-lysed TC debris. ρ is the EC
activation rate by the HTCs. The third equation describes
the rate of change in the HTC population. σ2 is the birth rate
of the HTCs produced in the bone marrow. HTCs have an
average lifespan of 1/δ2. ω2 is the HTC stimulation rate in
the presence of identified tumour antigens. To address the lack
of biostability, Talkington et al. assumed that ω1 = 0 and intro-
duced saturation into the tumour interactions [17]:

dx
dτ

= αx 1 − βxð Þ − y
x

x + η1
,

dy
dτ

= σ0 − δ1y + ρyz,

dz
dτ

= σ2 − δ2z + ω2z
x

x + η3
,

8>>>>>>>><>>>>>>>>:
ð2Þ

where σ0 > 0 is the birth rate of the ECs, and η1 and η3 are
half-saturation constants.

As discussed above, radiotherapy is usually used in can-
cer treatment because it permanently damages the DNA of
tumour cells, destroying these cells [18, 19]. While nearby
healthy tissue cells can suffer temporary damage from this
radiation, these cells can repair the DNA damage and con-
tinue to grow normally. Numerous studies have shown that
radioimmunotherapy is more effective for inhibiting tumour
growth than radiotherapy [4, 20]. Thus, compared to the
continuous system models mentioned above, we introduce
pulsed ACI and radiotherapy into system (2) and analyse
the effect of the combined treatment [7, 21–23]. Our novel
system is formulated as follows:

dy
dt

= −δ1y + ρyz,

dz
dt

= σ2 − δ2z + ω2z
x

x + η3
,

dx
dt

= αx 1 − βxð Þ − y
x

x + η1
,

9>>>>>>>>=>>>>>>>>;
t ≠ n − 1ð ÞT + lT , t ≠ nT ,

y t+ð Þ = 1 − pEð Þy tð Þ,
z t+ð Þ = 1 − pHð Þz tð Þ,
x t+ð Þ = 1 − pTð Þx tð Þ,

9>>=>>;t = n − 1ð ÞT + lT ,

y t+ð Þ = y tð Þ + σ1,
z t+ð Þ = z tð Þ,
x t+ð Þ = x tð Þ,

9>>=>>;t = nT ,

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:
ð3Þ

where pE , pH , and pT denote the death rates of the ECs,
HTCs, and TCs due to radiotherapy at time t = ðn − 1ÞT + l
T , respectively. Here, 0 < pE , pH < pT , 0 < l < 1, and T > 0
are the therapeutic period. σ1 > 0 represents the dosage of
infusing the ECs with antitumour activity at time t = nT .

In this article, we study the effects of impulsive perturba-
tions on the tumour-free solution of model (3) and the
threshold values of its stability conditions. In addition, the
mathematical criteria for the permanence of system (3) are
investigated. Numerical simulations were carried out to val-
idate our analytical results.

The article is organized as follows. In Section 2, for conve-
nience, we present some definitions and lemmas. In Section 3,
the local stability and global attractiveness of the tumour-free
periodic solution are studied by means of the linearized Flo-
quet stability and comparison techniques. Several additional
technical computations that were used to establish the results
presented in this section are deferred to see appendix. In Sec-
tion 4, it is shown that once the threshold condition is satisfied,
as well as certain other conditions, system (3) is permanent,
with at least one tumour-present periodic solution. Numerical
simulations that confirm our theoretical findings are discussed
in Section 5 and Figures 1 and 2. Finally, a discussion of the
theoretical and numerical results is provided.
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2. Preliminaries

In this section, we introduce some definitions and prelimi-
nary lemmas that are useful for establishing our results.

Definition 1 (see [24]). System (3) is said to be permanent
if there are constants m,M > 0 (independent of the initial
values) and a finite time T0 such that, for all solutions,
ðyðtÞ, zðtÞ, xðtÞÞ with all initial values ðyð0+Þ, zð0+Þ, xð0+ÞÞ
> 0, m ≤ yðtÞ, zðtÞ ≤M and m ≤ xðtÞ ≤M hold for all T ≥
T0. Here, T0 may depend on the initial value ðyð0+Þ, zð0+Þ,
xð0+ÞÞ.

Similar to Lemma 1 in [21], we obtain that the solution
of dΨðtÞ/dt = χ1ðtÞΨðtÞ + χ2ðtÞ is

Ψ tð Þ =Ψ t0ð Þe
Ð t

t0
χ1 τð Þdτ +

ðt
t0

χ2 sð Þe−
Ð s

t
χ1 τð Þdτds: ð4Þ

Thus, it follows that ΨðtÞ ≥ 0 for Ψðt0Þ ≥ 0, with χ2ðtÞ
≥ 0 and t ≥ t0. Then, the following lemma is valid.

Lemma 2. R3
+ is a positively invariant region for system (3).

Let xðtÞ ≡ 0; then, system (3) can be reduced to the follow-
ing system:

dy
dt

= −δ1y + ρyz,

dz
dt

= σ2 − δ2z,

9>>=>>;t ≠ n − 1ð ÞT + lT , t ≠ nT ,

y t+ð Þ = 1 − pEð Þy tð Þ,
z t+ð Þ = 1 − pHð Þz tð Þ,

)
t = n − 1ð ÞT + lT ,

y t+ð Þ = y tð Þ + σ1,
z t+ð Þ = z tð Þ,

)
t = nT:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ð5Þ
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Figure 1: Dynamic behaviours of system (3) with radiotherapy or immunotherapy alone. (a)–(c) ρ = 0:01, β = 0:002, pE = 0:15, pH = 0:1,
pT = 0:9619, σ1 = 0, and T = 2; (d)–(f): ρ = 0:01, β = 0:002, pE = 0, pH = 0, pT = 0, σ1 = 2, and T = 2. The other parameters are identical to
those in (101), and the initial values in (a)–(f) are ð1, 1, 500Þ.
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Figure 2: Dynamic behaviours of system (3), where T = 5 in (a)–(c) and T = 6 in (d)–(f). The other parameters are identical to those in
Figure 5, and the initial values in (a)–(f) are ð0:2442,5:0060,0:0256Þ.
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According to (5), we can obtain that

y tð Þ =

y n − 1ð ÞT+ð Þe
Ð t

n−1ð ÞT+
−δ1+ρz sð Þð Þds,

n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,

y n − 1ð ÞT + lTð Þ+� �
e
Ð t

n−1ð ÞT+lTð Þ+
−δ1+ρz sð Þð Þds,

n − 1ð ÞT + lT < t ≤ nT ,

8>>>>>>><>>>>>>>:
ð6Þ

z tð Þ =

σ2
δ2

+ z n − 1ð ÞT+ð Þ − σ2

δ2

� �
e−δ2 t− n−1ð ÞTð Þ,

n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,
σ2
δ2

+ z n − 1ð ÞT + lTð Þ+� �
−
σ2
δ2

� �
e−δ2 t− n−1ð ÞT+lTð Þð Þ,

n − 1ð ÞT + lT < t ≤ nT:

8>>>>>>>>><>>>>>>>>>:
ð7Þ

It is clear that

Let

y nT+ð Þ = y n − 1ð ÞT+ð Þ,
z nT+ð Þ = z n − 1ð ÞT+ð Þ ;

(
ð9Þ

then, we have

y nT+ð Þ = σ1

1 − 1 − pEð Þe
Ð T

0+
−δ1+ρz tð Þð Þdt

,

z nT+ð Þ = 1 − e−δ2 1−lð ÞT� �
+ 1 − pHð Þ e−δ2 1−lð ÞT − e−δ2T

� �� �
σ2/δ2ð Þ

1 − 1 − pHð Þe−δ2T :

8>>>><>>>>:
ð10Þ

Thus, when (15) is valid, system (5) has a unique positive
periodic solution, which can be formulated as follows:

y∗ tð Þ =

y∗ 0+ð Þe
Ð t

n−1ð ÞT+
−δ1+ρz∗ sð Þð Þds,

n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,

y∗ lT+ð Þe
Ð t

n−1ð ÞT+lTð Þ+
−δ1+ρz∗ sð Þð Þds,

n − 1ð ÞT + lT < t ≤ nT ,

8>>>>>>><>>>>>>>:
ð11Þ

z∗ tð Þ =

σ2
δ2

+ z∗ 0+ð Þ − σ2
δ2

� �
e−δ2 t− n−1ð ÞTð Þ,

n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,
σ2
δ2

+ z∗ lT+ð Þ − σ2
δ2

� �
e−δ2 t− n−1ð ÞT+lTð Þð Þ,

n − 1ð ÞT + lT < t ≤ nT ,

8>>>>>>>>><>>>>>>>>>:
ð12Þ

where

y∗ 0+ð Þ = σ1

1 − 1 − pEð Þe
Ð T

0+
−δ1+ρz∗ tð Þð Þdt

,

y∗ lT+ð Þ = 1 − pEð Þy∗ 0+ð Þe
Ð lT

0+
−δ1+ρz∗ tð Þð Þdt ,

8>><>>: ð13Þ

z∗ 0+ð Þ = 1 − e−δ2 1−lð ÞT� �
+ 1 − pHð Þ e−δ2 1−lð ÞT − e−δ2T

� �� �
σ2/δ2ð Þ

1 − 1 − pHð Þe−δ2T ,

z∗ lT+ð Þ = 1 − pHð Þ σ2
δ2

+ z∗ 0+ð Þ − σ2
δ2

� �
e−δ2 lT

� �
:

8>>><>>>:
ð14Þ

Hence, we can obtain the following conclusion.

Lemma 3. System (5) has a unique positive periodic solution
ðy∗ðtÞ, z∗ðtÞÞ if and only if

1 − pEð Þe
Ð T

0+
−δ1+ρz∗ tð Þð Þdt < 1, ð15Þ

and, for every solution ðyðtÞ, zðtÞÞ of (5), it follows that
lim

t⟶+∞
y tð Þ − y∗ tð Þj j = 0,

lim
t⟶+∞

z tð Þ − z∗ tð Þj j = 0:

8<: ð16Þ

Proof. It is easy to prove that lim
t⟶+∞

ðzðtÞ − z∗ðtÞÞ = 0.
For an arbitrary εð1Þ > 0, we choose an ε1 > 0 that is suf-

ficiently small such that

C1 < 1,
C2e

ρε1T

1 − C1
< ε 1ð Þ

4eρ
Ð T

0+
z∗ tð Þdt

,

C3 <
ε 1ð Þ

2 ,

8>>>>>><>>>>>>:
ð17Þ

where the first inequality in (17) is valid based on (15), and

y nT+ð Þ = 1 − pEð Þy n − 1ð ÞT+ð Þe
Ð nT

n−1ð ÞT+
−δ1+ρz tð Þð Þdt + σ1,

z nT+ð Þ = 1 − e−δ2 1−lð ÞT
� 	

+ 1 − pHð Þ e−δ2 1−lð ÞT − e−δ2T
� 	h iσ2

δ2
+ 1 − pHð Þe−δ2Tz n − 1ð ÞT+ð Þ:

8>><>>: ð8Þ
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Without loss of generality, assume that

z tð Þ − z∗ tð Þj j < ε1, ð19Þ

for t ≥ 0.
When t ≠ ðn − 1Þ + lT , nT and yðtÞ − y∗ðtÞ ≠ 0, it follows

from (5) and (19) that

d y tð Þ − y∗ tð Þj j
dt

= sgn y tð Þ − y∗ tð Þð Þ × −δ1 y tð Þ − y∗ tð Þð Þð
+ ρ y tð Þz tð Þ − y∗ tð Þz∗ tð Þð ÞÞ

= −δ1 y tð Þ − y∗ tð Þj j + ρ sgn y tð Þ − y∗ tð Þð Þ
� y tð Þ − y∗ tð Þð Þz tð Þ + y∗ tð Þ z tð Þ − z∗ tð Þð Þ½ �

≤ −δ1 + ρ ε1 + z∗ tð Þð Þð Þ y tð Þ − y∗ tð Þj j + ρε1y
∗ tð Þ,

ð20Þ

which implies that

d
dt

y tð Þ − y∗ tð Þj je−
Ð t

t0
−δ1+ρ ε1+z∗ sð Þð Þð Þds

� �
≤ ρε1y

∗ tð Þe−
Ð t

t0
−δ1+ρ ε1+z∗ sð Þð Þð Þds

:

ð21Þ

Integrating (21) from ððn − 1ÞT , t� or ððn − 1ÞT + lT , t�
gives

It should be noted that

y t+ð Þ − y∗ t+ð Þj j = 1 − pEð Þ y tð Þ − y∗ tð Þj j, t = n − 1ð ÞT + lT ,
y t+ð Þ − y∗ t+ð Þj j = y tð Þ − y∗ tð Þj j, t = nT:

(
ð23Þ

Then, it follows from (22) and (23) that

y nT+ð Þ − y∗ nT+ð Þj j ≤ C1 y n − 1ð ÞT+ð Þ − y∗ n − 1ð ÞT+ð Þj j + C2,
ð24Þ

which implies that

y nT+ð Þ − y∗ nT+ð Þj j ≤ Cn
1 y 0+ð Þ − y∗ 0+ð Þj j − C2

1 − C1

� �
+ C2
1 − C1

:

ð25Þ

Then, according to (25) and (17), there exists an N1 > 0
such that when n ≥N1, it holds that

y nT+ð Þ − y∗ nT+ð Þj j < ε 1ð Þ

2eρε1T+ρ
Ð T

0+
z∗ tð Þdt

: ð26Þ

C1 = 1 − pEð Þe
Ð T

0+
−δ1+ρ ε1+z∗ tð Þð Þð Þdt ,

C2 = ρε1 1 − pEð Þe
Ð T

0+
−δ1+ρ ε1+z∗ tð Þð Þð Þdt

�
×
ð lT
0+
y∗ tð Þe−

Ð t

0+
−δ1+ρ ε1+z∗ sð Þð Þð Þdsdt + e

Ð T

lT+
−δ1+ρ ε1+z∗ tð Þð Þð Þdt×

ðT
lT+

y∗ tð Þe−
Ð t

lT+
−δ1+ρ ε1+z∗ sð Þð Þð Þdsdt

�
,

C3 = ρε1 eρε1T+ρ
Ð T

0+
z∗ tð Þdt

ð lT
0+
y∗ tð Þeδ1tdt + eρε1 1−lð ÞT+ρ

Ð T

lT+
z∗ tð Þdt

ðT
lT+

y∗ tð Þeδ1 t−lTð Þdt
�
:

�

8>>>>>>>><>>>>>>>>:
ð18Þ

y tð Þ − y∗ tð Þj j ≤

e
Ð t

n−1ð ÞT+
−δ1+ρ ε1+z∗ sð Þð Þð Þds

y n − 1ð ÞT+ð Þ − y∗ n − 1ð ÞT+ð Þj j+
ðt

n−1ð ÞT+
ρε1y

∗ τð Þe−
Ð τ

n−1ð ÞT+
−δ1+ρ ε1+z∗ sð Þð Þð Þ ds

dτ

!
,

 
n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,

e
Ð t

n−1ð ÞT+lTð Þ+
−δ1+ρ ε1+z∗ sð Þð Þð Þds

y n − 1ð ÞT + lTð Þ+� �
− y∗ n − 1ð ÞT + lTð Þ+� �

 

 + ðt

n−1ð ÞT+lTð Þ+
ρε1y

∗ τð Þe−
Ð τ

n−1ð ÞT+lTð Þ+
−δ1+ρ ε1+z∗ sð Þð Þð Þds

dτ

 !
,

n − 1ð ÞT + lT < t ≤ nT:

8>>>>>>>>>>><>>>>>>>>>>>:
ð22Þ
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Hence, when t ∈ ððn − 1ÞT , nT�, where n − 1 ≥N1, it fol-
lows from (22), (26), and (17) that

y tð Þ − y∗ tð Þj j ≤ eρε1T+ρ
Ð T

0+
z∗ tð Þdt y n − 1ð ÞT+ð Þ − y∗ n − 1ð ÞT+ð Þj j

+ C3 < ε 1ð Þ:

ð27Þ

Since εð1Þ > 0 is arbitrary, we conclude that lim
t⟶+∞

jyðtÞ
− y∗ðtÞj = 0.

This completes the proof.

Similarly, we arrive at the following conclusion.

Lemma 4. For every solution ðyðtÞ, zðtÞ, xðtÞÞ of system (3),
there exist three positive constants ME ,MH > 0 and MT > 0

such that

y tð Þ ≤ME ,
z tð Þ ≤MH ,
x tð Þ ≤MT ,

8>><>>: ð28Þ

for sufficiently large t > 0, provided that

ω2 1/βð Þ
1/βð Þ + η3

< δ2,

1 − pEð Þe
Ð T

0+
−δ1+ρ�z0 tð Þð Þdt < 1,

8>><>>: ð29Þ

where

with

Proof. On the basis of (29), we choose an εT > 0 that is suffi-
ciently small; then,

ω2 1/βð Þ + εTð Þ
1/βð Þ + εTð Þ + η3

< δ2,

1 − pEð Þe
Ð T

0+
−δ1+ρ�z∗ tð Þð Þdt < 1,

8>><>>: ð32Þ

where �z∗ðtÞ is defined in (36).
According to Lemma 2 and (3), there exists a tT > 0 such

that when t > tT , it holds that

x tð Þ ≤ 1
β
+ εT ≜MT : ð33Þ

Then, consider the following system:

dy
dt

= −δ1y + ρyz,

dz
dt

= σ2 − δ2 −
ω2MT

MT + η3

� �
z,

9>>=>>;t ≠ n − 1ð ÞT + lT , t ≠ nT ,

y t+ð Þ = 1 − pEð Þy tð Þ,
z t+ð Þ = 1 − pHð Þz tð Þ,

)
t = n − 1ð ÞT + lT ,

y t+ð Þ = y tð Þ + σ1,
z t+ð Þ = z tð Þ,

)
t = nT ,

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ð34Þ

for t > tT . Similar to Lemma 3 it follows from (32) that

�z0 tð Þ =

σ2
δ2 − ω2 1/βð Þ/ 1/βð Þ + η3

+ �z0 0+ð Þ − σ2
δ2 − ω2 1/βð Þ/ 1/βð Þ + η3

� �
e− δ2−

ω2 1/βð Þ
1/βð Þ+η3

� �
t− n−1ð ÞTð Þ,

n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,
σ2

δ2 − ω2 1/βð Þ/ 1/βð Þ + η3
+ �z0 lT+ð Þ − σ2

δ2 − ω2 1/βð Þ/ 1/βð Þ + η3

� �
e− δ2−

ω2 1/βð Þ
1/βð Þ+η3

� �
t− n−1ð ÞT+lTð Þð Þ,

n − 1ð ÞT + lT < t ≤ nT ,

8>>>>>>>>><>>>>>>>>>:
ð30Þ

�z0 0+ð Þ = 1 − e− δ2−ω2 1/βð Þ/ 1/βð Þ+η3ð Þ 1−lð ÞT� �
+ 1 − pHð Þ e− δ2−ω2 1/βð Þ/ 1/βð Þ+η3ð Þ 1−lð ÞT − e− δ2−ω2 1/βð Þ/ 1/βð Þ+η3ð ÞT� �� �

σ2/δ2 − ω2 1/βð Þ/ 1/βð Þ + η3ð Þ
1 − 1 − pHð Þe− δ2−ω2 1/βð Þ/ 1/βð Þ+η3ð ÞT ,

�z0 lT+ð Þ = 1 − pHð Þ σ2
δ2 − ω2 1/βð Þ/ 1/βð Þ + η3

+ �z0 0+ð Þ − σ2
δ2 − ω2 1/βð Þ/ 1/βð Þ + η3

� �
e− δ2−

ω2 1/βð Þ
1/βð Þ+η3

� �
lT

� �
:

8>>><>>>:
ð31Þ
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lim
t⟶+∞

�y tð Þ − �y∗ tð Þj j = 0,

lim
t⟶+∞

�z tð Þ − �z∗ tð Þj j = 0,

8<: ð35Þ

where ð�yðtÞ, �zðtÞÞ is a solution of (34), and

with

and

�y∗ tð Þ =

�y∗ 0+ð Þe
Ð t

n−1ð ÞT+
−δ1+ρ�z∗ sð Þð Þds,

n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,

�y∗ lT+ð Þe
Ð t

n−1ð ÞT+lTð Þ+
−δ1+ρ�z∗ sð Þð Þds,

n − 1ð ÞT + lT < t ≤ nT ,

8>>>>>>><>>>>>>>:
ð38Þ

with

�y∗ 0+ð Þ = σ1

1 − 1 − pEð Þe
Ð T

0+
−δ1+ρ�z∗ tð Þð Þdt

,

�y∗ lT+ð Þ = 1 − pEð Þ�y∗ 0+ð Þe
Ð lT

0+
−δ1+ρ�z∗ tð Þð Þdt :

8>><>>: ð39Þ

Based on Lemma 2 and (3), it holds that zðtÞ ≤ �zðtÞ for
t > tT ; thus,

dy
dt

≤−δ1y + ρy�z, t ≠ n − 1ð ÞT + lT , t ≠ nT ,

y t+ð Þ = 1 − pEð Þy tð Þ, t = n − 1ð ÞT + lT ,
y t+ð Þ = y tð Þ + σ1, t = nT ,

8>>><>>>: ð40Þ

for t > tT , which implies that yðtÞ ≤ �yðtÞ for t > tT . Thus,
for arbitrary εEH > 0, there exists a tEH > tT such that when
t > tEH , it holds that

y tð Þ ≤ max
t∈ 0+,lT½ �∪ lT+,T½ �

�y∗ tð Þ + εEH ≜ME ,

z tð Þ ≤ max
t∈ 0+,lT½ �∪ lT+,T½ �

�z∗ tð Þ + εEH ≜MH :

8><>: ð41Þ

This completes the proof.

3. The Stability of the Tumour-Free
Periodic Solution

Let Φðt ; t0, X0Þ denote the solution of the first three equa-

tions of (3) for initial data t = t0 and X0 = ðy0, z0, x0ÞT , as fol-
lows:

Φ t ; t0, X0� �
= y t ; t0, X0� �

, z t ; t0, X0� �
, x t ; t0, X0� �� �T

:

ð42Þ

Additionally, we can define the mappings I1, I2 : R3

⟶ R3 as follows:

�z∗ tð Þ =

σ2
δ2 − ω2MT /MT + η3

+ �z∗ 0+ð Þ − σ2
δ2 − ω2MT /MT + η3

� �
e− δ2−

ω2MT
MT+η3

� �
t− n−1ð ÞTð Þ,

n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,
σ2

δ2 − ω2MT /MT + η3
+ �z∗ lT+ð Þ − σ2

δ2 − ω2MT /MT + η3

� �
e− δ2−

ω2MT
MT +η3

� �
t− n−1ð ÞT+lTð Þð Þ,

n − 1ð ÞT + lT < t ≤ nT ,

8>>>>>>>>><>>>>>>>>>:
ð36Þ

�z∗ 0+ð Þ = 1 − e− δ2−ω2MT /MT+η3ð Þ 1−lð ÞT� �
+ 1 − pHð Þ e− δ2−ω2MT /MT+η3ð Þ 1−lð ÞT − e− δ2−ω2MT /MT+η3ð ÞT� �� �

σ2/δ2 − ω2MT /MT + η3ð Þ
1 − 1 − pHð Þe− δ2−ω2MT /MT+η3ð ÞT ,

�z∗ lT+ð Þ = 1 − pHð Þ σ2
δ2 − ω2MT /MT + η3

+ �z∗ 0+ð Þ − σ2
δ2 − ω2MT /MT + η3

� �
e− δ2−

ω2MT
MT +η3

� �
lT

� �
,

8>>><>>>:
ð37Þ
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I1 y, z, xð Þ =
1 − pE 0 0
0 1 − pH 0
0 0 1 − pT

0BB@
1CCA

y

z

x

0BB@
1CCA,

I2 y, z, xð Þ = y, z, xð ÞT + σ1, 0, 0ð ÞT ,

8>>>>><>>>>>:
ð43Þ

and the map Ψ : R3 ⟶ R3 as

Ψ X0� �
= I2 Φ 1 − lð ÞT , I1 Φ lT , X0� �� �� �� �
= y T+ ; X0� �

, z T+ ; X0� �
, x T+ ; X0� �� �T

:
ð44Þ

Theorem 5.

(i) The tumour-free periodic solution ðy∗ðtÞ, z∗ðtÞ, 0Þ of
system (3) is locally asymptotically stable provided
that

1 − pTð ÞeαT−
Ð T

0
y∗ tð Þdt/η1 < 1: ð45Þ

(ii) The tumour-free periodic solution ðy∗ðtÞ, z∗ðtÞ, 0Þ of
system (3) is globally attractive provided that

R0 ≜ 1 − pTð ÞeαT−
Ð T

0+
y∗ tð Þdt/ 1/βð Þ+η1 < 1: ð46Þ

Proof. (1) According to (A.12), (A.13), (15), and (45), the
three eigenvalues of the Jacobian matrix of map ΨðX0Þ at
point X∗

0 = ðy∗ð0+Þ, z∗ð0+Þ, 0Þ are

λ1 = 1 − pEð Þe
Ð T

0+
−δ1+ρz∗ tð Þð Þdt < 1,

λ2 = 1 − pHð Þe−δ2T < 1,

λ3 = 1 − pTð Þe
Ð T

0+
α−y∗ tð Þ

η1

� �
dt < 1,

8>>>><>>>>:
ð47Þ

which implies that the tumour-free periodic solution ðy∗ðtÞ
, z∗ðtÞ, 0Þ is locally stable [25].

(2) Considering (46), we choose an ε2 ∈ ð0, min
t∈½0+,lT�∪½lT+,T�

y∗ðtÞÞ such that

ζ ≜ 1 − pTð Þe
Ð T

0+
α− y∗ tð Þ−ε2

1/βð Þ+ε2ð Þ+η1

� �
dt < 1: ð48Þ

Let ðŷðtÞ, ẑðtÞÞ denote the solution of (5). Then, accord-
ing to Lemma 2 and (3), we have zðtÞ ≥ ẑðtÞ; thus,

dy
dt

≥ −δ1y tð Þ + ρy tð Þẑ tð Þ, t ≠ n − 1ð ÞT + lT , t ≠ nT ,

y t+ð Þ = 1 − pEð Þy tð Þ, t = n − 1ð ÞT + lT ,
y t+ð Þ = y tð Þ + σ1, t = nT ,

8>>><>>>:
ð49Þ

which implies that yðtÞ ≥ ŷðtÞ [26]. Then, according to
Lemmas 3 and 4, there exists a t2 > 0 such that

y tð Þ ≥ y∗ tð Þ − ε2 > 0,

x tð Þ ≤ 1
β
+ ε2,

8><>: ð50Þ

for t > t2.
Then, for t > t2, we have

dx
dt

≤ x α −
y∗ tð Þ − ε2

1/βð Þ + ε2ð Þ + η1

� �
, t ≠ n − 1ð ÞT + lT , t ≠ nT ,

x t+ð Þ = 1 − pTð Þx tð Þ, t = n − 1ð ÞT + lT ,
x t+ð Þ = x tð Þ, t = nT ,

8>>>><>>>>:
ð51Þ

which implies that

x tð Þ ≤

x n − 1ð ÞT+ð Þe
Ð t

n−1ð ÞT+
α− y∗ tð Þ−ε2

1/βð Þ+ε2ð Þ+η1

� �
dt ,

n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,

x n − 1ð ÞT + lTð Þ+� �
e
Ð t

n−1ð ÞT+lTð Þ+
α− y∗ tð Þ−ε2

1/βð Þ+ε2ð Þ+η1

� �
dt ,

n − 1ð ÞT + lT < t ≤ nT:

8>>>>>>><>>>>>>>:
ð52Þ

Furthermore, we have that

x nT+ð Þ ≤ x n − 1ð ÞT+ð Þζ: ð53Þ

It follows from (48) and (53) that

lim
n⟶∞

x nT+ð Þ = 0: ð54Þ

Moreover, it follows from (3) that

x tð Þ ≤ x n − 1ð ÞT+ð ÞeαT , for t ∈ n − 1ð ÞT , nTð �: ð55Þ

Based on (54) and (55), we have lim
t⟶+∞

xðtÞ = 0.
Similar to (50), we can prove that for arbitrary εð2Þ > 0,

there exists a tð2Þ > 0 such that

y tð Þ > y∗ tð Þ − ε 2ð Þ,

z tð Þ > z∗ tð Þ − ε 2ð Þ,

(
ð56Þ

for t > tð2Þ. In addition, we can choose an ε3 > 0 that is suffi-
ciently small such that
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where z
=∗ð0+Þ and z

=∗ðlT+Þ are defined in (60).
Based on the fact that lim

t⟶+∞
xðtÞ = 0, there exists a t3 >

tð2Þ such that 0 < xðtÞ < ε3 for t > t3. Then, the following sys-
tem is considered:

dz
dt

= σ2 − δ2 −
ω2ε3
ε3 + η3

� �
z, t ≠ n − 1ð ÞT + lT , t ≠ nT ,

z t+ð Þ = 1 − pHð Þz tð Þ, t = n − 1ð ÞT + lT ,
z t+ð Þ = z tð Þ, t = nT:

8>>>><>>>>:
ð58Þ

For t > t3, we obtain the following positive periodic
solution:

with

Similar to Lemma 3, it follows from the first inequality of

(57) that lim
n⟶∞

ðz=ðtÞ − z
=∗ðtÞÞ = 0, where z=ðtÞ is a solution of

(58). Thus, there exists a t′3 > t3 such that

z tð Þ ≤ z
=
tð Þ < z

=∗
tð Þ + ε 2ð Þ

2 , for t > t′3: ð61Þ

When t > t′3, it follows from (59), (12), and (57) that

z
=∗

tð Þ ≤ z∗ tð Þ + σ2 ω2ε3/ε3 + η3ð Þ
δ2 δ2 − ω2ε3/ε3 + η3ð Þ

+max
(

z
=∗ 0+ð Þ
z∗ 0+ð Þ e

ω2ε3/ε3+η3ð ÞlT − 1












z∗ 0+ð Þ,

� z
=∗

lT+ð Þ
z∗ lT+ð Þ e

ω2ε3/ε3+η3ð Þ 1−lð ÞT − 1












z∗ lT+ð Þ
)

< z∗ tð Þ + ε 2ð Þ

2 :

ð62Þ

ω2ε3
ε3 + η3

< δ2,

σ2 ω2ε3/ε3 + η3ð Þ
δ2 δ2 − ω2ε3/ε3 + η3ð Þ +

z
=∗ 0+ð Þ
z∗ 0+ð Þ e

ω2ε3/ε3+η3ð ÞlT − 1












z∗ 0+ð Þ < ε 2ð Þ

2 ,

σ2 ω2ε3/ε3 + η3ð Þ
δ2 δ2 − ω2ε3/ε3 + η3ð Þ +

z
=∗

lT+ð Þ
z∗ lT+ð Þ e

ω2ε3/ε3+η3ð Þ 1−lð ÞT − 1












z∗ lT+ð Þ < ε 2ð Þ

2 ,

8>>>>>>>>>><>>>>>>>>>>:
ð57Þ

z
=∗

tð Þ =

σ2
δ2 − ω2ε3/ε3 + η3

+ z
=∗ 0+ð Þ − σ2

δ2 − ω2ε3/ε3 + η3

� �
e− δ2−

ω2ε3
ε3+η3ð Þ t− n−1ð ÞTð Þ,

n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,
σ2

δ2 − ω2ε3/ε3 + η3
+ z

=∗
lT+ð Þ − σ2

δ2 − ω2ε3/ε3 + η3

� �
e− δ2−

ω2ε3
ε3+η3ð Þ t− n−1ð ÞT+lTð Þð Þ,

n − 1ð ÞT + lT < t ≤ nT ,

8>>>>>>>>><>>>>>>>>>:
ð59Þ

z
=∗ 0+ð Þ = 1 − e− δ2−ω2ε3/ε3+η3ð Þ 1−lð ÞT� �

+ 1 − pHð Þ e− δ2−ω2ε3/ε3+η3ð Þ 1−lð ÞT − e− δ2−ω2ε3/ε3+η3ð ÞT� �� �
σ2/δ2 − ω2ε3/ε3 + η3ð Þ

1 − 1 − pHð Þe− δ2−ω2ε3/ε3+η3ð ÞT ,

z
=∗

lT+ð Þ = 1 − pHð Þ σ2
δ2 − ω2ε3/ε3 + η3

+ z
=∗ 0+ð Þ − σ2

δ2 − ω2ε3/ε3 + η3

� �
e− δ2−

ω2ε3
ε3+η3ð ÞlT

� �
:

8>>><>>>: ð60Þ
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Therefore, based on (61), (62), and (56), we can infer
that

z tð Þ − z∗ tð Þj j < ε 2ð Þ, for t > t′3: ð63Þ

Since εð2Þ > 0 is arbitrary, we conclude that lim
t⟶+∞

ðzðtÞ
− z∗ðtÞÞ = 0.

To prove that lim
t⟶+∞

ðyðtÞ − y∗ðtÞÞ = 0, we choose an ε4

∈ ð0, δ1/ρÞ such that

1 − pEð Þe
Ð T

0+
ρε4−δ1ð Þ+ρz∗ tð Þð Þdt < 1,

max
t∈ 0+,lT½ �

y∗ tð Þ y
=∗ 0+ð Þ
y∗ 0+ð Þ e

ρε4lT − 1
 !

< ε 2ð Þ

2 ,

max
t∈ lT+,T½ �

y∗ tð Þ y
=∗

lT+ð Þeρε4T
y∗ lT+ð Þ − 1

 !
< ε 2ð Þ

2 ,

8>>>>>>>>><>>>>>>>>>:
ð64Þ

where the first inequality results from (15), and the expres-

sions of y
=∗ð0+Þ and y

=∗∗ðlT+Þ are defined in (67).
Based on the fact that lim

t⟶+∞
ðzðtÞ − z∗ðtÞÞ = 0, there

exists a t4 > tð2Þ such that zðtÞ < z∗ðtÞ + ε4 for t > t4. Then,
the following system is considered:

dy
dt

= y ρε4 − δ1ð Þ + ρz∗ tð Þð Þ, t ≠ n − 1ð ÞT + lT , t ≠ nT ,

y t+ð Þ = 1 − pEð Þy tð Þ, t = n − 1ð ÞT + lT ,
y t+ð Þ = y tð Þ + σ1, t = nT:

8>>><>>>:
ð65Þ

For t > t4, we obtain the following positive periodic solu-
tion:

y
=∗

tð Þ =

y
=∗ 0+ð Þe

Ð t

n−1ð ÞT+
ρε4−δ1ð Þ+ρz∗ sð Þð Þds,

n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,

y
=∗

lT+ð Þe
Ð t

n−1ð ÞT+lTð Þ+
ρε4−δ1ð Þ+ρz∗ sð Þð Þds,

n − 1ð ÞT + lT < t ≤ nT ,

8>>>>>>><>>>>>>>:
ð66Þ

with

y
=∗ 0+ð Þ = σ1

1 − 1 − pEð Þe
Ð T

0+
ρε4−δ1ð Þ+ρz∗ tð Þð Þdt

,

y
=∗

lT+ð Þ = 1 − pEð Þy=∗ 0+ð Þe
Ð lT

0+
ρε4−δ1ð Þ+ρz∗ tð Þð Þdt

:

8>><>>: ð67Þ

According to (66), (11), and (64), when t > t4, it holds
that

y
=∗

tð Þ ≤ y∗ tð Þ +max
(

max
t∈ 0+,lT½ �

y∗ tð Þ y
=∗ 0+ð Þ
y∗ 0+ð Þ e

ρε4 lT − 1
 !

,

� max
t∈ lT+,T½ �

y∗ tð Þ y
=∗

lT+ð Þ
y∗ lT+ð Þ e

ρε4T − 1
 !)

< y∗ tð Þ + ε 2ð Þ

2 :

ð68Þ

Similar to Lemma 3, we can prove that lim
t⟶+∞

ðy=ðtÞ − y
=∗

ðtÞÞ = 0, where y
=ðtÞ is a solution of (65). Thus, there exists

a t′4 > t4 such that

y tð Þ ≤ y
=
tð Þ < y∗ tð Þ + ε 2ð Þ, for t > t′4: ð69Þ

Therefore, based on (69) and (56), we can infer that

y tð Þ − y∗ tð Þj j < ε 2ð Þ, for t > t′4: ð70Þ

Since εð2Þ > 0 is arbitrary, we conclude that lim
t⟶+∞

ðyðtÞ
− y∗ðtÞÞ = 0.

This completes the proof.

Remark 6. Since (45) can be inferred from (46), it follows
from Theorem 5 that the tumour-free periodic solution ðy∗
ðtÞ, z∗ðtÞ, 0Þ of system (3) is globally asymptotically stable
provided that (46) holds.

4. A Sufficient Condition for the Permanence of
System (3)

In this section, we present some conditions for evaluating
the permanence of system (46).

Theorem 7. System (3) is permanent with at least one posi-
tive periodic solution provided that (15), (29) and

1 − pTð Þe
Ð T

0+
α−y∗ tð Þ

η1

� �
dt > 1 ð71Þ

hold.

Proof. (29) implies that Lemma 4 holds; that is, there exist
three positive constants ME,MH > 0 and MT > 0 such that
yðtÞ <ME, zðtÞ <MH and xðtÞ <MT for all sufficiently large
t. Without loss of generality, assume that yðtÞ <ME, zðtÞ <
MH and xðtÞ <MT for t ≥ 0.

Moreover, (15) indicates that Lemma 3 holds. Thus, sim-
ilar to (56), we can prove that

y tð Þ > min
t∈ 0+,lT½ �∪ lT+,T½ �

y∗ tð Þ − �εE ≜mE,

z tð Þ > min
t∈ 0+,lT½ �∪ lT+,T½ �

z∗ tð Þ − �εH ≜mH ,

8><>: ð72Þ
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for sufficiently large t, where

�εE ∈ 0, min
t∈ 0+,lT½ �∪ lT+,T½ �

y∗ tð Þ
� �

,

�εH ∈ 0, min
t∈ 0+,lT½ �∪ lT+,T½ �

z∗ tð Þ
 !

:

8>>>><>>>>:
ð73Þ

According to Definition 1, we only need to find mT > 0
such that xðtÞ ≥mT for sufficiently large t. We can divide
the process of determining mT into two steps for conve-
nience:

Step 1. According to (8) and (41), we can choose m0 > 0 and
ε5 ∈ ð0, δ1/ρÞ such that

ω2m0
m0 + η3

< δ2,

1 − pEð Þe
Ð T

0+
ρε5−δ1ð Þ+ρ~z∗ tð Þð Þdt < 1,

η m0, ε5ð Þ > 1,

8>>>><>>>>:
ð74Þ

where ~z∗ðtÞ and ~y∗ðtÞ are defined in (77) and (81), respec-
tively, and

η m0, ε5ð Þ ≜ 1 − pTð Þe
Ð T

0+
α−αβm0−

~y∗ tð Þ+ε5
η1

� �
dt
: ð75Þ

Next, we consider the following system:

dz
dt

= σ2 − δ2 −
ω2m0
m0 + η3

� �
z, t ≠ n − 1ð ÞT + lT , t ≠ nT ,

z t+ð Þ = 1 − pHð Þz tð Þ, t = n − 1ð ÞT + lT ,
z t+ð Þ = z tð Þ, t = nT:

8>>>><>>>>:
ð76Þ

Similar to Lemma 3, it follows from the first inequality of
(74) that lim

t⟶+∞
ð~zðtÞ − ~z∗ðtÞÞ = 0, where ~zðtÞ is the solution

of (76), and

with

Therefore, there exists a t5 > 0 such that when t > t5, it
holds that

z tð Þ ≤ ~z tð Þ < ~z∗ tð Þ + ε5: ð79Þ

We show that xðtÞ <m0 cannot hold for all t > t5. In con-
trast, assume that xðtÞ <m0 holds for all t > t5. Then, con-
sider the following system:

dy
dt

= y ρε5 − δ1ð Þ + ρ~z∗ tð Þð Þ, t ≠ n − 1ð ÞT + lT , t ≠ nT ,

y t+ð Þ = 1 − pEð Þy tð Þ, t = n − 1ð ÞT + lT ,
y t+ð Þ = y tð Þ + σ1, t = nT:

8>>><>>>:
ð80Þ

For t > t5, we obtain the following positive periodic solu-
tion:

~z∗ tð Þ =

σ2
δ2 − ω2m0/m0 + η3

+ ~z∗ 0+ð Þ − σ2
δ2 − ω2m0/m0 + η3

� �
e− δ2−

ω2m0
m0+η3ð Þ t− n−1ð ÞTð Þ,

n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,
σ2

δ2 − ω2m0/m0 + η3
+ ~z∗ lT+ð Þ − σ2

δ2 − ω2m0/m0 + η3

� �
e− δ2−

ω2m0
m0+η3ð Þ t− n−1ð ÞT+lTð Þð Þ,

n − 1ð ÞT + lT < t ≤ nT ,

8>>>>>>>>><>>>>>>>>>:
ð77Þ

~z∗ 0+ð Þ = 1 − e− δ2−ω2m0/m0+η3ð Þ 1−lð ÞT� �
+ 1 − pHð Þ e− δ2−ω2m0/m0+η3ð Þ 1−lð ÞT − e− δ2−ω2m0/m0+η3ð ÞT� �� �

σ2/δ2 − ω2m0/m0 + η3ð Þ
1 − 1 − pHð Þe− δ2−ω2m0/m0+η3ð ÞT ,

~z∗ lT+ð Þ = 1 − pHð Þ σ2
δ2 − ω2m0/m0 + η3

+ ~z∗ 0+ð Þ − σ2
δ2 − ω2m0/m0 + η3

� �
e− δ2−

ω2m0
m0+η3ð ÞlT

� �
:

8>>><>>>:
ð78Þ
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~y∗ tð Þ =

~y∗ 0+ð Þe
Ð t

n−1ð ÞT+
ρε5−δ1ð Þ+ρ~z∗ sð Þð Þds,

n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,

~y∗ lT+ð Þe
Ð t

n−1ð ÞT+lTð Þ+
ρε5−δ1ð Þ+ρ~z∗ sð Þð Þds,

n − 1ð ÞT + lT < t ≤ nT ,

8>>>>>>><>>>>>>>:
ð81Þ

with

~y∗ 0+ð Þ = σ1

1 − 1 − pEð Þe
Ð T

0+
ρε5−δ1ð Þ+ρ~z∗ tð Þð Þdt

,

~y∗ lT+ð Þ = 1 − pEð Þ~y∗ 0+ð Þe
Ð lT

0+
ρε5−δ1ð Þ+ρ~z∗ tð Þð Þdt

:

8>><>>: ð82Þ

Similar to Lemma 3, we can prove that lim
t⟶+∞

ð~yðtÞ − ~y∗

ðtÞÞ = 0, where ~yðtÞ is the solution of (80). Thus, based on
(79) and (3), there exists a t′5 > t5 such that

y tð Þ ≤ ~y tð Þ < ~y∗ tð Þ + ε5, for t > t′5, ð83Þ

which implies that

dx
dt

≥ x α − αβm0 −
~y∗ tð Þ + ε5

η1

� �
, t ≠ n − 1ð ÞT + lT , t ≠ nT ,

x t+ð Þ = 1 − pTð Þx tð Þ, t = n − 1ð ÞT + lT ,
x t+ð Þ = x tð Þ, t = nT ,

8>>>><>>>>:
ð84Þ

for t > t′5.
Let N5 ∈ Z+ such that ðN5 − 1ÞT + lT ≥ t′5. By integrat-

ing (84) on ððn − 1ÞT + lT , nT + lT�, where n ≥N5, we
obtain

x nT + lTð Þ+� �
≥ x n − 1ð ÞT + lTð Þ+� �

η m0, ε5ð Þ: ð85Þ

Then, based on (85) and (74), we have that xð
ððN5 − 1Þ + lT + nTÞ+Þ ≥ xðððN5 − 1ÞT + lTÞ+Þðηðm0, ε5ÞÞn
⟶ +∞ as n⟶∞, which contradicts the boundedness of
xðtÞ. Thus, there exists a t6 > t5 > 0 such that xðt6Þ ≥m0.

Step 2. If xðtÞ ≥m0 for all t ≥ t6, then our goal is obtained.
Otherwise, xðtÞ <m0 for some t > t6. We set t∗ = inf ftjt >
t6, xðtÞ <m0g; then, we have t∗ ≥ t6 > t5 > 0, which implies
that (45) holds on the interval ½t∗, +∞Þ. Thus, we can con-
sider the following two cases for t∗:

Case 1. There exists an n1 ∈ Z+ such that t∗ = n1T + lT .
According to the definition of the infimum t∗ = inf ftjt

> t6, xðtÞ <m0g, we know that xðtÞ ≥m0 holds for all t ∈ ½
t6, t∗� and xðt∗+Þ ≤m0.

We choose n2, n3 ∈ Z+ such that

n2 >
ln ε5/ MEe

ρ
Ð T

0+
~z∗ tð Þdt

� �� �
ln 1 − pEð Þe

Ð T

0+
ρε5−δ1ð Þ+ρ~z∗ tð Þð Þdt

� � ,

1 − pTð Þn2e n2+1ð ÞbηT η m0, ε5ð Þð Þn3 > 1,

8>>>>>><>>>>>>:
ð86Þ

where bη = α − αβm0 −max fME, αη1g/η1 < 0.

We claim that there exists a t7 ∈ ðt∗, t∗ + ðn2 + n3ÞTÞ
such that xðt7Þ >m0. Otherwise, we can assume that xðtÞ ≤
m0 is valid for t ∈ ðt∗, t∗ + ðn2 + n3ÞT�. Then, similar to
Lemma 3, when t ∈ ðt∗, t∗ + ðn2 + n3ÞT�, it holds that

~y tð Þ =

~y n − 1ð ÞT+ð Þe
Ð t

n−1ð ÞT+
ρε5−δ1ð Þ+ρ~z∗ sð Þð Þds,

n − 1ð ÞT < t ≤ n − 1ð ÞT + lT ,

~y n − 1ð ÞT + lTð Þ+� �
e
Ð t

n−1ð ÞT+lTð Þ+
ρε5−δ1ð Þ+ρ~z∗ sð Þð Þds,

n − 1ð ÞT + lT < t ≤ nT ,

8>>>>>>><>>>>>>>:
ð87Þ

where ~yðtÞ is the solution of (80). Thus, we obtain

~y nT + lTð Þ+� �
− ~y∗ nT + lTð Þ+� �

= 1 − pEð Þe
Ð T

0+
ρε5−δ1ð Þ+ρ~z∗ tð Þð Þdt

� �n−n1

× ~y t∗+
� �

− ~y∗ t∗+
� �� �

:

ð88Þ

Then, when t ∈ ðt∗ + n2T , t∗ + ðn2 + n3ÞT�, it follows
from (87), (81), (88), (74), and (86) that

~y tð Þ − ~y∗ tð Þ ≤ y t∗+
� �

1 − pEð Þe
Ð T

0+
ρε5−δ1ð Þ+ρ~z∗ tð Þð Þdt

� �n2

× eρ
Ð T

0+
~z∗ tð Þdt < ε5,

ð89Þ

which implies that

y tð Þ ≤ ~y tð Þ < ~y∗ tð Þ + ε5, ð90Þ

for t ∈ ðt∗ + n2T , t∗ + ðn2 + n3ÞT�. Similar to (85), we have

x t∗ + n2 + n3ð ÞTð Þ ≥ x t∗ + n2Tð Þ η m0, ε5ð Þð Þn3 : ð91Þ
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On the other hand, in the interval ðt∗, t∗ + n2T�, the fol-
lowing is valid:

dx
dt

≥ x tð Þbη , t ≠ n − 1ð ÞT + lT , t ≠ nT ,

x t+ð Þ = 1 − pTð Þx tð Þ, t = n − 1ð ÞT + lT ,
x t+ð Þ = x tð Þ, t = nT ,

8>>><>>>:
ð92Þ

since xðtÞ ≤m0 and yðtÞ <ME hold for t ∈ ðt∗, t∗ + n2T�.
Integrating (92) on the interval ðt∗, t∗ + n2T� yields the fol-
lowing:

x t∗ + n2Tð Þ ≥ x t∗ð Þ 1 − pTð ÞebηT� 	n2
≥ 1 − pTð Þn2m0e

n2bηT :
ð93Þ

It follows from (91), (93), and (86) that

x t∗ + n2 + n3ð ÞTð Þ >m0, ð94Þ

which is a contradiction.
Let t∗∗ = inf ftjt > t∗, xðtÞ >m0g; then, t∗∗ ∈ ½t∗, t∗ + ð

n2 + n3ÞTÞ, and xðtÞ ≤m0 holds for t ∈ ðt∗,t∗∗�. Suppose that
there exists an n4 ∈ Z+ such that t∗∗ = n4T + lT ; then,
according to xðt∗∗+Þ <m0, there exists a δ0 > 0 such that
when t ∈ ðt∗∗,t∗∗ + δ0Þ, xðtÞ <m0 holds, which contradicts
the definition of the infimum t∗∗ = inf ftjt > t∗, xðtÞ >m0g.
Thus, there is no n4 ∈ Z+ such that t∗∗ = n4T + lT . Since xð
tÞ is continuous at t = t∗∗, we thus have that xðt∗∗Þ =m0.

For t ∈ ðt∗,t∗∗Þ, assume that t∗ + ðn5 − 1ÞT < t ≤ t∗ + n5T
, where n5 ∈ f1, 2,⋯,n2 + n3g. Then, similar to (93), we have
that

x tð Þ ≥ 1 − pTð Þn5x t∗ð Þe t−t∗ð Þbη ≥m1, ð95Þ

where

m1 = 1 − pTð Þn2+n3m0e
n2+n3ð ÞbηT : ð96Þ

For t > t∗∗, the same arguments can be continued since
xðt∗∗Þ =m0.

Case 2. There exists no n ∈ Z+ such that t∗ = nT + lT .
It is clear that xðtÞ ≥m0 for t ∈ ½t6, t∗� and xðt∗Þ =m0.

Suppose that t∗ ∈ ððn6 − 1ÞT + lT , n6T + lTÞ, where n6 ∈ Z+.

Case 3. There exists some t ∈ ðt∗, n6T + lTÞ such that xðtÞ
>m0.

Let t∗∗∗ = inf ftjt > t∗, xðtÞ >m0g ; then, t∗∗∗ ∈ ½t∗, n6T
+ lTÞ. For t ∈ ðt∗,t∗∗∗Þ, it follows that xðtÞ ≤m0; thus, xð
t∗∗∗Þ =m0. Similar to (93), when t ∈ ðt∗,t∗∗∗Þ, we have

x tð Þ ≥ x t∗ð Þebη t−t∗ð Þ ≥m2, ð97Þ

where

m2 =m0e
bηT : ð98Þ

For t > t∗∗∗, the same arguments can be continued since
xðt∗∗∗Þ =m0.

Case 4. For all t ∈ ðt∗, n6T + lTÞ, xðtÞ ≤m0.
Let t∗∗∗∗ = inf ftjt > t∗, xðtÞ >m0g ; then, t∗∗∗∗ ∈ ½n6T

+ lT , ðn6T + lTÞ + ðn2 + n3ÞTÞ and xðt∗∗∗∗+Þ =m0. Similar
to Cases 1 and 3, we can prove that when t ∈ ðt∗,t∗∗∗∗Þ, it
holds that

x tð Þ ≥mT , ð99Þ

where

mT = 1 − pTð Þn2+n3m0e
n2+n3+1ð ÞbηT , ð100Þ

where mT <m1 <m2 <m0.
We repeat the above procedure to prove that xðtÞ ≥mT

for t ≥ t6.
Furthermore, according to Schauder’s fixed point theo-

rem, there exists a tumour-present periodic solution for sys-
tem (3).

This completes the proof.

5. Numerical Analysis

We are interested in how the key factors (i.e., the killing rates
pE, pH , and pT , the dosage of infusing the ECs (σ1), the ther-
apeutic period T , and the activation rate of the ECs (ρ))
affect the threshold value R0 defined in (46). Since

Ð T
0+y

∗ðtÞ
dt is independent of pT , R0 decreases monotonically with
respect to pT , indicating that the strong tumour cell killing
effect of radiotherapy can increase tumour cell death.

First, we set the parameters as follows [16, 17]:

δ1 = 0:3473, σ2 = 0:38, δ2 = 0:055,
ω2 = 0:02, η3 = 0:1, α = 1:636,
η1 = 0:1, l = 0:5:  :

ð101Þ

Figure 3(a) shows that when pH (or pE) decreases to the
threshold value TpH

= 0:1440 (or TpE
= 0:0377) of the

tumour-free periodic solution, R0 monotonically decreases
to 0. In addition, when TpH

< pE, pH < 0:2, R0ðpHÞ is much
smaller than R0ðpEÞ, where R0ðpEÞ > 1. Therefore, in this
case, the optimal control strategy is achieved when pH and
pE are sufficiently small, and, compared to parameter pE , a
smaller parameter pH is more beneficial for tumour control.
Similarly, Figures 3(b) and 3(c) show that R0 monotonically
decreases as σ1 increases or T decreases, indicating that a
higher dosage of infusing the ECs or more frequent radioim-
munotherapy can accelerate the eradication of tumour cells.
In addition, Figure 3(d) shows that when ρ increases to the
threshold value Tρ = 0:2003 of the tumour-free periodic
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solution, R0 rapidly decreases to 0. Thus, strong activation of
the ECs by the HTCs is beneficial for tumour control.

Moreover, when σ1 = 0 and

R0 = 1 − pTð ÞeαT > 1, ð102Þ

it follows from Theorem 5 (i) that the tumour-free periodic
solution is unstable for radiotherapy alone. For example, if
we fix the parameters as those shown in Figures 1(a)–1(c),
the tumour cell population oscillates as a periodic cycle. Sim-
ilar results are observed for the case of immunotherapy
alone (see Figures 1(d)–1(f)). On the other hand, if we set
the parameter values as those shown in Figures 4(a)–4(c),
the tumour cells are eventually eradicated with radioimmu-
notherapy. Thus, we can say that radioimmunotherapy is
more effective than therapy regimes with radiotherapy or
immunotherapy alone.

Furthermore, Figure 5 displays bifurcation diagrams for
system (3). The dynamical behaviour of system (3) is domi-
nated by tumour-free and tumour-present periodic solu-
tions. When T is smaller than the threshold value
Ta = 2:0076, the global attractiveness of the tumour-free
periodic solution can be validated (see Figures 4(a)–4(c)).
However, when Ta < T < Tp = 5:733, where Tp is the thresh-
old value for the permanence of system (3), the emergence of
a tumour-present periodic solution leads to the local stability

of the tumour-free periodic solution (see Figures 4(d)–4(f)
and Figures 2(a)–2(c)). In addition, when T > Tp = 5:733,
all three cell populations oscillate periodically, which indi-
cates that system (3) is permanent and has a tumour-
present periodic solution (see Figures 2(d)–2(f)). In particu-
lar, the complex patterns shown in Figures 2, 4, and 5 dem-
onstrate that a properly designed control period T is crucial
for successful tumour control.

6. Discussion

In this paper, we develop a tumour-immune model with
pulsed treatments to show how radiotherapy and immuno-
therapy affect the dynamics of tumour treatments. It is
assumed that the radiotherapy and immunotherapy are
administered with the same periodicity but not simulta-
neously. Additionally, it is assumed that fixed proportions
of tumour cells, effector cells, and helper T cells are degraded
each time the radiotherapy is administered.

Similar to the proof of the continuity of the solution with
respect to the right-hand side of the ordinary differential
equations, we proved that lim

t⟶+∞
jyðtÞ − y∗ðtÞj = 0 in Lemma

3 by using the integral inequality technique. Then, based on
the differentiability of the solution with respect to the initial
values, we determined the eigenvalues of the Jacobian matrix
at the fixed point corresponding to the tumour-free periodic
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Figure 3: Simulations of the effects of pE , pH , σ1, T , and ρ on R0. The baseline parameters are ρ = 0:16, β = 0:3, pE = 0:2, pH = 0:2, pT = 0:85,
σ1 = 0:2, and T = 2, and the other relevant parameters are identical to those in (101).
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solution, which was used to obtain the local stability thresh-
old condition. Furthermore, the indicator R0 is provided as a
sufficient condition for the global attractiveness of the
tumour-free periodic solution. We emphasize that a com-
parison of the solutions of the ordinary differential equations
is critical for proving this claim. Biologically speaking, (46)
indicates that the tumour cells have been completely eradi-
cated throughout the body, indicating the ultimate success
of our treatment strategy. Similarly, we proved that system
(3) is permanent with at least one tumour-present periodic
solution under certain conditions, suggesting that tumour
cells, effector cells, and helper T cells coexist indefinitely in
the tumour-present periodic solution. It is clear that t = t5
is an important threshold value for our proof since zðtÞ <
z~∗∗∗ðtÞ + ε5 for t > t5.

Our results demonstrate that the effectiveness of radio-
immunotherapy, the therapeutic period, and the activation
rate of the ECs by the HTCs are all crucial for tumour
depression and resurgence. The numerical results presented
in Section 5 indicate that R0 is sensitive to small changes in
the killing rates pE , pH , and pT , the dosage σ1 of infusing the
ECs, the therapeutic period T , and the activation rate ρ of
the ECs; that is, the smaller (or larger) the parameters pE ,
pH , and T (or pT , σ1, and ρ) are, the smaller the indicator
R0 is. In particular, decreases in pH are more beneficial for
tumour control than decreases in pE, and radioimmunother-
apy is more effective than either radiotherapy or immuno-
therapy alone.

Furthermore, we performed one-parameter bifurcation
analyses on the threshold value R0, as shown in Figure 5.
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Figure 5: Bifurcation diagrams for system (3) with respect to T , where ρ = 0:01, β = 0:002, pE = 0:2, pH = 0:1, pT = 0:9625, and σ1 = 0:2. The
other parameters are identical to those in (101).
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Figure 4: Dynamic behaviours of system (2) with radioimmunotherapy. (a)–(c) ρ = 0:01, β = 0:002, pE = 0:15, pH = 0:1, pT = 0:9619, σ1 = 2,
and T = 2; (d)–(f) ρ = 0:01, β = 0:002, pE = 0:2, pH = 0:1, pT = 0:9625, σ1 = 0:2, and T = 5. The other parameters are identical to those in
(101), and the initial values in (a)–(f) are ð1, 1, 500Þ.
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Figure 5 shows the impact of the period T on the threshold
value R0. The tumour-free periodic solution is locally stable
for Ta < T < Tp, whereas system (3) is permanent with a
tumour-present periodic solution for T > Tp. Figure 2 shows
that if T is increased from 5 to 6, the permanence of system
(3) causes the tumour-free periodic solution to lose its local
stability. These results demonstrate that the parameters pE,
pH , pT , σ1, T , and ρ are crucial for tumour control. This
information may help doctors in designing and determining
the optimum therapeutic approaches for tumour control.

As a comparison to other relevant studies, we note the
following highlights of our study: (i) note that system (3)
in [24] includes only one impulsive control strategy (inject-
ing the effector cells into the body), while system (4) in
[24] and system (1) in [27] include only the tumour cells
and effector cells. However, system (3) includes not only
helper T cells but also two impulsive control strategies that
are not implemented simultaneously. (ii) In contrast to the
small amplitude perturbation method used in [24], we use
a more rigorous method to prove the local stability of the
tumour-free periodic solution of system (2) with. (iii)
Although the proofs of the permanence of the corresponding
impulsive systems in [24, 27] are omitted, we include the
proof of the permanence of our system in this study.

Similar to [28, 29], the existence of tumour-present peri-
odic solutions for system (3) was investigated in our study.
Furthermore, based on the techniques used in [30–34], we
hypothesize that the existence and global attractiveness of
the tumour-present periodic solution of system (3) can be
proven by using Lyapunov’s second method. This proof will
be demonstrated in our future research.

Appendix

A. The Jacobian Matrix of Map ΨðX0Þ at Point
X0 = ðy0, z0, 0Þ

Denote

F Xð Þ =
�
−δ1y + ρyz, σ2 − δ2z

+ ω2z
x

x + η3
, αx 1 − βxð Þ − y

x
x + η1

�T

,
ðA:1Þ

where X = ðy, z, xÞ. Based on the differentiability of the solu-
tion with respect to the initial values, we obtain

d
dt

DX0Φ t ; t0, X0� �� �
=DXF Φ t ; t0, X0� �� �

DX0Φ t ; t0, X0� �
:

ðA:2Þ

Specifically, when X0 = ðy0, z0, 0Þ ≜ X0, we have

d
dt

DX0Φ t ; t0, X0ð Þ½ � =DXF Φ t ; t0, X0ð Þð ÞDX0Φ t ; t0, X0ð Þ:
ðA:3Þ

According to the first three equations of (3), it is clear
that

Φ t ; t0, X0ð Þ = y t ; t0, X0ð Þ, z t ; t0, X0ð Þ, 0ð Þ, for t ≥ t0 ;
ðA:4Þ

thus,

∂x t ; t0, X0ð Þ = 0,
∂y0

∂x t ; t0, X0ð Þ
∂z0

= 0,

8>><>>: ðA:5Þ

for t ≥ t0. In addition, it follows from (A.1) that

DXF Xð Þ =

−δ1 + ρz ρy 0

0 −δ2 + ω2
x

x + η3
ω2z

η3
x + η3ð Þ2

−
x

x + η1
0 α 1 − 2βxð Þ − y

η1
x + η1ð Þ2

0BBBBB@

1CCCCCA:

ðA:6Þ

Substituting (A.6), (A.4), and (A.5) into (A.3) yields

d
dt

∂y
∂y0

∂y
∂z0

∂y
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂x0

0 0 ∂x
∂x0

0BBBBBBBBB@

1CCCCCCCCCA
t ; t0, X0ð Þ

=

−δ1 + ρz t ; t0, X0ð Þ ρy t ; t0, X0ð Þ 0

0 −δ2
ω2z t ; t0, X0ð Þ

η3

0 0 α −
y t ; t0, X0ð Þ

η1

0BBBBBBB@

1CCCCCCCA

×

∂y
∂y0

∂y
∂z0

∂y
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂x0

0 0 ∂x
∂x0

0BBBBBBBBB@

1CCCCCCCCCA
t ; t0, X0ð Þ,

ðA:7Þ

which implies that
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Solving (A.8) yields

∂y
∂y0

t ; t0, X0ð Þ = e
Ð t

t0
−δ1+ρz s;t0,X0ð Þð Þds,

∂z
∂y0

t ; t0, X0ð Þ = 0,

∂z
∂z0

t ; t0, X0ð Þ = e−δ2 t−t0ð Þ,

∂x
∂x0

t ; t0, X0ð Þ = e
Ð t

t0
α−y s;t0,X0ð Þ

η1ð Þds
:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ðA:9Þ

According to (A.5) and (A.9), we have

DX0Φ t ; t0, X0ð Þ =

∂y t ; t0, X0ð Þ
∂y0

∂y t ; t0, X0ð Þ
∂z0

∂y t ; t0, X0ð Þ
∂x0

0 ∂z t ; t0, X0ð Þ
∂z0

∂z t ; t0, X0ð Þ
∂x0

0 0 ∂x t ; t0, X0ð Þ
∂x0

0BBBBBBB@

1CCCCCCCA
:

ðA:10Þ

Then, based on (44), (43), (A.10), and (A.9), we obtain

DX0Ψ X0� �
=DX0Φ 1 − lð ÞT , I1 Φ lT , X0� �� �� �

×

1 − pE 0 0

0 1 − pH 0

0 0 1 − pT

0BBB@
1CCCADX0Φ l1T , X0� �

:
ðA:11Þ

Furthermore,

DX0Ψ X0ð Þ =

∂y
∂y0

∂y
∂z0

∂y
∂x0

0 ∂z
∂z0

∂z
∂x0

0 0 ∂x
∂x0

:

0BBBBBBBB@

1CCCCCCCCA
1 − lð ÞT , I1 Φ lT , X0ð Þð Þð Þ

×

1 − pEð Þ ∂y∂y0 1 − pEð Þ ∂y∂z0 1 − pEð Þ ∂y
∂x0

0 1 − pHð Þ ∂z∂z0 1 − pHð Þ ∂z
∂x0

0 0 1 − pTð Þ ∂x∂x0 :

0BBBBBBBB@

1CCCCCCCCA

� lT , X0ð Þ ≜
a0 ∗ ∗

0 b0 ∗

0 0 c0

0BBB@
1CCCA,

ðA:12Þ

where

d
dt

∂y
∂y0

t ; t0, X0ð Þ
� �

= −δ1 + ρz t ; t0, X0ð Þð Þ ∂y∂y0 t ; t0, X0ð Þ + ρy t ; t0, X0ð Þ ∂z
∂y0

t ; t0, X0ð Þ,

d
dt

∂z
∂y0

t ; t0, X0ð Þ
� �

−−δ2
∂z
∂y0

t ; t0, X0ð Þ,

d
dt

∂z
∂z0

t ; t0, X0ð Þ
� �

= −δ2
∂z
∂z0

t ; t0, X0ð Þ,

d
dt

∂x
∂x0

t ; t0, X0ð Þ
� �

= α −
y t ; t0, X0ð Þ

η1

� �
∂x
∂x0

t ; t0, X0ð Þ,

∂y
∂y0

t0 ; t0, X0ð Þ = 1,

∂z
∂y0

t0 ; t0, X0ð Þ = 0,

∂z
∂z0

t0 ; t0, X0ð Þ = 1,

∂x
∂x0

t0 ; t0, X0ð Þ = 1:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ðA:8Þ

a0 = 1 − pEð Þ ∂y 1 − lð ÞT , I1 Φ lT , X0ð Þð Þð Þ
∂y0

∂y l1T , X0ð Þ
∂y0

= 1 − pEð Þ × e
Ð 1−lð ÞT

0
−δ1+ρz s,I1 Φ lT ,X0ð Þð Þð Þð Þds+

Ð lT
0

−δ1+ρz s,X0ð Þð Þds,

b0 = 1 − pHð Þ ∂z 1 − lð ÞT , I1 Φ lT , X0ð Þð Þð Þ
∂z0

∂z l1T , X0ð Þ
∂z0

= 1 − pHð Þe−δ2T < 1,

c0 = 1 − pTð Þ ∂x 1 − lð ÞT , I1 Φ lT , X0ð Þð Þð Þ
∂x0

∂x l1T , X0ð Þ
∂x0

= 1 − pTð Þ × e
Ð 1−lð ÞT

0
α−y s,I1 Φ lT,X0ð Þð Þð Þ

η1ð Þds+Ð lT0 α−y s,X0ð Þ
η1ð Þds:

8>>>>>>><>>>>>>>:
ðA:13Þ
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