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Fatigue detection for air traffic controllers is an important yet challenging problem in aviation safety research. Most of the existing
methods for this problem are based on facial features. In this paper, we propose an ensemble learning model that combines both
facial features and voice features and design a fatigue detection method through multifeature fusion, referred to as Facial and
Voice Stacking (FV-Stacking). Specifically, for facial features, we first use OpenCV and Dlib libraries to extract mouth and eye
areas and then employ a combination of M-Convolutional Neural Network (M-CNN) and E-Convolutional Neural Network
(E-CNN) to determine the state of mouth and eye closure based on five features, i.e., blinking times, average blinking time,
average blinking interval, Percentage of Eyelid Closure over the Pupil over Time (PERCLOS), and Frequency of Open Mouth
(FOM). For voice features, we extract the Mel-Frequency Cepstral Coefficients (MFCC) features of speech. Such facial features
and voice features are fused through a carefully designed stacking model for fatigue detection. Real-life experiments are
conducted on 14 air traffic controllers in Southwest Air Traffic Management Bureau of Civil Aviation of China. The results
show that the proposed FV-Stacking method achieves a detection accuracy of 97%, while the best accuracy achieved by a single
model is 92% and the best accuracy achieved by the state-of-the-art detection methods is 88%.

1. Introduction

The 2006-2015 statistics of flight incidents in China broken
down by causes show that human factors account for 25.67%
[1]. From 1994 to 2020, there are 97 accidents in China caused
by air traffic controllers [2]. Also, a survey on controller fatigue
from National Transportation Safety Board (NTSB) shows
that a number of major investigations identify fatigue as a
probable cause, contributing factor, or a finding [3]. The above
studies and statistics have made it very clear that timely and
accurate fatigue detection for air traffic controllers performing
control and command operations on site is critical to mini-
mizing aviation safety hazards. Fatigue detection is mainly
divided into subjective detection and objective detection. Sub-

jective detection is to classify and quantify the fatigue status
based on the subject’s subjective performance. The detection
methods in this category have the advantages of convenient
operation and low cost, and have been widely adopted. How-
ever, they also suffer from some disadvantages such as poor
real-time performance and the impact of human subjective
consciousness. Subjective detection methods can be further
divided into three subcategories: questionnaires and subjective
evaluation forms, oral question-and-answer analysis, and
active detection models. Lee and Kim developed hypotheses
and survey questions based on interviews with 929 pilots
and conducted a nationwide survey. They concluded that
inadequate planning operation, flight direction, culturally dif-
ferent partnership, aircraft environment, job assignment,
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racial difference, hotel environment, and other factors can
cause pilot fatigue [4]. Jiang et al. designed a questionnaire
based on Theory of Planned Behavior (TPB), which effectively
reveals the psychological factors related to fatigue driving [5].

Objective detection has the advantages of high accuracy
and reliability, and it is not affected by the subject’s subjective
consciousness. The methods in this category have become the
focus of research for fatigue detection and can be divided into
the following two subcategories: contact and noncontact. Most
traditional contact-based methods for fatigue detection mea-
sure physiological signals such as electrocardiograms and
brain waves [6, 7]. Such methods through body contact are
able to yield high detection accuracy but may interfere with
the normal operation of air traffic controllers. Most
noncontact-based methods mainly track facial expressions,
such as mouth state detection [8], eye tracking [9, 10], and
reaction time [11]. Verma et al. proposed to detect fatigue by
comparing the location of the joints of the current posture
[12]. Since noncontact methods are noninvasive and easy to
instrument, they have received a great deal of attention.

In this paper, we propose a fatigue detection method
through multifeature fusion based on ensemble learning,
referred to as Facial and Voice Stacking (FV-Stacking). Specif-
ically, for facial features, we first use OpenCV and Dlib librar-
ies to extract mouth and eye areas and then employ a
combination of M-Convolutional Neural Network (M-CNN)
and E-Convolutional Neural Network (E-CNN) to determine
the state of mouth and eye closure based on five features, i.e.,
blinking times, average blinking time, average blinking inter-
val, Percentage of Eyelid Closure over the Pupil over Time
(PERCLOS), and Frequency of OpenMouth (FOM). For voice
features, we extract the Mel-Frequency Cepstral Coefficients
(MFCC) features of speech. Such facial features and voice fea-
tures are fused using a carefully designed stacking model for
fatigue detection. The stacking framework increases the
amount of information used for ensemble learning and can
integrate different types of features by choosing and stacking
appropriate base models. Real-life experiments are conducted
on 14 air traffic controllers in Southwest Air Traffic Manage-
ment Bureau of Civil Aviation of China. The experimental
results show that the proposed FV-Stacking method achieves
a detection accuracy of 97%, while the best accuracy achieved
by a singlemodel is 92%, and the best accuracy achieved by the
state-of-the-art detection methods is 88%. The main contribu-
tions of our work are summarized as follows:

(1) We develop a machine learning model that can rec-
ognize the closed state of the mouth and eyes with
high accuracy

(2) We fuse speech features and facial features to detect
the fatigue state of air traffic controllers

(3) We design an FV-Stacking ensemble learning model
and achieve an accuracy rate of 97% for fatigue
detection

The rest of this paper is organized as follows. Section 2
conducts a survey of related work. Section 3 details the
design of the proposed ensemble learning model through

multifeature fusion. Section 4 presents and analyzes experi-
mental results. We conclude our work in Section 5.

2. Related Work

Fatigue detection is used in various scenarios and is mainly
divided into two categories, i.e., subjective detection and
objective detection.

In subjective methods, fatigue ranges are often used.
Williamson et al. [13] systematically studied the impact of
lack of sleep on fatigue and established a set of subjective
methods that can be used to assess fatigue. De Vries et al.
[14] claimed that the Fatigue Assessment Scale is the most
promising fatigue measure, where workers are requested to
fill out questionnaires before and after work to divide the
fatigue scale.

Among objective methods, there are contact methods
and noncontact methods for fatigue detection, depending
on whether or not the testing tool needs to physically touch
the tested person during testing. Heart rates, brain waves,
and electrocardiograms (EEG) are often used as common
indicators in contact-based detection methods. Arnau et al.
[15] used EEG to study the relationship between mental
fatigue and age. Murugan et al. [7] extracts 13 electrocardio-
gram (ECG) signal features and classifies them through
machine learning to determine the fatigue status of a person.
Chen et al. [16] determined whether or not the air traffic
controller is fatigued by measuring physiological informa-
tion including flicker fusion threshold, thumb/index finger
strength, and systolic and diastolic pressure before and after
work. For noncontact detection, many methods consider
facial expressions and voice signals. Dinges and Grace [17]
proposed PERCLOS, a physical quantity measuring fatigue/
drowsiness, which is defined as a certain percentage (e.g.,
70% or 80%) of time when the eyes are closed per unit time.
Generally, a tested person is considered to be fatigued if
PERCLOS exceeds a certain threshold. Zhang et al. [18] used
a convolutional neural network to determine the closure sta-
tus of eyes, calculated PERCLOS based on this, and com-
bined the number of blinks per unit time to identify the
fatigue state. Nie et al. [19] used PERCLOS, blink rate, and
eye closure time to detect fatigue status. Gu et al. [20]
detected fatigue status by calculating PERCLOS and yawn
frequency. Similarly, voice features are also considered in
some noncontact methods for fatigue detection. Shen et al.
[21] used Revised Fractal Dimension Feature to determine
the fatigue status of air traffic controllers.

3. Ensemble Learning Thorough
Multifeature Fusion

Ensemble learning accomplishes the learning task by com-
bining multiple models. The selection of an ensemble learn-
ing model follows the principle of “good but different”. It
uses a series of base models and some rules to integrate mul-
tiple learning results to obtain a final one, which is expected
to outperform a single learning method [22]. Ensemble
learning includes several schemes, these are Bagging, Stack-
ing, Boosting, Blending, etc.
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We propose a model of FV-Stacking to combine facial
features and voice features for fatigue detection. Stacking is
a layered model integration framework. The first layer is
composed of multiple base learners. In the FV-Stacking
framework, we combine five base models, i.e., Logistic
Regression (LR), Decision Tree (DT), Support Vector
Machine (SVM), Long Short-Term Memory (LSTM), and
Convolutional Neural Network (CNN), which take the orig-
inal training dataset as input. The second layer is a simple
LR model, which takes the output of the base learners in
the first layer as input. The architecture of the proposed
FV-Stacking framework is shown in Figure 1.

A brief introduction to each of the base models used in
FV-Stacking is provided as follows.

(1) LR. Logistic regression uses the logistic function sig-
moid to map the result of linear regression to the
range of [0,1]. In FV-Stacking, LR is used in both
the first and the second layers. In the first layer,
logistic regression classifies fatigue status based on
facial features, while in the second layer, it is used
to classify the combined inputs of all base models

(2) SVM. Support vector machine is a classification
model, and its basic model is a linear classifier with
the largest interval defined in the feature space. The
key idea is to solve the separating hyperplane that
can correctly divide the training dataset and have
the largest geometric interval. In this paper, we use
a linear support vector machine to recognize facial
features

(3) DT. Decision tree is a supervised machine learning
algorithm based on a tree structure, in which each
internal node represents a judgement of an attribute,
each branch represents the result of a judgement,
and each leaf node represents a classification
method. In this paper, we use CART decision tree
to recognize facial features

(4) LSTM. Long Short-Term Memory is a recurrent
neural network and is well-suited to classify time
series data. In this paper, LSTM is used to process
MFCC features, as illustrated in Figure 2

(5) CNN. Convolutional neural network is a type of neu-
ral network that performs convolution calculation
and has a deep structure. It includes multiple layers
including convolutional layer, pooling layer, and
fully connected layer. The convolutional layer and
the pooling layer perform feature extraction on the
input data, and the fully connected layer performs
a nonlinear combination of the extracted features
to obtain the output. In this paper, CNN is used to
process MFCC features, using three convolutional
layers, three pooling layers, a flatten operation, one
fully connected layer, and one sigmoid classifier, as
illustrated in Figure 3

The input of FV-Stacking includes visual data and voice
data. The facial feature input includes blinking times, aver-
age blinking time, average blinking interval, PERCLOS,
and FOM. The voice feature input is the MFCC feature.

3.1. Facial Feature Extraction

3.1.1. Face Detection and Feature Point Extraction. Face
detection is to determine face images, and feature point
extraction is to identify feature points in face images. These
are the most critical steps in facial recognition. The quality
of a detected face and the accuracy of the feature point loca-
tion directly affect the results of subsequent processes. In this
paper, we use Dlib Library to detect faces and extract facial
feature points. Dlib is a modern C++ toolkit that includes
a variety of machine learning algorithms and tools, provid-
ing high-quality machine learning, image processing, deep
learning, and face recognition library [23]. Face recognition
algorithms include face detection, face feature extraction,
and face feature vector calculation. Hence, we choose the
Dlib library to implement a high-quality face recognition
system. In the Dlib library, the pretrained facial landmark
detector is used to estimate the location of 68 coordinates
(x, y) that map to facial structures on the face. For illustra-
tion, the indexes of the 68 coordinates are visualized in
Figure 4. In this paper, we employ the Dlib library to extract
the 68 coordinates of the face and locate the eye and the
mouth.

3.1.2. Eye Closure Status Recognition. After extracting 68 eye
detection points, we use these points to construct an eye area
of size 32 × 26 based on the facial landmarks defined in Eq.
(1), as illustrated in Figure 5. Figure 5(a) is the marked
points of a human eye in the video, and Figure 5(b) is the
extracted grayscale image of the human eye.

we = 1:2 ∗ X,

He =
we ∗ 34

26
:

ð1Þ

Vocal feature inputFacial feature input

LR SVM DT CNN LSTM

LR

Output

Figure 1: FV-Stacking architecture.
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Figure 2: LSTM structure.
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Once the eye area is identified, we use E-CNN to deter-
mine the eye’s closure status [24]. E-CNN contains three
convolutional layers, three pool layers, two fully connected
layers, a flatten operation, and one sigmoid classifier, as
illustrated in Figure 6 [25]. The input is a grayscale image
of size 26 × 34 × 1.

3.1.3. Mouth Closure Status Recognition. Among 68 facial
detection points, we use those points of mouth to extract
the mouth area of size 120 × 80, based on the facial land-
marks defined in Eq. (2). An extraction result is plotted in
Figure 7 for illustration. Figure 7(a) is the marked points
of an air traffic controller’s mouth in the video, and
Figure 7(b) is the extracted grayscale image of the air traffic
controller’s mouth.

Wm = 1:2 ∗ Ym,

Hm =
wm ∗ 120

80
:

ð2Þ

Once the mouth area is identified, we use M-CNN to
determine the mouth’s closure status [26]. Convolutional
neural networks contain three convolutional layers, three
pool layers, two fully connected layers, a flatten operation,
and one sigmoid classifier, as illustrated in Figure 8.

The input is a grayscale image of size 80 × 120 × 1.

3.1.4. Eye and Mouth Features. We generated two queues
when identifying air traffic controllers in the video stream

with M-CNN and E-CNN. As shown in Figure 9, the first
queue stores the detection results of eye state, and the second
queue stores the detection results of mouth state. We use a
flag number to represent the closure state of the eye or
mouth in each frame: the flag ‘1’ indicates that the eye or
mouth is open, and the flag ‘0’ indicates that the eye or
mouth is closed. Figure 9(a) is a queue that stores the closure
state of the mouth with M-CNN, and Figure 9(b) is a queue
that stores the closure state of the eye with E-CNN.

We derive five features of eye and mouth from the
queues, i.e., blinks, average blinking time, average blink time
interval, PERCLOS, and FOM, as defined below:

(1) Blinks. The number of blinks is measured over a
fixed time period. As the level of fatigue increases,
the number would also change

(2) Average Blinking Time (ABT). It measures the aver-
age number of eye closures per blink in a fixed time
period, which is often related to fatigue, calculated as

ABT =
nclose
Nblinks

, ð3Þ

where nclose is the total number of eye-closed frames, and
Nblinks is the total number of blinks over a period of time.

(3) Average blink time interval (ABTI). t refers to the
average empty time intervals in a fixed time period,
calculated as

ABTI =
∑n

i=ntinterval
Nblinks − 1

, ð4Þ

where n denotes the number of blink time intervals, and
tinterval denotes the single blink time interval.

(4) PERCLOS. The ratio between the number of frames
with closed eyes and the total number of frames in
unit time, calculated as

PERCLOS =
nclose
N total

, ð5Þ

where n denotes the number of frames with closed eyes and
N denotes the total number of frames.

244⁎20⁎1 244⁎20⁎32 122⁎10⁎32 122⁎10⁎32 61⁎5⁎32 61⁎5⁎64 31⁎2⁎32

3840 64 1

Figure 3: CNN structure.
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Figure 9: The process for obtaining the closure state of the mouth and eyes.
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(5) FOM. Similar to PERCLOS, it refers to the ratio
between the number of frames with closed mouth
and the total number of frames in unit time, calcu-
lated as

FOM =
nclosedmouth

N total
, ð6Þ

where nclosedmouth denotes the number of frames with closed
mouth and N total denotes the total number of frames

3.2. Vocal Feature Extraction. It is critical to extract the most
representative voice signal features for fatigue detection. In
this paper, we employ MFCC feature extraction from voice
signals as this unique cepstrum-based extraction method is
more in line with the principle of human hearing, and it is
also the most common and effective speech feature extrac-
tion algorithm. The MFCC extraction process is illustrated
in Figure 10.

As shown in Figure 10, MFCC consists of seven steps,
each of which has its own function and mathematical
approach as discussed briefly below:

(1) Preemphasis. Preemphasis is a filtering method that
emphasizes higher frequencies to balance the spec-
trum of voiced sounds that have a steep roll-off in
the high-frequency region

(2) Framing. To facilitate speech analysis, voice signal
can be divided into small segments, which are
referred to as frames. Each frame contains N sam-
pling points in an observation unit. Typically, N is
set to be 256 or 512, and the time covered is about
20-30ms

(3) Windowing. Voice is constantly changing in a long
range and cannot be processed without fixed charac-
teristics. Therefore, each frame is substituted into a
window function, and the value outside the window
is set to be 0. Commonly used window functions
include square window, Hamming window, and
Hanning window, etc. Considering the characteris-
tics of a window function in the frequency domain,
Hamming window is often used

(4) Discrete Fourier Transform (DFT). Each windowed
frame is converted into magnitude spectrum by
applying DFT, calculated as

X kð Þ = 〠
N−1

i=0
x nð Þe −j2πnkð Þ/N , 0 ≤ K ≤N − 1, ð7Þ

where N is the number of points used to compute the DFT

(5) Mel Spectrum. Mel spectrum is computed by passing
the Fourier transformed signal through a set of
band-pass filters known as Mel-filter bank. The Mel
scale is approximately a linear frequency spacing

below 1kHz and a logarithmic spacing above
1 kHz. The approximation of Mel from physical fre-
quency is calculated as

fMel = 2569 log10 1 +
f

100

� �
, ð8Þ

where f denotes the physical frequency in Hz, and fMel
denotes the perceived frequency

(6) Discrete Cosine Transform (DCT). DCT is applied to
the transformed Mel frequency coefficients to pro-
duce a set of cepstral coefficients

(7) Dynamic MFCC features. Cepstral coefficients are
usually referred to as static features, since they only
contain information from a given frame. The extra
information about the temporal dynamics of the sig-
nal is obtained by computing the first and second
derivatives of cepstral coefficients

4. Experiments and Performance Evaluation

4.1. Experimental Platform. In this work, we use OpenCV
[27] and Dlib libraries to process video dataset and use Keras
and Sklearn frameworks to construct the model for fatigue
detection. The entire detection system is implemented and
tested on a Windows 10 PC equipped with 32GB of memory
and a GPU with 8GB memory.

4.2. Dataset. For E-CNN, we collect 8,598 images with eyes
open and 6,510 images with eyes closed. Altogether, we use
12,086 eye images for training and 3,022 images for testing.
Similarly, for M-CNN, we collect 2,155 images with mouth
open and 1,980 images with mouth closed. Altogether, we
use 3,721 mouth images for training and 414 images for
testing.

We also collect video and audio data of air traffic con-
trollers in real operation. We collect 14,673 video and audio
clips, where the length of each video is 15 seconds and the
length of each audio is 7 seconds. Accordingly, we obtained
14,673 facial features and MFCC features from such video
and audio data, out of which 11,738 are used for training
the proposed FV-Stacking ensemble learning model, and
2,935 are used for testing.

4.3. Experiments. For the video data, we use OpenCV and
Dlib to extract the eyes and mouth of each air traffic control-
ler in each video frame, and then we use E-CNN and M-
CNN models to identify the state of the eyes and mouth.

Voice

Output Dynamic
MFCC
features

Preemphasis Framing Windowing DFT

Mel
spectrumDCT

Figure 10: MFCC feature extraction.
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Finally, five features are calculated, including blinks, average
blinking time, average blink time interval, PERCLOS, and
FOM. For the audio data, we obtained an MFCC feature vec-
tor of size 20 × 244 through the MFCC feature extraction
process.

The facial features (i.e., blink times, average blinking
time, average blink time interval, PERCLOS, and FOM)
and MFCC features extracted from the audio are passed to
the ensemble learning model as input. We use FV-Stacking
to combine facial features and MFCC features to determine
whether or not the air traffic controller is fatigued. The over-
all detection process is illustrated in Figure 11.

4.4. Experimental Results and Analysis. To verify the classifi-
cation performance of M-CNN, ECNN, and FV-Stacking,
we consider recall rate, precision, accuracy, f1 score, and
AUC (Area Under Curve) as the main performance metrics
in our experiments, as defined in the following:

(1) Recall

recall =
TP

TP + FN
, ð9Þ

where TP and FN denote the number of true positives and
the number of false-negatives, respectively. This metric rep-
resents the proportion of positive samples that are correctly
identified as a percentage of the total positive samples

(2) Precision

precision =
TP

TP + FN
, ð10Þ

where FP denotes the number of false-positives. This metric
represents the portion of correctly identified positive sam-
ples as a percentage of all samples that are identified as
positive

(3) Accuracy

accuracy =
TN + TP

TN + TP + FP + FN
, ð11Þ

where TN denotes the number of true negatives. This metric
represents the proportion of correctly classified samples to
the total number of samples

(4) f1 score

f1 =
2 · recall · precision
recall + precision

ð12Þ

This metric is based on the harmonic average of the
recall rate and the precision rate.

(5) Area Under Curve (AUC). A schematic diagram of
the ROC (Receiver Operating Characteristic) curve
is plotted in Figure 12. The horizontal axis of the
curve is the false positive rate, calculated as

FPR =
FP

TN + FP
, ð13Þ

while the vertical axis is the true positive rate, calculated as

TPR =
TP

TP + FN
: ð14Þ

In Figure 12, the area under the ROC curve and the hor-
izontal axis is defined as the Area Under Curve (AUC).
Obviously, the value of this area is no greater than 1. More-
over, because the ROC curve is generally above the line y = x,

MFCC extraction
process 

OpenCV
Dlib

E-CNN M-CNN

Mouth areaEye area

Video

Audio

FV-Stacking

MFCC
Facial feature

Output

Figure 11: A schematic block diagram.
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Table 1: the performance of CNN.

Model Recall Precision Accuracy f1 score AUC

E-CNN 98% 98% 98% 98% 0.99

M-CNN 97% 98% 97% 97% 0.99
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Table 2: Performance comparison between different methods.

Our method
Work by Zhang et al. [18] Work by Nie et al. [19] Work by Gu et al. [20]
LR SVM KNN LR SVM KNN LR SVM KNN

Precision 97% 85% 85% 88% 85% 86% 89% 0.83% 85% 73%

Accuracy 97% 84% 84% 88% 85% 85% 88% 82% 82% 71%

Recall 97% 86% 86% 89% 85% 85% 89% 83% 85% 70%

f1 score 97% 85% 85% 88% 85% 85% 89% 83% 83% 70%

AUC 0.99 0.93 0.93 0.92 0.93 0.93 0.92 0.91 0.91 0.83
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the value range of AUC is between 0.5 and 1. The closer the
AUC is to 1.0, the better performance the detection method
achieves.

The performance of E-CNN and M-CNN is shown in
Table 1.

To evaluate the performance of FV-Stacking, we com-
pare and analyze the recall rate, precision, accuracy, f1 score,
and AUC of single models and FV-Stacking. The results are
plotted in Figure 13.

From Figure 13, we observe that the best recall rate of
signal models is 90%, the precision is 92%, the accuracy is
90%, the f1 score is 90%, and the AUC is 0.96. The recall
of FV-Stacking proposed in this paper reaches 97%, the pre-
cision reaches 97%, the accuracy reaches 97%, the f1 score
reaches 97%, and the AUC reaches 0.99. These results show
that FV-Stacking consistently outperforms any single model.

In some other methods, different features are used for
fatigue detection. For example, in the work by Zhang et al.
[18], fatigue is judged by PERCLOS and blinking frequency.
In the work by Nie et al. [19], fatigue is judged by blink time,
PERCLOS, blinks, and blink frequency. In the work by Gu
et al. [20], fatigue is judged by PERCLOS and FOM. One
common strategy is to determine the fatigue state by setting
fixed thresholds for different characteristics. For example, in
the work by Zhang et al. [18], the PERCLOS threshold is set
to be 0.25, and in the work by Nie et al. [19], the PERCLOS
threshold is set to be 0.06. In [20], Gu et al. set the PERCLOS
threshold to be 0.5. However, in different scenarios, such
fixed thresholds may not always yield the best performance.
In order to mitigate the impact of thresholds on the perfor-
mance, we combine different features using various machine
learning models including Support Vector Machine (SVM),
K-Nearest Neighbor (KNN), and Logistic Regression (LR)
to compare the performance of different fatigue detection
methods, as summarized in Table 2.

From Table 2, we observe that the best recall rate of dif-
ferent fatigue detection methods is 89%, the accuracy is 88%,
the f1 score is 88%, the precision is 89%, and the AUC is
0.93. The recall rate of the proposed FV-Stacking method
reaches 97%, the accuracy reaches 97%, the f1 score reaches
97%, the precision reaches 97%, and the AUC reaches 0.99.
These results show that FV-Stacking consistently outper-
forms other fatigue detection methods.

5. Conclusion and Future Direction

Civil aviation aircraft has become an indispensable tool for
our daily travel. Route management at airports is becoming
increasingly complicated as the airport size and the aircraft
volume continue to grow. Such intensive work leads to
fatigue of air traffic controllers, which is one of the major
factors for accidents.

We focused on the fatigue detection problem for air traf-
fic controllers. To improve detection accuracy, we combined
facial features including blinks, average blink duration, aver-
age blink interval, PERCLOS, and yawn frequency as well as
the MFCC characteristics of voice signal. We designed an
ensemble learning method for fatigue detection and used
real-life video and audio data for performance evaluation.

This research has resulted in the following findings:

(1) Both M-CNN and E-CNN are able to accurately
identify the open and closed state of the mouth and
eyes

(2) By strategically combining facial and speech features,
the proposed ensemble learning model, FV-Stacking,
is able to achieve consistently better detection per-
formance in comparison with single models and
other detection methods, in terms of various perfor-
mance metrics

Our work provides a new perspective for the develop-
ment of fatigue detection methods by combining facial fea-
tures and vocal features. The proposed approach achieves a
high fatigue detection rate and has a great potential to effec-
tively avoid accidents caused by the fatigue of air traffic
controllers.

There are many alternative vocal features in addition to
MFCC. It is of our future interest to experiment with other
vocal features such as Single Frequency Filtering Cepstral
Coefficients (SFFCC) [28, 29] and Zero-Time Windowing
Cepstral Coefficients [30]. Moreover, we plan to incorporate
some other features that may also reflect the fatigue state of
air traffic controllers, such as sitting posture [12].
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