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We hope to assess the different processing methodologies or the effectiveness of the devices or systems applied in this nonparametric
statistical test by observing the failure behavior of the recorded survival data. The proposed second-order approach of new better than
used (NBU 2) will be employed, which requires that the test data behaves either like NBU 2 property or exponentially. If the survival
data is NBU 2, the proposed treatment method is likely to be beneficial. If the data are exponential, on the other hand, the
recommended treatment method has no positive or negative influence on patients, as shown in the application section. To
establish the validity of the test, we calculated the power of the proposed test and efficiency on both complete and censored data,
compared the results to those of existing tests, and then applied the test to a range of real-world data.

1. Introduction

The estimation and testing of hypotheses were the two basic
divisions of statistical inference. Generally, we have no idea
what the true value of population parameters is. Thus, we
have to estimate them. We do, however, have some theories
concerning the true values of population parameters. The
null hypothesis is frequently denoted by the sign H0, and
the alternative hypothesis known as H1. The null and alter-
native hypotheses must be defined prior to conducting any
significant statistical test.

Various life distribution classes have been proposed dur-
ing the last century to model various elements of aging. See,

for example, the studies of Bakr et al. [1], Navarro and
Pellerey [2], Bakr et al. [3], Navarro [4], Qureshi and Kumar
[5], and Qureshi and Yusuf [6], for definitions and preserva-
tion of several classes of life distributions, such as IFR, NBU,
UBA, UBAmgf, NBUE, and their duals.

The implications of the common classes, which include
the majority of well-known classes such as IFR, NBU,
NBUE, and HNBUE, are

IFR⇒NBU⇒NBUE⇒HNBUE: ð1Þ

The survivor function is a base number that describes
how long it takes for an event to occur.
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The survivor function is defined as

�Ft xð Þ =
�F x + tð Þ
�F tð Þ , �F tð Þ > 0: ð2Þ

A fundamental property of surviving dissemination is
the ability to age. The manuscript introduces a number of
classes to categorize distributions.

The first aging is NBU. Here, FðxÞ has NBU property iff

�F tð Þ �F xð Þ ≥ �F t + xð Þ, for all t > 0: ð3Þ

The class NBUE distribution is the second aging class,
and a life distribution has the NBUE property, represented
by X ∈NBUE iff

ð∞
x

�F uð Þdu ≤ μ �F xð Þ, for all x > 0, μ = E Xð Þ: ð4Þ

Definition 1. A survival function �FðxÞ considered NBU in
the increasing concave order (X ∈NBUð2Þ) iff

ðx
0
�F u + tð Þdu ≤ �F tð Þ

ðx
0
�F uð Þdu, for all x, t > 0: ð5Þ

The previous inequality has a physical meaning: in terms
of rising concave ordering, the lifetime of a worn object with
age t > 0 is stochastically shorter than that of a new one.

Barlow and Proschan [7], Abu-Youssef and Bakr [8],
Abu-Youssef et al. [9], Franco et al. [10], Deshpande et al.
[11], Hu and Xie [12], Qureshi and Yusuf [13], Hassan
and Said [14], Sania Qureshi and Rashid Jan [15], Abu-
Youssef et al. [16, 17], and Lia and Xie [18], and others pro-
posed the probabilistic features of the aging distributions in
the literature. The following are the relationships between
the previous classes:

NBUE ⊃NBU 2ð Þ ⊃NBU: ð6Þ

We have some genuine data in this research investiga-
tion, and we are trying to figure out whether H0: data is
exponential or H1: data is NBU (2).

In this research study, we have got some real data, and
we are trying to figure out whether H0: data is exponential
or H1: data is NBU (2). To decide which H0 or H1 is true
or to reach to a conclusion, we must first establish test statis-
tics. The test statistic is a random variable that determines
how closely a sample result matches one of these hypotheses
under consideration.

Al-Gashgari et al. [19] and Gadallah [20] followed
Atallah et al. [21] in developing a new approach of exponential
testing that is more generic and flexible than goodness of fit.

This is how the research is structured: in Section 2, we
produce a test statistic for the complete data using the
Laplace transform approach. In Section 3, Monte Carlo null
distribution critical points for data sets 5(5)100 are
illustrated using Mathematica 8. For popular alternatives,
Section 4 tabulates Pitman asymptotic efficiency, and

Section 5 estimates the power of the test. In Section 6, a rec-
ommended test for appropriately filtered data is proposed.
Finally, we discuss sets of medical real data in Section 7 to
highlight the importance of our test.

2. Test Statistic for Complete Data

For β, x > 0, take FðxÞ = 1 − e−βx , which is the exponential
distribution class’s distribution function ξ. Our formal
objective is to compare H0 : F ∈ ξ and H1 : F ∈NBU2 \ ξ.

Lemma 2 provides a measure of deviation. As a result, it
might be utilized to create a testing technique.

Lemma 2. If ∅ðsÞ = Eðe−sxÞ, then

δ = 1
s3

sE xe−sxð Þ−∅ sð Þ 1−∅ sð Þð Þ½ �: ð7Þ

Proof. Let us call the deviation from H0 the measure of
departure as

δ =
ð∞
0

ð∞
0

ðx
0
�F tð Þ�F uð Þ − �F u + tð Þ� �

e−s x+tð Þ dudxdt = I − II,

ð8Þ

where

I =
ð∞
0

ð∞
0

ðx
0
�F tð Þ�F uð Þe−sxe−st dudxdt

=
ð∞
0

ð∞
x
e−su�F xð Þdudx

ð∞
0
E I X > tð Þ½ �e−stdt = 1

s3
E2 1 − e−sx½ �

= 1
s3

1 − 2∅ sð Þ +∅2 sð Þ� �
,

II =
ð∞
0

ð∞
0

ðx
0
�F u + tð Þe−sxe−st dudxdt = 1

s3
E 1 − e−sx − sxe−sx½ �:

ð9Þ

Hence, the result follows.

We may derive the empirical estimator from (7) for δ as

bδn =
1

s3n n − 1ð Þ〠i
〠
j

sXie
−sXi + e−sXi e−sX j − e−sXi

� �
: ð10Þ

So, we can say that bδ is

bδn =
1

s3n n − 1ð Þ〠i
〠
j

∅ Xi, Xj

� �
, ð11Þ

where

∅ Xi, Xj

� �
= sXie

−sXi + e−sXi e−sX j − e−sXi : ð12Þ

The U-statistic theory can be used to obtain the limiting

distribution of bδðsÞ.
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Set

∅ X1, X2ð Þ = sX1e
−sX1 + e−sX1e−sX2 − e−sX1 : ð13Þ

Then,

E ∅ X1, X2ð Þ X1j½ � = sX1e
−sX1 + 1

1 + s
e−sX1 − e−sX1 ,

E ∅ X1, X2ð Þ X2j½ � = s
1 + s

+ 1
1 + s

e−sX2 −
1

1 + s
:

ð14Þ

Let

ξ Xð Þ = E ∅ X1, X2ð Þ X1j½ � + E ∅ X1, X2ð Þ X2j½ �
= sXe−sX + 1 − s

1 + s
e−sX −

1
1 + sð Þ2 :

ð15Þ

The asymptotic normality of the statistic (7) was demon-
strated in Theorem 1.

Theorem 3. According to U-statistics theory, the statistic has
the following characteristics:

(i) As n⟶∞, with mean of 0 and variance σ2,
ðbδn − δÞ is asymptotically normal, such that

σ2 =Var ξ Xð Þ½ � = E sXe−sX + 1 − s
1 + s

e−sX −
1

1 + sð Þ2
 !2

ð16Þ

(ii) Under H0, the variance reduces to

σ2
0 =

s4 1 + 2s 1 + sð Þð Þ
1 + sð Þ4 1 + 2sð Þ3 : ð17Þ

Proof.

(i) We obtain the following results using U-statistic
theory (Lee [22]):

E ξ Xð Þ½ � = E sXe−sX + 1 − sð Þ
1 + sð Þ e

−sX −
1

1 + sð Þ2
 !

,

σ2 = Var ξ Xð Þ½ � = E sXe−sX + 1 − sð Þ
1 + sð Þ e

−sX −
1

1 + sð Þ2
 !2

ð18Þ

(ii) In H0, it is obvious that μ0 = E½ξðXÞ� = 0, and the
variance is

σ20 sð Þ = s4 1 + 2s 1 + sð Þð Þ
1 + sð Þ4 1 + 2sð Þ3 : ð19Þ

3. Critical Points

Based on 10,000 simulated sample sizes n = 5 (5) 100 from
the exponential distribution, we calculate the upper percent-
age points of the test statistic for our test in this section using
Mathematica 8 Programming.

Table 1 shows a statistically significant percentile points
at s = 0:4, 0:6.

Asymptotic normality improves, as the critical values
decreases and their sample size increases, as in Table 1.

4. Pittman Efficiency

We can compare our test to the other courses to determine
the quality of this procedure. Here, we choose the test Un

presented by Kayid et al. [23] and δð2ÞFn
presented by Mah-

moud and Abdul Alim [24].
In this section, the PAE of our test is evaluated.

PAE δð Þ =
∂/∂θð Þδj jθ⟶θ0

σ0

= 1
σ0

2
s s + 1ð Þ

ð∞
0
e−sx�F′θ0 xð Þdx − 1

s

ð∞
0
xe−sx�F′θ0 xð Þdx

����
����,

ð20Þ

where �F′θ0ðxÞ = ðd/dθÞ�FθðuÞjθ⟶θ0
:

Here, we use the following alternatives:

(i) Linear failure rate (LFR) family:

�F1 xð Þ = e−x− x2/2ð Þθ, θ, x ≥ 0: ð21Þ

(ii) Weibull family:

�F2 xð Þ = e−x
θ , θ ≥ 1, x ≥ 0: ð22Þ

(iii) Makeham family:

�F3 xð Þ = e−x−θ x+e−x−1ð Þ, θ, x ≥ 0: ð23Þ

The null hypothesis H0 is attained at θ = 0 in (i) and (iii)
and θ = 1 in (ii).

We investigate the PAE of our test δ, where

PAE δ, LFRð Þ = 1
σ0 sð Þ

1
s 1 + sð Þ4
����

����,
PAE δ, Weibullð Þ = 1

σ0 sð Þ
2

s 1 + sð Þ
ð∞
0
e−sx −xln xð Þe−xð Þdx

����
−
1
s

ð∞
0
e−sx −xln xð Þe−xð Þdx

����,
PAE δ, Makehamð Þ = 1

σ0 sð Þ
1

s 1 + sð Þ2 2 + sð Þ2
����

����: ð24Þ
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Direct calculations of PAE of Un, δ
ð2Þ
Fn
, and δ at s = 0:4

and 0:6 are summarized in Table 2.

The PARE of δ with respect to Un and δð2ÞFn
is shown in

Table 3.
Tables 2 and 3 show the good performance of the

selected families.

5. Estimates of Power

Table 4 illustrates the efficacy of the suggested test. For the
LFR, Makeham, and Weibull distributions, these powers
were estimated using 10,000 simulated samples with n = 10
, 20, and 30 at a significance level of 0.05 (programming
using Mathematica 8).

The suggested test has good validity for the Makeham
and Weibull families and acceptable validity for the LFR
family, as shown in Table 4.

6. Test Statistic for Censored Data

One of the most significant improvements in the life sciences
has come from a property of survival data: if some of the
participants did not observe the event of interest at the end
of this research or at the time of analysis, the data is skewed.
Some patients may still be alive or disease-free at the end of
the experiment because the timing of survival or the end of
disease is unknown. Individuals are referred to as censored
observations or censored times when they cannot be
followed up with after a research session.

In this section, a statistical test is developed to assess H0
and H1 with data that has been randomly right censored.

In the case of censored data, use Definition 1 and the
Kaplan-Meier estimator; we can write the measure of depar-
ture as follows:

δc =
1

s3 nð Þ n − 1ð Þ sη − θ 1 − θð Þ½ �, ð25Þ

where

θ =
ð∞
0
e−sxdF xð Þ,

bθ = 〠
l

m=1
e−sZ mð Þ

Ym−2

p=1
C
δp
p −

Ym−1

p=1
C
δp
p

 !
,

bη = 〠
l

j=1

Yj−1
k=1

Cδm
m Z jð Þ − Z j−1ð Þ
	 


:

ð26Þ

Table 5 shows a statistically significant percentile points
of δc in (25), at s = 0:4, 0:6.

As shown in Table 5, the asymptotic normality
improves, as the critical values decrease and their sample
size increase.

7. Applications

We apply the conclusions in this work to certain real data
sets to demonstrate their utility.

Table 1: The percentile points of bδn:

bδn ; s = 0:4 bδn ; s = 0:6
n 95% 98% 99% 95% 98% 99%

5 0.882897 1.17189 1.38849 0.396275 0.502898 0.562419

10 0.525925 0.667885 0.752876 0.221699 0.274836 0.299154

15 0.388132 0.486231 0.556578 0.166089 0.206706 0.234874

20 0.323144 0.413406 0.467084 0.145573 0.178422 0.196138

25 0.28863 0.350084 0.39139 0.122991 0.150936 0.169784

30 0.258019 0.320188 0.365255 0.10865 0.138144 0.166397

35 0.235234 0.293309 0.331031 0.105987 0.127848 0.14191

40 0.215066 0.265283 0.295422 0.0950951 0.129734 0.141408

45 0.206855 0.25257 0.284129 0.0873638 0.115054 0.125216

50 0.191667 0.235837 0.270402 0.0871117 0.108423 0.121646

55 0.18134 0.226473 0.256603 0.0790283 0.10263 0.118798

60 0.172598 0.213932 0.244309 0.073819 0.093089 0.0996918

65 0.165691 0.204694 0.235163 0.0700623 0.082458 0.101185

70 0.158049 0.195075 0.213855 0.0725355 0.0930558 0.100772

75 0.154806 0.188446 0.212941 0.0691197 0.083419 0.0928818

80 0.151963 0.185998 0.212013 0.065666 0.0828855 0.0962278

85 0.143606 0.178592 0.201549 0.0645971 0.075949 0.0900691

90 0.137717 0.173923 0.199664 0.0645374 0.076169 0.0858537

95 0.137395 0.169832 0.194102 0.0621102 0.077558 0.0897414

100 0.134282 0.162602 0.184573 0.0613547 0.0794837 0.0925321
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7.1. Application 1: A Case of Complete Data

Example 1.We apply the data presented in bakr et al. [1] (see
Table 6), which represents the ages of the 40 patients with
leukemia, taken in years.

In the two situations of bδð0:4Þ and bδð0:6Þ as n = 40, we cal-
culate the statistics in (7): bδð0:4Þ = 1:5 and bδð0:6Þ = 0:43,

both of which are above the critical value of Table 1. Conse-
quently, the data set has the property of NBU (2).

Example 2. Consider the data in Bakr et al. [3] (see Table 7),
which represent 39 liver cancer patients taken from El-Minia
Cancer Center, Ministry of Health, Egypt, which entered
in 1999.

Table 4: The powers at α = 0:05.

Distribution n θ = 2 θ = 3 θ = 4

LFR

10 0.504 0.573 0.663

20 0.519 0.613 0.717

30 0.520 0.643 0.744

Makeham

10 0.832 0.900 0.925

20 0.956 0.999 1

30 1 1 1

Weibull

10 0.753 0.821 0.915

20 0.838 0.995 1

30 0.999 1 1

Table 2: PAE of Un, δ
ð2Þ
Fn
, and δ.

Distribution Un δ
2ð Þ
Fn

δ 0:4ð Þ δ 0:6ð Þ
LFR 0.5809 0.217 3.35 3.40

Weibull 2.3238 0.050 2.16 2.28

Makeham 0.2585 0.144 1.47 1.50

Table 3: Relative efficiency of δ with respect to Un and δð2ÞFn
.

Distribution e δ 0:4ð Þ,Unð Þ e δ 0:6ð Þ,Unð Þ e δ 0:4ð Þ, δ 2ð Þ
Fn

	 

e δ 0:6ð Þ, δ 2ð Þ

Fn

	 

LFR 5.76 5.85 15.2 15.67

Weibull 0.93 0.98 43.20 45.6

Makeham 5.69 5.80 10.2 10.41

Table 5: The upper percentile points of bδc.

bδc 0:4ð Þ bδc 0:6ð Þ
n 95% 98% 99% 95% 98% 99%

2 0.535606 0.583176 0.61155 0.007199 0.0296232 0.0501468

4 0.0985967 0.106324 0.109739 0.00717465 0.00973058 0.0118462

6 0.0382919 0.0418751 0.0429949 0.00292626 0.00471896 0.00502581

8 0.0220675 0.0235447 0.0241831 0.00186656 0.0023683 0.00269643

10 0.0138634 0.0147497 0.0150687 0.0012502 0.00168057 0.00182981

12 0.00944369 0.00992625 0.010188 0.00073221 0.00102515 0.00114684

14 0.00667813 0.0071701 0.00738161 0.00035340 0.00072136 0.00083496

16 0.00489464 0.00550842 0.00565949 0.00018206 0.00041354 0.00061089

18 0.00372462 0.00419779 0.00434607 0.00003021 0.00026197 0.00041052

20 0.00266338 0.00307783 0.00332981 0.0000427 0.00015384 0.00029494
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In the two situations of bδð0:4Þ and bδð0:6Þ as n = 39, we
calculate the statistics in (7): bδð0:4Þ = 0:07 and bδð0:6Þ =
0:003, both of which are under the critical value of
Table 1. Consequently, the data set has no property of
NBU (2).

7.2. Application 2: A Case of Censored Data

Example 3. We use data from Mahmoud et al. [25] (see
Tables 8 and 9) to represent the age (in days) of 51 liver cancer
patients from the Egyptian Ministry of Health’s Elminia Can-
cer Center who began medical examinations in 2000. (1999).
Only 39 patients are included in the study (right-censored),
while the other 12 are excluded (missing from the study).
Tables 8 and9show the list of ordering information.

In the two situations of bδ cð0:4Þ and bδ cð0:6Þ as n = 51,
we calculate the statistics in (25): bδcð0:4Þ = 1:6 × 1070

and bδcð0:6Þ = 3:88 × 1068, both of which are above the
critical value of Table 5. Consequently, the data set has
the property of NBU (2).

Example 4. Consider the survival intervals in weeks reported
by Lee and Wolfe [26] (see Tables 10 and 11) for 61 patients
with unresectable lung cancer who were treated with cyclo-
phosphamide. There are 33 uncensored observations and
28 censored observations for patients whose therapy was ter-
minated owing to an evolving condition.

In the two situations of bδcð0:4Þ and bδcð0:6Þ as n = 61,
we calculate the statistics in (25): bδcð0:4Þ = 5:07 × 1014 andbδcð0:6Þ = 1:31 × 1014, both of which are above the criti-
cal value of Table 5. Consequently, the data set has
the property of NBU (2) Table 12 show the notations
and abbreviations.

Table 10: Noncensored data.

0.43 2.86 3.14 3.14 3.43 3.43 3.71 3.86 6.14 6.86 9.00

9.43 10.71 10.86 11.14 13.00 14.43 15.71 18.43 18.57 20.71 29.14

29.71 40.57 48.57 49.43 53.86 61.86 66.57 68.71 68.96 72.86 72.86

Table 7: The periods of orderly life (in days).

10 14 14 14 14 14 15 17 18 20

20 20 20 20 23 23 24 26 30 30

31 40 49 51 52 60 61 67 71 74

75 87 96 105 107 107 107 116 150

Table 8: Noncensored data.

10 14 14 14 14 14 15 17 18 20

20 20 20 20 23 23 24 26 30 30

31 40 49 51 52 60 61 67 71 74

75 87 96 105 107 107 107 116 150

Table 9: Censored data.

30 30 30 30 30 60 150 150 150 150

150 185

Table 6

0.315 0.496 0.616 1.145 1.208 1.263 1.414 2.025 2.036 2.162

2.211 2.370 2.532 2.693 2.805 2.910 2.912 3.192 3.263 3.348

3.348 3.427 3.499 3.534 3.767 3.751 3.858 3.986 4.049 4.244

4.323 4.381 4.392 4.397 4.647 4.753 4.929 4.973 5.074 4.381
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8. Conclusion

We devised a statistical testing approach (Laplace transform
technique) for the largest class of life distribution NBU (2) in
both complete and censored data to aid in the quality assess-
ment of prospective cancer therapies. Our testing revealed
whether the suggested therapies had a good or negative
influence on patient survival as shown in the four discussed
examples. The effectiveness of the suggested statistical test
was computed and compared to existing tests to confirm
that it produced good findings. Regardless of the kind of
treatment technique, the suggested test can be used to eval-
uate the efficacy of any treatment strategy in any field of
medical study. This test, however, should not be used to
compare two distinct treatment options.

On the other hand, the efficiency of our proposed tests is

compared to the tests of Kayid et al. [14] and δð2ÞFn
presented

by Qureshi and Jan [15], which are based on Pitman’s
asymptotic relative efficiency and employ several well-
known life distributions, namely, the LFR and the Weibull
family. Finally, the paper’s findings are tested using actual
real-world data.
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