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The aims of this work were to explore the use of weighted gene coexpression network analysis (WGCNA) for identifying the key
genes in severe burns and to provide a reference for finding therapeutic targets for burn wounds. The GSE8056 dataset was
selected from the gene expression database of the US National Center for Biotechnology Information for analysis, and a
WGCNA network was constructed to screen differentially expressed genes (DEGs). Gene Ontology and pathway enrichment of
DGEs were analyzed, and protein interaction network was constructed. A burn mouse model was constructed, and the burn
tissue was taken to identify the expression levels of differentially expressed genes. The results showed that the optimal soft
threshold for constructing the WGCNA network was 9. 10 coexpressed gene modules were identified, among which the green,
brown, and gray modules had the largest number of burn-related genes. The DEGs were mainly related to immune cell
activation, inflammatory response, and immune response, and they were enriched in PD-1/PD-L1, Toll-like receptor, p53, and
nuclear factor-kappa B (NF-κB) signaling pathways. 5 DEGs were screened and identified, namely, Jun protooncogene (JUN),
signal transducer and activator of transcription 1 (STAT1), BCL2 apoptosis regulator (Bcl2), matrix metallopeptidase 9
(MMP9), and Toll-like receptor 2 (TLR2). Compared with skin tissue of normal mouse, the messenger ribose nucleic acid
(mRNA) and protein expression levels (PEL) of STAT1 and Bcl2 in burn tissue were greatly decreased, while those of JUN,
MMP9, and TLR2 were increased obviously (p < 0:05). In conclusion, STAT1, Bcl2, JUN, MMP9, and TLR2 can be potential
biological targets for the treatment of severe burn wounds.

1. Introduction

Burn is a very special trauma, and its incidence is closely
related to emergencies, traffic accidents, and daily life [1].
Severe burns can result in the loss of limb function and even
death [2]. Burn patients will suffer physical and psychologi-
cal harm if they receive a significant number of skin grafts,
harsh physical therapy, or long-term rehabilitation treat-
ment [3, 4]. Large-scale burns will cause a series of immuno-
logical and pathophysiological changes in the body, which
will eventually lead to the disorder of the immune system
[5]. Therefore, some scholars believe that the disturbance
of immune system function after burn is an important factor
leading to severe infection, multiorgan/system dysfunction,
or death after burn [6]. Factors such as large-area tissue
necrosis, stress response, shock, infection, or nutritional
deficiency after burns, together with subsequent treatment,

will change the microenvironment of immune cells in the
body [7, 8]. Therefore, although burn treatment techniques
can improve the clinical symptoms and prognosis of patients
to a certain extent, they cannot reduce the mortality of
patients [9]. Therefore, it is urgent to understand the specific
mechanism of maintaining and regulating immune dysfunc-
tion in burn patients and to find corresponding treatment
methods.

Because gene chip and sequencing technologies can
directly examine transcriptome data, it has become the pri-
mary tool for investigating the molecular mechanisms
underlying life activities [10]. It is difficult to dig out the
underlying molecular mechanisms by simply analyzing the
transcriptome of a single tissue or sample. However, analyz-
ing biological networks can reflect the interaction between
different biomolecules at the system level, but cannot pro-
vide possibilities for exploring complex biological
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phenomena [11]. Weighted gene coexpression network anal-
ysis (WGCNA) can identify coexpression modules in multi-
ple biological samples based on the correlation between
different gene expression profiles and find coexpression
modules that are highly related to them after phenotypic
correlation [12]. Compared with other coexpression analysis
methods, the WGCNA network uses a soft threshold
method to provide the sensitivity of the network to module
identification, so the network has been widely used in the
analysis of coexpression patterns in various organisms [13,
14]. The approach uses an approximate scale-free topology
to generate the soft threshold and then replaces the previous
traditional algorithm’s hard threshold [15–18].

Therefore, the WGCNA method is adopted systemati-
cally to explore the expression patterns of severe burn tissue
and normal tissue in this work, aiming to find the key genes
of severe burn wound healing and provide a molecular-level
theoretical basis for the search for clinical therapeutic targets
of burn wounds.

This paper is organized as follows: Section 2 presents the
materials and methods of the proposed concepts. Section 3
describes the statistical analysis and results. Section 4 pre-
sents the discussion of the whole paper. Section 5 summa-
rizes this paper and offers directions for future work.

2. Materials and Methods

2.1. Basis of the WGCNA Algorithm. WGCNA belongs to a
class of gene coexpression networks. The algorithm intro-
duces an approximate scale-free topology to accurately cal-
culate the soft threshold and then replaces the hard
threshold of the previous traditional algorithm [15]. Com-
pared with random networks, scale-free topology is more
realistic. After standardization of the experimental data,
WGCNA analysis can be performed. The specific analysis
process is shown in Figure 1.

The coexpression network was adopted to construct a
matrix A of the expression levels of samples and related
genes. It was assumed that the gene was represented by i,
and the sample size detection value was j; the mathematical
expression of the matrix could be given as follows:

A = aij
� �

= a1, a2,⋯,an,f g: ð1Þ

After transformation of expression profile data matrix
and calculation of the correlation between genes using
matrix operations, the coexpression similarity can be defined
using the absoluteness of the correlation coefficient:

Similarityij = cor ai, aj
� ��� ��: ð2Þ

In Equation (2) above, Similarityij represented the simi-
larity of the expression profiles of genes i and j, and the value
ranged from 0 to 1.

The similarity matrix was converted to an adjacency
matrix, and then, the WGCNA weighting coefficient β could

be determined based on the Pareto distribution law:

Nij = Similarityβij: ð3Þ

In the above Equation (3), Nij was an adjacency matrix,
and β was a weighting coefficient or a soft threshold.

To determine the dissimilarity of the highly connected
gene forming modules in the constructed network, the adja-
cency matrix can be converted into a topological matrix, and
then, topological reconstruction can be selected to calculate
the degree of intergene association. The equation for calcu-
lating topological overlap was defined as follows:

ωij =
Lij +Nij

min ki, kj
� �

+ 1 −Nij

, ð4Þ

Lij =〠
u

niunju: ð5Þ

In Equation (4) above, Lij was the sum of the products of
adjacency coefficients of gene i and j connecting nodes, and
k referred to the sum of adjacency coefficients of gene con-
necting nodes. When ωij = 1, it meant that genes i and j were
connected to all genes; when ωij = 0, it meant that genes i
and j were not connected to all genes.

The WGCNA required to use the dissimilarity calculated
by the topological overlap method for hierarchical clustering
and then obtain different gene modules of different branches
[16]. The dynamic pruning was applied for the construction
of cluster numbers to mine more modules. Gene coexpres-
sion network was to use systems biology methods to search
for highly correlated modules. WGCNA can continuously
approximate genes into a scale-free topology network
through a weighted method and then construct a coexpres-
sion network and find hub genes in modules of interest
[17]. Hub genes can be searched by threshold setting or by
using function network screening.

2.2. Selection of Materials for WGCNA. The microarray data
related to burns were screened from the gene expression
database of the National Center for Biotechnology Informa-
tion (NCBI) (http://www.ncbi.nlm.nih.gov/geo/), and
GSE8056 was finally selected as the research object accord-
ing to the research subjects and sample size. The samples
in this dataset were derived from the skin samples of burn
patients quickly obtained in the operating room and then
detected and analyzed by high-throughput chips. The data-
set contained a total of 12 samples, which were the normal
group (accession numbers: GSM198875, GSM198876, and
GSM198877) and the burn group (accession numbers:
GSM198866, GSM198867, GSM198868, GSM198869,
GSM198870, GSM198871, GSM198872, GSM198873, and
GSM198874). Relevant gene records with p values less than
0.05 were selected and included in the WGCNA.

2.3. Construction of WGCNA. The “Flash Clust” software in
the R language package was used for cluster analysis of the
included samples, and the “Pick Soft Threshold” function
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was to adjust the weight of the weighting coefficient β. The
matrix with correlation and adjacent relationship was calcu-
lated as a topological overlap matrix (TOM) using WGCNA,
and the dissimilarity was calculated. The dissimilarity was
undertaken as a distance metric to perform hierarchical clus-
tering of genes and obtain identification modules, cluster
markers, and merge highly similar modules. The “Plot Den-
dro and Color” function was selected to visualize the gene
module and select the target genes within the module to
draw a heat map. Finally, the genes in the modules closely
related to severe burn were found, and the cluster analysis

of the relationship heat map was performed on the clinical
characteristics. The specific flow of burn-related gene analy-
sis using WGCNA is shown in Figure 2.

2.4. Screening of DEGs. Background correction of raw data
was performed using robust multiarray average software,
and DEGs were obtained using independent samples t-test
and fold method. Comparative analysis of DEGs in burn tis-
sue and normal tissue was performed using the analysis tool
that came with the gene expression database in the NCBI
dataset. The screening conditions were set as:

Preprocessing of the data Pick soft threshold Construction of gene co-
expression modules

Modules-trait relationshipScreen hub genesFunctional enrichment

Figure 1: The specific analysis process of WGCNA.

Hub gene identification Gene co-expression network

Identify the module Module eigengenes

Topological overlap matrix

Intergenic correlation coefficient Weighted adjacency matrix

Hierarchical clustering

Preprocessing of the data

Construction of gene network

Figure 2: The specific flow of burn-related gene analysis using WGCNA.

Table 1: The quantitative primers of DEGs.

Gene name Primer sequence (5′→3′) Size of product (bp)

STAT1 decreased
F: TACGGAAAAGCAAGCGTAATCT

219
R: TGCACATGACTTGATCCTTCAC

JUN increased
F: GTGTGGGACGACGATCAAAAG

151
R: TGACCACTAACAGGGAAGGAC

Bcl2 decreased
F: ACGTGGACCTCATGGAGTG

129
R: TGTGTATAGCAATCCCAGGCA

MMP9 increased
F: GCAGAGGCATACTTGTACCG

229
R: TGATGTTATGATGGTCCCACTTG

TLR2 increased
F: CTCTTCAGCAAACGCTGTTCT

237
R: GGCGTCTCCCTCTATTGTATTG

GAPDH
F: TGGCCTTCCGTGTTCCTAC

178
R: GAGTTGCTGTTGAAGTCGCA
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(1) The corrected p value (the adj p value) was less than
0.05

(2) The absolute value of the log gene expression fold
difference (|logFC|) was ≥1.5

2.5. Analysis on Gene Ontology and Pathway Enrichment of
DEGs. Gene Ontology can be used for functional annotation
of genes. The functional enrichment analysis of Gene Ontol-
ogy included molecular function (MF), biological process
(BP), and cellular component (CC). The gene set enrichment
analysis software and profiler online tool were adopted in
this work for enrichment analysis and annotations of the
module and Kyoto Encyclopedia of Genes and Genomes
(KEGG).

2.6. Construction and Analysis on Protein Interaction
Network of DEGs. The STRING database can be selected to
predict the functional correlation between proteins, and its
prediction accuracy for genes was as high as 80% or more.
The protein-protein interaction network of DEGs obtained
by screening was constructed using the STRING 11.0 online
tool (https://cn.string-db.org/). Protein interactions with
confidence greater than 0.5 were selected from the protein-
protein interaction network. The DEGs protein interaction
network was constructed using Cytoscape software.

2.7. Identification of DEGs

2.7.1. Construction of Burn Animal Model. 20 healthy adult
BALB/c mice, male or female, were selected as research sub-
jects. Mice were randomly rolled into a control group and a
burn group. The control mice were not given any medica-
tion and were fed normally. Mice in the burn model were

anesthetized by intraperitoneal injection of 50mg/kg 1%
sodium pentobarbital. The back skin was prepared, and the
hair was removed; the mice were fixed on the operating
table, and the depilated area was scalded continuously for
15 s with 97°C hot water to obtain a third-degree burn
model. Immediately after modeling, 1mL of 0.9% sterile
normal saline was intraperitoneally injected for antishock
treatment, and the wounds were disinfected with iodophor
disinfectant.

2.7.2. Real-Time Fluorescence Quantitative Polymerase
Chain Reaction (rt-qPCR). After 15 days of modeling, the
back skin tissue of the same part of the two groups of mice
was taken. After the blood was flushed with phosphate
buffer, it was snap frozen in liquid nitrogen. After fully
grinding the tissue, the Trizol method was used to extract
total RNA from the tissue, and the concentration, purity,
and integrity of the extracted RNA were detected. Using
the extracted RNA as a template, reverse transcription of
cDNA was performed according to the instructions of the
PrimeScript™ RT reagent Kit with gDNA Eraser (perfect
real-time) kit (Takara, Japan). Then, quantitative detection
of the target gene was performed according to the instruc-
tions of the TB Green® Premix Ex Taq™ II (Tli RNaseH
Plus) kit (Takara, Japan). The reaction system was set as fol-
lows: 10μL TB green Premix Ex Taq™ II reagent, 0.8μL
upstream primer, C0.8μL downstream primer, 0.4μL ROX
Reference Dye, 2μL cDNA template, and 6μL ddH2O.
Quantitative primers were designed and synthesized by
Shanghai Sangon Bioengineering Co., Ltd. The primer infor-
mation was shown in Table 1.

2.7.3. Western Blot. The tissue was crushed thoroughly, and
RIPA reagent was applied for protein extraction in the fro-
zen skin tissue from the back of the mouse. The protein con-
centration of the extracted sample was determined
according to the instructions of the BCA kit, the correspond-
ing stacking gel and separating gel were prepared, and the
sample protein was loaded and electrophoresed. After the
target protein band was transferred to the membrane, a
blocking solution containing 5% nonfat milk powder was
used for blocking treatment at room temperature for 1 hour.
After washed, add diluted primary antibodies; rabbit mono-
clonal STAT1 (1 : 2000), rabbit monoclonal JUN (1 : 5000),
rabbit monoclonal Bcl2 (1 : 2000), rabbit monoclonal
MMP9 (1 : 2000), rabbit monoclonal TLR2 (1 : 1000), and
mouse monoclonal β-actin (1 : 5000) were incubated at 4°C
for 12 hours. After recovery of the antibody, it can add the
diluted secondary antibody, horseradish peroxidase-labeled
goat anti-mouse IgG (1 : 10000), and incubate at room tem-
perature for 1 hour in the dark. In addition, the target pro-
tein band was developed according to the instructions of
the ECL chemiluminescence kit. The ImageJ software in
the gel imager was adopted to measure the gray value of
the target protein band, and β-actin was undertaken as the
internal reference gene to detect the relative expression level
of the target protein.
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Figure 3: Volcano plot analysis of DEGs. Genes with no
statistically great difference were marked in black, genes with low
expression and statistically obvious difference were marked in
green, and genes with high expression and statistically remarkable
difference were marked in red.
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3. Statistical Analysis

SPSS 22.0 was used for data processing and statistical analy-
sis. In the rt-qPCR detection results, the 2−△△CT method was
applied to calculate the relative mRNA expression level of
target gene, where △CT value = CTtarget gene − C
Tinternal reference gene, 2 −△△CT =△CTburn group −△C
Tcontrol group. The relative expression levels of mRNA and
protein were compared between groups using independent
samples t test, and expressed as mean ± standard deviation.
p < 0:05 was considered to be statistically significant.

4. Results

4.1. Construction of WGCNA Network. Screening from the
dataset, 563 DEGs were obtained, and the volcano plot of
DEGs was shown in Figure 3. As it was given, the clustering
results of the genes screened from the dataset had no obvi-
ous outlier samples, so they can be included in the subse-
quent WGCAN.

To improve the analysis effect of constructing the
WGCNA model, the relationship between the soft threshold
and the correlation coefficient (the left of Figure 4) and the
relationship between the soft threshold and the mean value
of the gene connection coefficient (the right of Figure 4)
were plotted. It can be found that when the weighting coef-
ficient β (i.e., soft threshold) in the WGCNA model was 9,
the correlation coefficient and gene average connection coef-
ficient of the constructed model were optimal. Therefore, β
= 9 was subsequently set for analysis.

4.2. Clinical Correlation Analysis Based on WGCNA
Network. The correlation between external information
and network modules was found from the gene coexpression
network, and then, the network modules with high similarity
were found. When β = 9 in the WGCNA network, the
squared value of the correlation coefficient between log ðkÞ
and log ½pðkÞ� was greater than 0.9, and then, the con-
structed WGCNA network is shown in Figure 5.

Subsequently, the correlation heat map and cluster anal-
ysis of the WGCNA network module were constructed, and
the results were given in Figure 6. As the figure revealed, 10
corresponding modules were screened in this work, and the

clinical characteristics were highly correlated with the green,
brown, and gray modules in the WGCNA network.

4.3. Analysis on Burn DEGs Based on WGCNA Network. The
WGCNA network was utilized to determine the key and dif-
ferentially expressed genes, and Gene Ontology and KEGG
tools were employed to undertake functional annotation of
DEGs and enrichment analysis of signaling pathways.
Figure 7 depicts the outcomes. As can be known from
Figure 7(a), DEGs were mainly enriched for molecular func-
tions such as replicative senescence, bacterial response to
acyl bacterial lip peptides, and Toll-like receptor signaling
pathways. They were mainly enriched for biological pro-
cesses such as CCR5 chemokine receptor binding, histone
kinase activity, and lipopeptide binding, and they were
enriched for cell components such as cyclin B1-cdk1 com-
plex and dependent protein kinase holoenzyme complex.
As demonstrated in Figure 7(b), DEGs were mainly located
in the PD-1/PD-L1 pathway, the AGE-RAGE pathway, the
Toll-like receptor signaling pathway, the p53 signaling path-
way, or the NF-κB signaling pathway.

The genes highly related to burns were found through
the identification module, and the top 10 DEGs were
selected using functional clustering analysis. The results
were illustrated in Table 2. The top 10 DEGs were mainly
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located in the green, brown, and gray modules of the
WGCNA network.

4.4. Analysis on Protein Interaction Network of DEGs in
Burn Tissue. The protein-protein interaction network of
DEGs was constructed using STRING online software, and
the results are illustrated in Figure 8. Figure 8(a) revealed
the overall analysis results of DEGs protein-protein interac-
tion network. Except for STEAP4, LMO7, BTBD17, and
AMPD3 genes that were not related to other genes, there
was an interaction among the proteins of other genes.

JUN, STAT1, Bcl2, MMP9, and TLR gene subprotein
were selected for the construction of protein interaction net-
work. Figure 8(b) suggested that the JUN gene was closely
related to CTNNB1, EP300, SMAD3, ATF2, FOS, FOSL1,
BATF3, ATF3, and FOSL2. STAT1 gene was closely related
to IFNGR1, JAK2, IRF9, IFNAR1, IRF1, JAK1, CREBBP,
EP300, PIAS1, and KPNA1. The Bcl2 gene was closely corre-
lated to BBC3, TP53, Bcl2L11, BAX, BAD, BIK, BID, Bcl2L1,
FKBP8, and BECN1. MMP9 gene was closely correlated with
CD44, TIMP1, SDC1, CDH1, VEGFA, PLG, TIMP3,
TGFB1, LCN2, and IL6. TLR2 gene was closely related to
IRAK1, HMGB1, LY96, CLEC7A, HSP90B1, HSPD1,
VCAN, CD14, TollIP, and TIRAP.

4.5. Identification of Burn DEGs. First, rt-qPCR was used to
detect the differences in the mRNA expression levels of
STAT1, JUN, Bcl2, MMP9, and TLR2 in the burn tissue of
mice in the control group and the burn group. The results

demonstrated in Figure 9 revealed that compared with the
control group, the mRNA expression levels of STAT1 and
Bcl2 in the burn group were decreased, while those of
JUN, MMP9, and TLR2 were increased (p < 0:05).

Western blot detected the differences in PELs of STAT1,
JUN, Bcl2, MMP9, and TLR2 in the tissues of mice, and the
results were shown in Figure 10. Compared with the control
group, the PELs of STAT1 and Bcl2 in the burn group were
decreased, while the PELs of JUN, MMP9, and TLR2 were
greatly increased (p < 0:05).

5. Discussion

Burn is a very common disease, and most patients have
burns of grade 2 and above [18]. Scar is one of the most
common complications of burn patients during rehabilita-
tion, which seriously affects the rehabilitation effect and
quality of life of patients [19]. Therefore, this work is of great
significance to explore the potential therapeutic targets in
the process of wound healing after burn injury and to
improve the prognosis of burn patients. In this work, based
on WGCNA analysis, the related gene modules of wound
healing after burn were searched, and the expression status
of DEGs was explored by bioinformatics analysis method,
aiming to provide reference materials for the improvement
of wound healing effect.

Based on WGCNA, multiple DEGs were obtained, and
Gene Ontology functional annotation of these genes [20]
and enrichment analysis of KEGG signaling pathway [21]
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Figure 6: Modules of WGCNA network and its interaction analysis with clinical characteristics. (a) The interaction among different
network modules and (b) the association between network modules and clinical features.
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Figure 7: Gene Ontology and KEGG analysis of DEGs. (a) The Gene Ontology analysis result of DEGs and (b) the KEGG analysis result of
DEGs.

Table 2: Information of the top 10 DEGs.

Gene ID Gene Full name of the gene Module Regulation

ENSG00000177606 JUN Jun protooncogene Green Up

ENSG00000115415 STAT1 Signal transducer and activator of transcription 1 Grey Down

ENSG00000171791 Bcl2 BCL2 apoptosis regulator Green Down

ENSG00000100985 MMP9 Matrix metallopeptidase 9 Green UP

ENSG00000137462 TLR2 Toll-like receptor 2 Brown UP

ENSG00000096968 JAK2 Janus kinase 2 Brown UP

ENSG00000170458 CD14 CD14 molecule Green UP

ENSG00000170312 CDK1 Cyclin-dependent kinase 1 Brown Up

ENSG00000168610 STAT3 Signal transducer and activator of transcription 3 Brown Up

ENSG00000177455 CD19 CD19 molecule Green Down
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(a)

(A) (B) (C)

(D) (E)

(b)

Figure 8: DEGs have a complex protein interaction network. The total protein-protein interaction network was depicted in (a); (b) diagram
of the subprotein-protein interaction network, where A was the JUN gene, B was the STAT1 gene, C referred to the Bcl2 gene, D represented
the MMP9 gene, and E stood for the TLR2 gene.
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were performed. The results of Gene Ontology analysis
showed that DEGs after burn were related to immune sys-
tem function, metabolic process, and cellular biological reg-
ulation. The results of KEGG pathway enrichment analysis
showed that DEGs after burn were mainly located in the
Toll-like receptor [22], p53 [23], PD-1/PD-L1 [24], and
NF-κB [25]. Toll-like receptor signaling pathway can acti-
vate bacterial membrane components and promote the acti-
vation of MAPK signaling pathway, which in turn triggers
the body’s inherent immune response and increases the pro-
duction of proinflammatory factors [26].

Subsequently, five DEGs were screened for expression
level verification. The STAT protein family can participate
in the binding of different cytokines or growth factors, which
can be activated by a variety of cytokines and mediate the
expression of multiple genes in response to pathogen inva-
sion [27]. STAT1 plays an important role in antigen presen-

tation and B cell development [28]. Studies have shown that
the decrease in the expression level of STAT1 can lead to a
decrease in the expression level of IgG, which in turn
increases the susceptibility of the body to the virus [29].
JUN is a stress-activated protein kinase, which plays an
important role in the process of apoptosis [30]. Studies have
confirmed that after inhibiting the expression of JUN, the
content of proinflammatory factors such as IL-6 will also
decrease, while the content of anti-inflammatory factors
such as IL-10 will increase [31]. Bcl2 is also one of the seri-
ous hot spots in the process of apoptosis, and it mainly plays
the role of inhibiting apoptosis and promoting apoptosis
[32]. MMP9 can activate the functions of cytokines and che-
mokines, so it is involved in the processes of skin wound
inflammatory response, matrix remodeling, and epitheliali-
zation [33]. Toll-like receptors can selectively recognize
microorganisms and their tissue components, and TLR2
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Figure 9: Detection results of mRNA expression levels of DEGs. (a–e) The detected values of STAT1, JUN, Bcl2, MMP9, and TLR2,
respectively, and ∗ indicated a statistically obvious difference between groups (p < 0:05).
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plays an important role in the activation of cells by Gram-
positive bacteria [34]. The results of this work suggested that
the expression levels of STAT1 and Bcl2 in burn tissue were
much lower than compared to the normal tissue, while the
levels of JUN, MMP9, and TLR2 were remarkably higher.
The above results suggest that the body after burn may
inhibit the proliferation of immune cells, promote cell apo-
ptosis, reduce the body’s immunity, and then, reduce the
resistance to external pathogens. The increased expression
of JUN in burn tissue triggers the excessive release of proin-
flammatory factors in the body, which in turn leads to a
severe inflammatory response in the body. Therefore, the
continuous high expression of inflammatory factors such
as JUN, MMP9, and TLR2 in burn wounds tissue may slow
down the speed of wound healing.

6. Conclusions

WGCNA and other bioinformatics analysis approaches were
used to investigate the features of DEGs in burn tissue in this
study. According to the WGCNA mining results, ten network

modules were discovered to be strongly associated to postburn
wound healing, with the green, brown, and grey modules hav-
ing the most DEGs. The Gene Ontology and KEGG analysis of
DEGs found that these genes were mainly functionally anno-
tated as immune cell activation, inflammatory response, and
immune response, etc., and were mainly enriched in PD-1/
PD-L1, Toll-like receptor signaling, p53, and NF-κB. Later, it
was found that the wound healing effect after burn was closely
related to genes such as STAT1, JUN, Bcl2, MMP9, and TLR2.
However, it only used published data to analyze gene coex-
pression networks in this work. Clinical tissue samples would
be acquired for transcriptase analysis in the follow-up study,
and WGCNA would be built and examined again. The results
of this work were aimed at finding potential targets for wound
healing after burns and providing reference data for improv-
ing the prognosis of burn patients.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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Figure 10: Detection results of PELs of DEGs. (a–f) The detected values of STAT1, JUN, Bcl2, MMP9, and TLR2, respectively, and ∗
indicated a statistically obvious difference between groups (p < 0:05).
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