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Automated segmentation of renal tumors is essential for the diagnostic evaluation of kidney cancer. However, renal tumor volume
is generally small compared with the volume of the kidney and is irregularly distributed; moreover, the location and shape of renal
tumors are highly variable, making the segmentation task extremely challenging. To solve the aforementioned problems, a
cascaded segmentation model (FYU-Net) for computed tomography (CT) images is proposed in this paper to achieve
automatic kidney tumor segmentation. The proposed model involves two main steps. In the first step, a fast scan of the kidney
CT data is performed using a localization network to find slices containing tumors, and coarse segmentation is performed
simultaneously. In the second step, a segmentation framework embedded with the feature pyramid network module is
employed to finely segment kidney tumors. By building a feature pyramid structure, targets of different sizes are distributed to
be detected on different feature layers to extract richer feature information. In addition, the top-down structure allows the
information of the higher-level feature maps to be transferred to the lower-level feature maps, enhancing the semantic
information of the lower-level feature maps. Comparative experiments were conducted on the Kidney PArsing Challenge 2022
public dataset; the average Jaccard coefficient and average Dice coefficient of tumor structure segmentation were more than
70.73% and more than 82.85%, respectively. The results demonstrate the effectiveness of the proposed model for kidney
tumor segmentation.

1. Introduction

Image segmentation is used in digital image processing and
computer vision to segment an image into multiple parts
or regions based on the pixel features in the image [1].
Converting an image into a collection of pixel regions repre-
sented by a mask involves separating foregrounds from
backgrounds or clustering pixel regions based on similarities
in color and shape. Image segmentation is employed in med-
ical imaging for detecting and labeling regions of an image
that represent tumors in a patient’s brain and other organs.
Kidney tumors can be benign or malignant. Benign tumors
include cysts, whereas malignant tumors mainly include
renal cancer and pelvic cancer [2]. Regular examination,
timely detection, and proper treatment are vital to overcome
kidney tumors. Kidney cancer can be cured by surgically
removing some or all of the organs eroded by cancer [3].
Computed tomography (CT) and magnetic resonance imag-

ing are the most important medical imaging modalities by
which surgeons can diagnose and locate kidney tumors [4].
The accurate localization of the kidney tumor is vital in
surgery for kidney cancer treatment. Therefore, the precise
segmentation of the kidney tumor area plays a crucial role.
When successful, it can help the surgeon to locate the kidney
tumor area more accurately, thus improving the success rate
of the surgery [5]. The structure of the kidney tumor is
shown in Figure 1.

In recent years, several deep learning- (DL-) based
segmentation models with good performance have been
developed [6]; however, organ tumor region segmentation
in medical imaging remains challenging, mainly because
compared with organs such as the brain or the heart, the seg-
mentation of tumors with large differences in the shape and
texture among individuals is more difficult. On the one
hand, expert judgment is essentially a decisive consideration,
and even with the rapid development of DL and artificial
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intelligence, medical diagnosis results still depend on the
subjective judgment of doctors. However, manual segmenta-
tion by doctors is time-consuming and can cause mental
fatigue in doctors, which can easily lead to operational
errors. On the other hand, unlike organ-based segmentation,
the shape and texture of different tumors vary greatly, and
finding the commonality between them by direct matching
is difficult. Therefore, distinguishing tumors by using
organ class-oriented segmentation methods is challenging.
Although DL methods have shown great potential in deal-
ing with natural image semantic segmentation problems,
some problems are encountered in the field of medical
image segmentation, such as poor contrast between tissues
and organs and muscles and fats, weak information of
segmentation target tissue boundaries, and insufficient
feature extraction due to rich information of medical
image dimensions [7].

Therefore, in this paper, a cascaded segmentation net-
work for medical images, called the FYU-Net model, is pro-
posed. The proposed model incorporates the idea of cascade
segmentation refined from DL computer vision. Compara-
tive experiments were conducted on public datasets, and
the results demonstrated the effectiveness of the proposed
model for kidney tumor segmentation. The main contribu-
tions of this paper are as follows:

(i) A kidney tumor cascade segmentation model (FYU-
Net) is proposed to achieve accurate segmentation of
kidney tumor regions. A localization network model
is used to identify the sections with tumors from
kidney CT data to realize rapid localization of kidney
tumor regions and coarse segmentation of tumor
regions to be used as the input of the segmentation
network

(ii) In the kidney tumor segmentation model, the feature
pyramid network (FPN) module is introduced to
fuse low-resolution feature maps with strong seman-
tic information and high-resolution feature maps
with weak semantic information but rich spatial
information with less computational effort. Finally,
a classical coder–decoder structure is used to con-
struct a rich pair of medical image information for
the accurate segmentation of kidney tumors

2. Related Works

Image segmentation is considered the most important med-
ical imaging process wherein regions of interest are extracted
using a semiautomatic or automatic process [8]. The image
is divided into multiple regions based on a specified descrip-
tion, such as segmenting body organs and tissues for bound-
ary detection, tumor detection, segmentation, and mass
detection. Medical image segmentation involves the identifi-
cation of areas of organs or lesions from medical images to
provide the medical community with key information about
the shape and volume of body tissues and organs and is one
of the most challenging tasks in medical image analysis [9].
In recent years, semantic segmentation has been extensively
studied in the field of biomedical imaging.

The Attention U-Net network proposed by Oktay et al. is
a novel attention mechanism model for medical imaging
segmentation [10]. The model uses an attention mechanism
to suppress irrelevant regions in the input image and high-
lights salient features that are useful for a specific task and
can replace hard attention in classification tasks and
localization modules in organ localization tasks. Jin et al.
proposed RA-UNet, a three-dimensional (3D) hybrid seg-
mentation model based on residual attention perception
[11]. The model accurately extracts the volume of interest
of the liver and segments the liver tumor from it. The model
has the basic structure of 3D U-Net that enables combining
the underlying feature mapping with the higher-level feature
mapping to extract contextual information and is the first
use of residual attention mechanism for medical image
processing. Gu et al. proposed CE-Net, a context encoder
network model that can capture high-level information
and retain spatial information in two-dimensional medical
image segmentation [12]. The model consists of three main
modules: feature encoding module, context extraction
module, and feature decoding module. The U2-Net model
proposed by Qin et al. is a two-level nested U-shaped struc-
ture that captures contextual information from different
scales and uses pooling operations to increase the depth of
the overall architecture without significantly increasing the
computational overhead [13]. The DeepLab V3 model pro-
posed by Chen et al. reexamines the application of Atrous
convolution in semantic segmentation and fuses image-
level features into ASPP modules, which can obtain contex-
tual information by using the framework of cascade modules
and spatial pyramids [14]. DeepLab V3+ is an improved
version of DeepLab V3 containing an additional decoder
module to correct the segmentation results and further
explores the combination of Xception and deep separable
convolution with ASPP and decoder modules [15]. He
et al. proposed an adaptive pyramid context model (APC-
Net) that is multiscalable, adaptive, and has global-guided
local affinity (GLA) and solves the problem of how to weight
the context vector and the original feature map [16]. Zhao
et al. developed a pyramid pooling module and a pyramid
scene parsing network (PSPNet) to achieve global contextual
information aggregation based on the contextual aggrega-
tion capability of different regions, providing a superior
framework for pixel-level prediction [17].
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Figure 1: Schematic diagram of kidney tumor.
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However, the aforementioned models have certain limi-
tations in tumor segmentation. Due to the need to use the
whole CT data as the input of the model and the relatively
small size of kidney tumors, the segmentation results may
be interfered with by the other regions of the kidney. In
addition, these methods do not deeply consider the unique
features of medical images during feature extraction, which
affects the segmentation accuracy. In this study, we devel-
oped a cascaded segmentation network (FYU-Net) that
consists of two interrelated steps, namely, localization and
accurate segmentation of the kidney tumor region. First,
we used the target localization network [18] to extract the
slices containing tumor regions from the kidney medical
image data and completed the coarse segmentation opera-
tion of the tumor in the slices. In the postsegmentation
network, we added the FPN [19] module based on the
U-Net [20] and fully considered the special features of
medical images when extracting the kidney CT data, thereby
improving the segmentation accuracy.

3. Methods

The framework of the proposed cascaded segmentation
method is shown in Figure 2. Kidney CT data slices are rich
in information, whereas the target tumor region is relatively

small in size. For this reason, in this study, the kidney tumor
region was first extracted and implemented as coarse seg-
mentation, and then, the data obtained after coarse segmen-
tation was used as the input segmentation network for fine
segmentation. The first stage of the cascade framework,
denoted as A1, was implemented using the YOLO-V5 model
to find the slices containing tumors from the total kidney CT
data to simultaneously achieve fast, automatic localization of
kidney tumors and coarse segmentation of tumors in these
slices. In the second stage of the cascade network (denoted
as A2), a segmentation network model embedded in the
FPN module was used to precisely segment the slices
detected from A1 and the corresponding tumor regions
based on them.

3.1. Location Network. Due to the rich dimensional informa-
tion of the original kidney CT data, the slices containing
tumor information only account for a small portion of the
total number of kidney slices. Tumor regions in the kidney
CT data are automatically located in the first stage of the cas-
cade framework (denoted as A1), which provides input data
for the coarse segmentation of kidney tumors in the second
stage of the cascade framework (denoted as A2). This task
can be considered a binary classification problem. Main-
stream localization networks include YOLO-V5, YOLO-V4
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Figure 2: FYU-Net network structure.
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[21], SSD [22], and Faster R-CNN [23] networks. Among
them, YOLO-V5 has the best performance. Therefore, in this
study, we used the YOLO-V5 network model for tumor
localization. The CT images containing the tumor region
detected by the A1 network are shown in Figure 3. After
the automatic localization of the kidney tumor region, the
images are cropped by expanding ten pixel points outward,
according to the detection frame, to achieve a coarse seg-
mentation of the tumor region as the input data of A2.

In the initial stage of A1 localization network training,
the mosaic data enhancement operation is used to enhance
the training speed and accuracy of the model. Its backbone
uses the focus module with a CSP structure to reduce the
repetition of gradient information when using the BP algo-
rithm, thereby reducing the computation complexity and
number of parameters and improving the learning ability
of the network. The focus module is used to slice the image
before it enters the backbone, and the CSP structure divides
the original input into two branches, CSP1_X and CSP2_X.
CSP2_X replaces the Resunit with 2× X CBLs relative to
CSP1_X. The CSP structure helps reduce the model size
while effectively alleviating the gradient disappearance prob-
lem. The neck’s network structure contains FPN + PAN for
fusing features of different dimensions. FPN uses top-down

lateral connections to construct a high-level semantic feature
map and a feature pyramid structure; however, because the
target information at the bottom layer becomes fuzzy after
a multilayer network, PAN adds bottom-up routes to com-
pensate and enhance the localization information. The head
structure outputs the target detection results and consists of
three detectors. The network architecture of A1 is shown in
Figure 4.

3.2. Segmentation Network. In the second stage of the
cascade framework, the U-shaped structure is used for seg-
mentation in response to the specificity of medical image
information features that are difficult to extract. Its jump
succession strengthens the feature conduction of the whole
network and alleviates the gradient disappearance problem
while enhancing feature reuse and improving the learning
ability of the network. In addition, we embedded an FPN
module in this stage for accurate kidney tumor segmentation
according to the local region in A1. The detailed network
architecture of A2 is shown in Figure 5.

The encoding–decoding structure constitutes the main
structure of the segmentation network. Due to the low
resolution of the tumor in kidney images, the unit voxel
contains information far beyond the natural image detail

Figure 3: A1 positioning network results.
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information; the voxel capacity is at least 16 bits or more.
Therefore, we reduced it by one layer on top of the U-Net
to prevent model overfitting. We performed three downsam-
pling and three linear interpolation upsampling operations.
The image input size was H ×W × 3, and the output size
was H ×W × 2, where H and W represent the image length
and width, respectively. The encoder network, shown on the
left side in Figure 5, was used to perform a series of down-
sampling operations through convolution and max pooling,
and in each subsequent downsampling operation, the num-
ber of feature channels was doubled. Two 3 × 3 convolutions
were performed, each with a ReLU activation function and a
2 × 2max pooling for downsampling in steps of 2. The num-
ber of feature maps was multiplied by 2 after each downsam-

pling; thus, there was a change in the size of the feature map.
The decoding section is shown on the right side in Figure 5;
each step included the feature map for upsampling, followed
by a 2 × 2 convolution that halved the number of feature
channels and two 3 × 3 convolutions, again each followed
by a ReLU activation function. In the final layer, a 1 × 1 con-
volution was used to map each 64-component feature vector
to the desired number of classes.

Because the varying sizes of kidney tumors increase the
difficulty of segmentation, while existing algorithms use
expanded convolution (ASPP) or pyramidal convergence
(PSPNet) to increase the accuracy of segmentation, they
suffer from grid effects and loss of pixel-level location infor-
mation, respectively, which are not conducive to the local
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Figure 4: Detailed structure of A1 positioning network.
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consistency of feature mapping. Moreover, the pyramid
pooling module employed in PSPNet loses pixel localization
in pooling operations at different scales. To make full use of
features and enhance feature extraction and propagation, in
this study, the FPN module was incorporated because it can
perform feature extraction for each scale of the image and
is capable of producing multiscale feature representations,
and all levels of feature maps have strong semantic informa-
tion, including some high-resolution feature maps, which
ultimately improve the segmentation efficiency of tumor
regions. The FPN module details are shown in Figure 6.

The FPN structure consists of a bottom-up path, a top-
down path, and a lateral connection. The backbone of the
bottom-up path is the forward feedback computation of
ConvNet, which computes a feature layer structure con-
sisting of multiscale feature maps in steps of 2. In this
study, a pyramid level was also defined for each stage,
and the output of the last layer of each stage was selected
as the reference feature map set. The top-down path
obtains higher-resolution features by upsampling spatially
coarser but semantically more powerful feature maps from
higher pyramid levels. These features are then augmented
by lateral connections from the bottom-up path. Each lat-
eral connection merges feature maps of the same spatial
size from the bottom-up path and the top-down path. In
this study, for coarser-resolution feature maps, the spatial
resolution was upsampled by a factor of 2. Then, the
upsampled maps were merged with the corresponding
bottom-up maps by performing pixel-by-pixel addition.
The process was repeated until the finest-resolution map
was generated.

3.3. Loss Function. The cross-entropy loss function is exten-
sively employed to supervise model signals in medical image
segmentation [24]. The cross-entropy loss function avoids
the problem that the derivative form of the Sigmoid-type
function is prone to saturation. In addition, the cross-
entropy loss function can avoid gradient dispersion when
performing gradient descent calculations, which leads to a
decrease in the learning rate. Therefore, in this study, the

cross-entropy loss function was used to calculate the seg-
mentation loss:

LCE p, qð Þ = −〠
N

i=1
p xið Þ log q xið Þð Þ, ð1Þ

where N denotes the number of categories, pðxiÞ denotes the
true distribution of the sample, and qðxiÞ represents the dis-
tribution predicted by the model and the probability that the
sample belongs to category N . pðxiÞ = 1 when the predicted
category is the same as the category of the sample; otherwise,
pðxiÞ = 0.

4. Experimental Details and Results

To illustrate the effectiveness and generalization ability of
the proposed FYU-Net model, it was compared with main-
stream models on a competition public dataset. The experi-
mental results were analyzed from multiple perspectives.
The proposed model was implemented using the PyTorch
framework, and the running environment was a single NVI-
DIA GeForce GTX 3080 GPU with 10GB of video memory.
The epoch was set as 100 so that all models could reach
convergence. The learning rate was set as 0.01, the weight
decay rate was 0.0005, and the small batch stochastic gradi-
ent descent method with a momentum value of 0.9 was
employed as the optimization method. In the first stage of
the A1 network, we inputted the original image size in the
“jpg” format. In the second phase of the experiment, the
results obtained in the A1 model were cropped to include
the slices of kidney tumors and then inputted into the A2
network.

4.1. Dataset. We used the dataset from the Kidney PArsing
Challenge 2022 [25–28]. The dataset includes unenhanced
CT images of the kidney from 70 patients. The tumors are
multisubtype lesions, with five subtumor types in the dataset
with variable distribution, resulting in a more challenging
situation. First, we set the appropriate window width and
bit value for the medical image data. Next, we converted
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Figure 6: Feature pyramid network structure diagram.
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the image format from “.nii.gz” to “jpg” and used the “jpg”
image as the input of the model. Finally, the data were ran-
domly divided into training and test sets in the ratio of 8 : 2.

4.2. Evaluation Indicators and Parameter Settings. To accu-
rately evaluate the segmentation performance with reference
to the current mainstream evaluation standards, we adopted
four metrics, namely, Dice coefficient, Jaccard coefficient,
Precision, and Recall:

Dice =
2 ∗ Vs ∩ Vg
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where Vs denotes the set of pixels that automatically seg-
ment the kidney tumor and Vg denotes the true set of pixels
in the kidney tumor region.

4.3. Analysis of Results. To verify the effectiveness of the
proposed model, we compared it with the mainstream seg-
mentation models, namely, APCNet, HRNet [29], FCN
[30], and U-Net. The training parameters of these models
were set according to their optimal parameters in the corre-
sponding literature, and the recognition results were reac-
quired based on the source code provided by the authors.
Qualitative evaluation and quantitative comparison with
mainstream models demonstrated the effectiveness of the
proposed FYU-Net model. Furthermore, model convergence
analysis demonstrated the stability of the proposed model.

As shown in Figure 7, the proposed FYU-Net model
exhibited an extremely high visual advantage, demonstrating
that it can be extremely helpful for kidney tumor resection
surgery. In Figure 7, the first row shows the true value of
the kidney tumor, and the second row shows the FYU-Net
segmentation result map. It can be observed that the pro-

posed model achieved good tumor segmentation results
visually.

The experimental results of the proposed model and
mainstream models on the kidney dataset are presented in
Table 1. The proposed model achieved the maximum Dice
coefficient, Jaccard coefficient, and recall values, which were
82.85%, 70.73%, and 87.38%, respectively, and its recogni-
tion performance was considerably better than that of other
models. Precision represents the probability of tumor detec-
tion in the prediction result; however, a high precision value
alone does not indicate that the model’s segmentation effect
is good. In the proposed model, the FCN was used to replace
the fully connected layer with a convolutional layer, and
deconvolution was used for upsampling. In addition, a
jump-connected structure was used to combine coarse infor-
mation with fine information for segmentation. Thus, the
tumor segmentation effect of the proposed model was better
than that of APCNet and HRNet. The Dice coefficient and
Jaccard coefficient values for the proposed model were
73.13% and 57.65%, respectively. In contrast, U-Net differs
from FCN; it extends the FCN network structure, and its
upsampling still has a large number of channels, which
allows the network to propagate the contextual information
to higher resolution, and the upsampling part fuses the out-
put of the feature extraction part, which fuses the multiscale
features. Thus, U-Net achieves better segmentation results
than FCN, with Dice coefficient, Jaccard coefficient, and pre-
cision values of 73.50%, 58.10%, and 80.39%, respectively.
Figure 8 illustrates the visualization comparison results.

4.4. Ablation Experiments. To better validate the effective-
ness of the proposed FYU-Net model, we conducted numer-
ous ablation experiments. As presented in Table 2, we
compared the segmentation results of FYU-Net without

Table 1: Segmentation results of each model on kidney tumor data.

Model Dice Jaccard Precision Recall

APCNet 0.6627 0.4956 0.7374 0.6017

HRNet 0.6957 0.5334 0.7389 0.6573

FCN 0.7313 0.5765 0.7490 0.7145

U-Net 0.7350 0.5810 0.8039 0.6770

Ours 0.8285 0.7073 0.7877 0.8738

Ground
truth

Predict

Figure 7: FYU-Net model segmentation results.

7Computational and Mathematical Methods in Medicine



adding various strategies; SHU-Net denotes shallow U-Net,
and LN denotes localization network. Our improved strate-
gies resulted in considerable performance improvement.
The segmentation Dice and Jaccard coefficient values of
the original U-Net on the renal tumor data were 73.50%
and 58.10%, respectively. The Dice and Jaccard coefficient

values increased to 75.13% and 60.17%, respectively, when
we used only the FPN strategy. When both the shallow
U-Net structure and the FPN module were employed,
the segmentation effect improved, and the Dice and Jaccard
coefficient values increased to 76.49% and 61.92%, respec-
tively. When we adopted the full strategy and used FYU-

APCNet
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

HRNet FCN U-Net Ours

Dice
JAC

Precision
Recall

Figure 8: Visualization of model comparison results.

Table 2: Comparison results of ablation experiments.

SHU-Net LN FPN Dice Jaccard

— — — 0.7350 0.5810

— — √ 0.7513 0.6017

√ — √ 0.7649 0.6192

√ √ √ 0.8285 0.7073

0 40000 80000 120000 160000
The number of iterations
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U

 v
al

ue
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Figure 9: IoU convergence trend of FYU-Net model.
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Net for segmentation of kidney tumor CT data, the segmen-
tation effect improved considerably, resulting in an average
Dice coefficient of 82.85% and a Jaccard coefficient of
70.73%, thus demonstrating the effectiveness of our improve-
ment scheme.

4.5. Model Convergence Analysis. The number of training
iterations of the model is one of the important factors affect-
ing the segmentation structure of kidney tumors. As shown
in Figure 9, the IoU of the proposed model started to
increase abruptly from 0 to 0.6, reflecting the effectiveness
of FYU-Net. As the number of iterations increased, the
IoU curve exhibited a gradual growth trend and finally
reached a convergence state, with the IoU value finally stabi-
lizing at around 0.7. Due to the video memory, we set the
batch_size as 2, thus causing the IoU curve to still have a
small oscillation late in the iteration.

5. Discussion

In this study, we developed a cascaded segmentation net-
work for medical images to realize tumor region segmenta-
tion in kidney CT data. Because tumors are irregularly
shaped and relatively small in volume compared to the
kidney and may appear at different locations in the kidney,
we first used a target detection algorithm based on the
YOLO-V5 m implementation to quickly localize tumor
regions in the raw kidney CT data. Next, we applied it to
localized regions to perform the final accurate segmentation
of the tumor. Experimental results on the publicly available
kidney CT dataset provided by Kidney PArsing Challenge
2022 demonstrated that the proposed model is more accu-
rate and robust than existing methods. The Dice coefficient
and Jaccard coefficient values for the proposed model were
82.85% and 70.73%, respectively. Furthermore, the FYU-
Net model proposed in this paper demonstrated good time
efficiency, indicating that the proposed cascaded segmenta-
tion network greatly improves the efficiency of medical
image segmentation. Finally, ablation experiments demon-
strated that the proposed network yields superior medical
image segmentation performance.

Data Availability

The data used in this study is the public dataset provided by
Kidney PArsing Challenge 2022, which can be obtained by
registering for the contest or by accessing the data through
the authors’ Github website (https://github.com/L9uckin/
kidney).

Additional Points

Code Availability. The code used for segmentation of kidney
tumors from CT data are available from the authors’ Github
website (https://github.com/L9uckin/kidney). The codes
used for the other computational analyses are available upon
request to the authors.

Conflicts of Interest

The authors declare no competing interests.

Acknowledgments

The study is supported by the National Key R&D Program
of China (grant no. 2021YFD1300100).

References

[1] A. Ibrahim and E. S. M. El-kenawy, “Image segmentation
methods based on superpixel techniques: a survey,” Journal
of Computer Science and Information Systems, vol. 15, no. 3,
pp. 1–11, 2020.

[2] A. Hamroun, R. Lenain, F. Provôt, M. Maanaoui, and
A. Lionet, “An unusual case of multiple bilateral kidney
tumors,” Journal of Nephrology, vol. 34, no. 5, pp. 1783-1784,
2021.

[3] T. Kobayashi, A. Takeuchi, H. Nishiyama, and M. Eto, “Cur-
rent status and future perspectives of immunotherapy against
urothelial and kidney cancer,” Japanese Journal of Clinical
Oncology, vol. 51, no. 10, pp. 1481–1492, 2021.

[4] M. Z. F. Ho, K. M. Lim, and E. C. P. Chua, “Utilising artificial
intelligence (AI) to automate defacing of the nose in computed
tomography (CT) and magnetic resonance imaging (MRI)
images,” Journal of Medical Imaging and Radiation Sciences,
vol. 53, no. 3, p. 8, 2022.

[5] S. Campbell, R. G. Uzzo, M. E. Allaf et al., “Renal mass and
localized renal cancer: AUA guideline,” The Journal of Urol-
ogy, vol. 198, no. 3, pp. 520–529, 2017.

[6] I. Ahmed, M. Ahmad, F. A. Khan, and M. Asif, “Comparison
of deep-learning-based segmentation models: using top view
person images,” IEEE Access, vol. 8, pp. 136361–136373, 2020.

[7] M. H. Hesamian, W. Jia, X. He, and P. Kennedy, “Deep learn-
ing techniques for medical image segmentation: achievements
and challenges,” Journal of Digital Imaging, vol. 32, no. 4,
pp. 582–596, 2019.

[8] P. Yin, R. Yuan, Y. Cheng, and Q. Wu, “Deep guidance net-
work for biomedical image segmentation,” IEEE Access,
vol. 8, pp. 116106–116116, 2020.

[9] S. Pang, C. Pang, L. Zhao et al., “SpineParseNet: spine parsing
for volumetric MR image by a two-stage segmentation frame-
work with semantic image representation,” IEEE Transactions
on Medical Imaging, vol. 40, no. 1, pp. 262–273, 2021.

[10] O. Oktay, J. Schlemper, L. L. Folgoc et al., “Attention u-net:
learning where to look for the pancreas,” https://arxiv.org/
abs/1804.03999, 2018.

[11] Q. Jin, Z. Meng, C. Sun, H. Cui, and R. Su, “RA-UNet: a hybrid
deep attention-aware network to extract liver and tumor in CT
scans,” Frontiers in Bioengineering and Biotechnology, vol. 8,
p. 1471, 2020.

[12] Z. Gu, J. Cheng, H. Fu et al., “CE-Net: context encoder network
for 2d medical image segmentation,” IEEE Transactions on
Medical Imaging, vol. 38, no. 10, pp. 2281–2292, 2019.

[13] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and
M. Jagersand, “U2-Net: going deeper with nested U-structure
for salient object detection,” Pattern Recognition, vol. 106,
article ???, 2020.

9Computational and Mathematical Methods in Medicine

https://github.com/L9uckin/kidney
https://github.com/L9uckin/kidney
https://github.com/L9uckin/kidney


[14] L. C. Chen, G. Papandreou, F. Schroff, and H. Adam,
“Rethinking atrous convolution for semantic image segmen-
tation,” https://arxiv.org/abs/1706.05587, 2017.

[15] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
Encoder-Decoder with Atrous Separable Convolution for
Semantic Image Segmentation, Proceedings of the European
conference on computer vision (ECCV), 2018.

[16] J. He, Z. Deng, L. Zhou, Y. Wang, and Y. Qiao, Adaptive
Pyramid Context Network for Semantic Segmentation, Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019.

[17] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, Pyramid Scene Pars-
ing Network, Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017.

[18] J. Aspnes, T. Eren, D. K. Goldenberg et al., “A theory of net-
work localization,” IEEE Transactions on Mobile Computing,
vol. 5, no. 12, pp. 1663–1678, 2006.

[19] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie, Feature Pyramid Networks for Object Detection,
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017.

[20] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolu-
tional networks for biomedical image segmentation,” in
International Conference on Medical image computing and
computer-assisted intervention, pp. 234–241, Springer,
Cham, 2015.

[21] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “Yolov4: opti-
mal speed and accuracy of object detection,” https://arxiv.org/
abs/2004.10934, 2020.

[22] W. Liu, D. Anguelov, D. Erhan et al., “Ssd: single shot multibox
detector,” in European Conference on Computer Vision,
pp. 21–37, Springer, Cham, 2016.

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards
real-time object detection with region proposal networks,”
Advances in Neural Information Processing Systems, vol. 28,
2015.

[24] R. Das and S. Chaudhuri, “On the separability of classes with
the cross-entropy loss function,” https://arxiv.org/abs/
1909.06930, 2019.

[25] Y. He, G. Yang, J. Yang et al., “Meta grayscale adaptive net-
work for 3D integrated renal structures segmentation,” Medi-
cal Image Analysis, vol. 71, article 102055, 2021.

[26] Y. He, G. Yang, J. Yang et al., “Dense biased networks with
deep priori anatomy and hard region adaptation: semi-
supervised learning for fine renal artery segmentation,” Medi-
cal Image Analysis, vol. 63, article 101722, 2020.

[27] P. Shao, C. Qin, C. Yin et al., “Laparoscopic partial nephrec-
tomy with segmental renal artery clamping: technique and
clinical outcomes,” European Urology, vol. 59, no. 5, pp. 849–
855, 2011.

[28] P. Shao, L. Tang, P. Li et al., “Precise segmental renal artery
clamping under the guidance of dual-source computed tomog-
raphy angiography during laparoscopic partial nephrectomy,”
European Urology, vol. 62, no. 6, pp. 1001–1008, 2012.

[29] J. Wang, K. Sun, T. Cheng et al., “Deep high-resolution repre-
sentation learning for visual recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 43, no. 10,
pp. 3349–3364, 2020.

[30] J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Net-
works for Semantic Segmentation, Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015.

10 Computational and Mathematical Methods in Medicine


	FYU-Net: A Cascading Segmentation Network for Kidney Tumor Medical Imaging
	1. Introduction
	2. Related Works
	3. Methods
	3.1. Location Network
	3.2. Segmentation Network
	3.3. Loss Function

	4. Experimental Details and Results
	4.1. Dataset
	4.2. Evaluation Indicators and Parameter Settings
	4.3. Analysis of Results
	4.4. Ablation Experiments
	4.5. Model Convergence Analysis

	5. Discussion
	Data Availability
	Additional Points
	Conflicts of Interest
	Acknowledgments



