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Analyzing the dynamics of tumor-immune systems can play an important role in the fight against cancer, since it can foster the
development of more effective medical treatments. This paper was aimed at making a contribution to the study of tumor-immune
dynamics by presenting a new model of cancer growth based on fractional-order differential equations. By investigating the system
dynamics, the manuscript highlights the chaotic behaviors of the proposed cancer model for both the commensurate and the
incommensurate cases. Bifurcation diagrams, the Lyapunov exponents, and phase plots confirm the effectiveness of the
conceived approach. Finally, some considerations regarding the biological meaning of the obtained results are reported through
the manuscript.

1. Introduction

In the last fifty years, great research efforts and economic
resources have been directed to win the fight against cancer.
In order to tackle the problem, one of the key issues is to
active and control the immune system in its competition
against neoplastic cells [1]. To this purpose, the study of
tumor-immune dynamics can play a role of paramount
importance, given that the mathematical modeling of cancer
growth is considered one of the useful tools for the develop-
ment of effective medical treatments [2, 3]. Over the years,
the study of the tumor-immune dynamics has led to the dis-
covery of remarkable phenomena, including the presence of
chaos in the system dynamics. By considering integer-order
dynamical systems (i.e., biological systems described by
integer-order differential equations), in [4], a simple chaotic
model of three competing cell populations (host, immune,

and tumor cells) is introduced. Topological analysis and
computing observability coefficients are illustrated, with
the aim to suggest new trends in understanding the interac-
tions of some tumor cells [4]. The authors of reference [5]
have suggested a suitable model for the tumor growth, i.e.,
a discrete-time system capable of exhibiting periodic and
chaotic behaviors. The model, which is validated through
experimental data, can explain a number of biologically
observed tumor states and dynamics [5]. Another interesting
model of tumor growth is proposed in [6], based on the
interactions among tumor cells, healthy tissue cells, and
activated immune system cells. The study, besides analyzing
the stability of the system equilibria, highlights the presence
of chaotic behaviors in the system dynamics [6]. Referring to
biological systems, it should be noted that the behavior of
most of these systems has memory or aftereffects [7]. More-
over, biological systems are usually characterized by hereditary
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properties and nonlocal distributed behaviors. As a conse-
quence, the modeling of these systems by fractional-order dif-
ferential equations has more advantages than integer-order
modeling, in which such effects are neglected [7]. This
explains why fractional calculus has recently emerged as a
valuable tool for describing a number of dynamic phenomena
in biological systems [8]. Regarding tumor-immune dynam-
ics, in [7], a fractional-order model with two immune effectors
interacting with the cancer cells is introduced. The conditions
that guarantee the stability of the equilibrium points in the
considered fractional cancer model are discussed in details
[7]. In [9], a mathematical model of cancer chemotherapy
effect involving the Caputo fractional derived is presented. In
[10], a fractional model of cancer-immune system with
Caputo and Caputo-Fabrizio derivatives is investigated. In
particular, after examining the stability of the system with sin-
gular kernel, the existence and uniqueness of the numerical
solution is discussed [10]. In [11], a novel fractional model
for a tumor-immune surveillance mechanism is introduced.
The approach, besides analyzing the interactions between var-
ious tumor cell populations and immune systems, provides an
optimal control strategy for investigating the effects of chemo-
therapy treatments [11]. While references [9–11] have mainly
investigated the properties of the mathematical model under
consideration, a number of papers have recently focused on
the presence of chaos in fractional-order cancer models
[12–16]. For example, reference [12] has been one of the first
papers to investigate the presence of chaos in fractional-
order cancer models. In particular, in [12], the authors have
developed a fractional chaotic dynamical model of cancer
growth, which includes the interactions between healthy tissue
cells, tumor cells, and activated immune system cells. The exis-
tence of chaos for the commensurate and incommensurate
fractional cancer systems (with order less than 3) is investi-
gated [12]. In [13], a fractional discrete version of a tumor-
immune system interaction is analyzed. This model, derived
via a discretization process where conformable fractional
derivatives are taken into account, exhibits bifurcations and
chaotic behaviors [13]. In [14], a study of tumor and effector
cells through fractional tumor-immune dynamical model is
conducted. By using the Mittag-Leffler law, the paper high-
lights the existence of chaos in the considered fractional
tumor-immune model for cancer treatment [14]. In [15],
three-dimensional cancer models that include the interactions
between tumor cells, healthy tissue cells, and activated
immune system cells are considered. The systems, which are
described via Liouville-Caputo, Caputo-Fabrizio, Atangana-
Baleanu, and fractional conformable derivatives, show a num-
ber of chaotic attractors with symmetric scrolls, depending on
the type of the selected derivative [15]. In [16], a cancer model
involving the new fractional derivative with the Mittag-Leffler
kernel in Liouville-Caputo sense is investigated. A large variety
of chaotic attractors is shown, along with the uniqueness and
existence of the solutions in the fractional cancer system
[16]. Based on these considerations, this paper was aimed at
making a contribution to the study of tumor-immune dynam-
ics by presenting a new model of cancer growth based on
fractional-order differential equations. By investigating the
system dynamics, the manuscript highlights the chaotic

behaviors of the proposed cancermodel for both the commen-
surate and the incommensurate cases. Moreover, some con-
siderations regarding the biological meaning of the obtained
results are reported. The paper is organized as follows. In
Section 2, a novel fractional-order cancer model based on
the Caputo derivative is presented. Moreover, a stability anal-
ysis of the system equilibria is conducted. In Section 3, by
varying the value of the fractional order as well as the values
of the system parameters, the dynamics of the commensurate
fractional cancer model are analyzed via bifurcation diagrams,
the Lyapunov exponents, and phase plots. When the order of
the derivative goes beyond the threshold value, q > 0:96, cha-
otic behaviors are found, indicating that the number of the
tumor cells of the healthy host cells and of the effector cells
becomes unpredictable. Finally, in Section 4, the dynamics of
the incommensurate fractional cancer model are analyzed in
details by varying the value of the fractional order in each sys-
tem equation. Simulation results reported through the manu-
script highlight that the proposed approach can explain many
biologically observed tumor states (including stable, periodic,
and chaotic behaviors), indicating that under some conditions
the interactions between tumor cells, healthy tissue cells, and
activated immune system cells could lead to invasive tumor
growth.

2. Fractional-Order Cancer Model and Its
Equilibrium Points

A three-dimensional integer-order cancer growth model
has been studied in [6]. Its dynamic equations are described
by [17]:

_x = ax 1 − yð Þ 1 + zð Þ − x2y,

_y = by 1 − zð Þ 1 + xð Þ − y2z,

_z = cz 1 − xð Þ 1 + yð Þ − z2x,

8>><
>>:

ð1Þ

where xðtÞ denotes the number of tumor cells at time t, y
ðtÞ is the number of healthy host cells at time t, and zðtÞ
refers to the number of effector immune cells at time t in
the single tumor-site compartment. Here, the parameters
a, b, and c are positive real numbers representing the
growth rates of populations of xðtÞ, yðtÞ, and zðtÞ (see
[6]). Specifically, the parameter a represents the growth rate
of the tumor cells (measured in sec-1), the parameter b is
the growth rate of the healthy host cells (measured in sec-
1), whereas c represents the growth rate of the effector
immune cells (measured in sec-1). Generally, the model
parameters are chosen such that the system dynamic anal-
ogies with clinical evidences reported in literatures [4, 18],
where depending on control parameter values and initial
conditions, the considered biological cancerous system
should also approach different states [19]: stationary equi-
librium state where any changes are damped, stable peri-
odic process (a limit cycle), and state of instability with
chaotic behavior. As shown in [6], particular values of these
growth rates lead to make the behavior of system (1) cha-
otic. To this purpose, the chaotic attractor of system (1)
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for parameters a = 0:7455, b = 0:7367, and c = 0:5619 and
initial conditions ðx0, y0, z0Þ = ð0:4,0:5,0:5Þ is shown in
Figure 1.

Herein, the fractional version of system (1) is considered.
Namely, the dynamics of the proposed fractional-order can-
cer model (FOCM) are described by

Dq1
t x = ax 1 − yð Þ 1 + zð Þ − x2y,

Dq2
t y = by 1 − zð Þ 1 + xð Þ − y2z,

Dq3
t z = cz 1 − xð Þ 1 + yð Þ − z2x,

8>><
>>:

ð2Þ

where Dq is q-order Caputo differential operator, 0 < qi ≤ 1
ði = 1, 2, 3Þ are the derivative orders of the state variables x,
y, and z (see appendix A). The fractional-order system (2)
is called as commensurate if q1 = q2 = q3 and incommensu-
rate otherwise.

Using the definitions (Equations (B.3) and (B.4)) in
Appendix B, then the numerical solution of the FOCM can
be given as in (3) with parameters defined in (4) and (5),
where l = 1, 2, 3 and i = 1, 2, 3.

xn+1 = x0 +
hq1

Γ qx + 2ð Þ axp1+n 1 − yp1+n
� �

1 + zp1+n
� �

− xp1+n
� �2

yp1+n
h i

+
hq1

Γ qx + 2ð Þ〠
n

j=0
η1,j,n+1 axj 1 − yj

� �
1 + zj
� �

− x2j yj
� �h i

,

yn+1 = y0 +
hq2

Γ qy + 2
� � byp1+n 1 − zp1+n

� �
1 + xp1+n
� �

− yp1+n
� �2

zp1+n
h i

+
hq2

Γ qy + 2
� �〠

n

j=0
η2,j,n+1 byj 1 − zj

� �
1 + xj
� �

− y2j z j
� �h i

,

zn+1 = z0 +
hq3

Γ qz + 2ð Þ czp1+n 1 − xp1+n
� �

1 + yp1+n
� �

− zp1+n
� �2

xp1+n
h i

+
hq3

Γ qz + 2ð Þ〠
n

j=0
η3,j,n+1 czj 1 − xj

� �
1 + yj

� �
− z2j xj

� �h i
,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3Þ

xpn+1 = x0 +
1

Γ q1 + 2ð Þ〠
n

j=0
ω1,j,n+1 axj 1 − yj

� �
1 + zj
� �

− x2j yj
� �

,

ypn+1 = y0 +
1

Γ q2 + 2ð Þ〠
n

j=0
ω2,j,n+1 byj 1 − zj

� �
1 + xj
� �

− y2j z j
� �

,

zpn+1 = z0 +
1

Γ q3 + 2ð Þ〠
n

j=0
ω3,j,n+1 czj 1 − xj

� �
1 + yj

� �
− z2j xj

� �
,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4Þ

ηl,j,n+1 =

nqi+1 − n − qið Þ n + 1ð Þqi+1, j = 0,

n − j + 2ð Þqi+1 + n − jð Þqi+1 − 2 n − j + 1ð Þqi+1, 1 ≤ j ≤ n,

1, j = n + 1,

8>><
>>:

ωl,j,n+1 =
hqi

qi
n − j + 1ð Þqi − n − jð Þqið Þ, 0 ≤ l ≤ n:

8>>>>>>><
>>>>>>>:

ð5Þ

Note that system (2) has five equilibrium points [6], four
of them are obtained analytically and can be described as
follows:

(1) E0 = ð0, 0, 0Þ,
(2) E1 = ð0,−1, ðb/b − 1ÞÞ, if b ≠ 1

(3) E2 = ððc/c − 1Þ, 0,−1Þ, if c ≠ 1

(4) E3 = ð−1, ða/a − 1Þ, 0Þ, if a ≠ 0

The last equilibrium E4 corresponding to the case ðx, y,
zÞ ≠ ð0, 0, 0Þ does not possess an analytical expression. It
could be obtained by intersecting the three surfaces corre-
sponding to the following equations:

ax 1 − yð Þ 1 + zð Þ − x2y = 0,

by 1 − zð Þ 1 + xð Þ − y2z = 0,

cz 1 − xð Þ 1 + yð Þ − z2x = 0:

8>><
>>:

ð6Þ

By taking the system parameters a = 0:7455, b = 0:7367,
and c = 0:5619, the fixed points become E0 = ð0, 0, 0Þ, E1 =
ð0,−1,−2:7979Þ, E2 = ð−1:28,0,−1Þ, E3 = ð−1,−2:9293,0Þ, and
the fourth equilibrium point found as E4 = ð0:5961,
0:6718,0:6364Þ, as shown in Figure 2.

Note that the fixed points E1, E2, and E3 have negative
coordinates, indicating that the dynamics cannot take place
since it is not possible to define negative populations in sys-
tem (2). The fixed point E0, which corresponds to a situa-
tion where there is no cell at all, is unstable, since its
eigenvalues are given by ð0:5619,0:7367, and 0:7455Þ. The
fixed point E4, which is associated with the coexistence of
the three different types of cells, represents a saddle-focus
equilibrium, since its eigenvalues are given by ð0:0712 ±
1:0922i, 1:3498Þ.

6

6

4

4

2

2

0

0

y

x

Figure 1: Chaotic attractor of system (1) for system parameters
a = 0:7455, b = 0:7367, and c = 0:5619 and initial conditions ðx0, y0,
z0Þ = ð0:4,0:5,0:5Þ.
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3. Dynamics of the Commensurate Fractional-
Order Cancer Model

In this section, the dynamics of the proposed commensu-
rate fractional-order cancer model (2) are studied by vary-
ing the fractional-order q and the system parameters a, b,
and c. The bifurcation diagrams, Lyapunov exponents, time
behaviors, and phase plots are illustrated to investigate the
system dynamics in detail. Moreover, some considerations
regarding the biological meaning of the obtained results
are reported.

3.1. Analysis of the System Dynamics by Varying the
Fractional-Order q. The study of the stability of the equilib-
ria is important to understand the system dynamics in the
proposed cancer model. Herein, analytical and numerical
analyses are conducted to determine the behavior of the sys-
tem trajectories when the value of the fractional order is
properly varied. To this purpose, a theorem proved in refer-
ence [20] is now exploited.

Theorem 1. Given the fractional system (2), a necessary con-
dition to have a chaotic attractor around the equilibrium
point E4 is that the eigenvalues λi of its Jacobian matrix sat-
isfy the condition [20]:

arg λið Þ > qπ/2, 0 < q < 1, ð7Þ

By taking the fractional system (2) with parameters a =
0:7455, b = 0:7367, and c = 0:5619, the eigenvalues λi, i = 1,
2, 3 of the Jacobian matrix are evaluated at the equilibrium
point E4 are given by ð0:0712 ± 1:0922i,−1:3498Þ. By con-
sidering that the application of Theorem 1 to the equilib-
rium E4 gives

arg 0:0712 ± 1:0922ið Þ ∗ 2/pi ≈ 0:9576, ð8Þ

it follows that a necessary condition to have a chaotic
attractor in the fractional system (2) is to satisfy the condi-
tion q > 0:96.

In order to investigate the system dynamics and numer-
ically search for proper values of the fractional-orderq which
is able to generate chaotic behaviors, the bifurcation diagram
is plotted in Figure 3 for q ∈ ð0:94,1Þ and initial conditions
ðx0, y0, z0Þ = ð0:4,0:5,0:5Þ.

From the bifurcation diagram, it can be seen that system
(2) is asymptotically stable when q < 0:96, whereas a number
of periodic windows appear for q ∈ ð0:96,0:99Þ. Moreover
the FOCM (2) exhibits chaotic behavior for q ∈ ð0:99,1Þ as
confirmed by the positive values of the maximum Lyapunov
exponents (see Figure 4). From the biological point of view,
this behavior can be explained as follows. When q < 1, the
system become fractional and, consequently, memory effects
and hereditary properties appear in the modeling of the sys-
tem dynamics. When these effects are not so strong (i.e.,
0:99 < q < 1), the system dynamics undertake chaotic behav-
iors. On the other hand, when these effects become stronger
(i.e., q < 0:96), they overwhelm the system dynamics, which
undertake stable behaviors.

By varying the value of the fractional-order q, Figure 5
shows the time behaviors of the three state variables: xðtÞ,
yðtÞ, and zðtÞ (in red, blue, and green color, respectively)
along with the corresponding phase portraits in the x-y plan,
for the system parameters a = 0:7455, b = 0:7367, and c =
0:5619 and initial conditions ðx0, y0, z0Þ = ð0:4,0:5,0:5Þ.
When q = 0:95, it can be observed that the FOCM (2) is
asymptotically stable and the system trajectories converge
to the equilibrium point E4 (Figure 5(a)). When q = 0:962,
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Figure 2: Equilibrium point E4 obtained by intersecting the three
surfaces corresponding to Equation (6).
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Figure 3: Bifurcation diagram of commensurate FOCM for q ∈
ð0:94,1Þ with parameters a = 0:7455, b = 0:7367, and c = 0:5619
and initial conditions ðx0, y0, z0Þ = ð0:4,0:5,0:5Þ.
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Figure 4: The maximum Lyapunov exponent of the commensurate
FOCM (2) for q ∈ ð0:99,1Þ with parameters a = 0:7455, b = 0:7367,
and c = 0:5619 and initial conditions ðx0, y0, z0Þ = ð0:4,0:5,0:5Þ.
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the system loses its stability and a scroll begins to appear
around the point E4 (Figure 5(b)). By increasing the values
of q, periodic attractors appear for q = 0:97 and q = 0:98
(Figures 5(c) and 5(d)). When q = 0:995, the fractional can-
cer model (2) exhibits a chaotic attractor (Figure 5(e)),
which is similar to that one obtained for the integer-order
case (Figure 5(f)).

A projection in the 3D space of the chaotic attractor gen-
erated by the proposed fractional-order cancer model is
plotted in Figure 6 for q = 0:995. The conducted analyses
clearly indicate that, in order to get chaos, the theoretical
condition expressed by Theorem 1 is numerically fulfilled
when q = 0:995. From this results it can be concluded that,
when the value of the fractional order decreases, the system
becomes stable, indicating that the number of the tumor

cells, of the healthy cells, and of the effector cells asymptot-
ically converges to the equilibrium point. On the other hand,
when the order of the derivative increases and goes beyond
the value of q > 0:96, the dynamics of the proposed FOCM
turn to be chaotic, indicating that the number of tumor cells,
of the healthy host cells, and of the effector cells becomes
unpredictable.

3.2. Analysis of the System Dynamics by Varying the
Parameters a, b, and c. Herein, the analysis of the system
dynamics is conducted by taking the fractional-order q =
0:99 and the initial conditions ðx0, y0, z0Þ = ð0:4,0:5,0:5Þ
and by varying the parameters a, b, and c. At first, the
parameters a and c are selected as a = 0:7455 and c =
0:5619, whereas the parameter b is varied in the interval ð0,
1Þ. Note that the parameter b is related to the growth rate
of host cells. Since the best strategy to face the cancer dynam-
ics, from the biological point of view, is to act on the healthy
host cells [4], herein the parameter b is varied, with the aim to
investigate the behavior of the proposed cancer model. The
bifurcation diagrams of the three state variables xðtÞ, yðtÞ,
and zðtÞ of the FOCM (2) are shown in Figure 7, where b is
the bifurcation parameter.

By varying the value of the parameter b, Figure 8 shows
the time behaviors of the three state variables: xðtÞ, yðtÞ, and
zðtÞ (in red, blue, and green color, respectively) along with
the corresponding phase portraits in the x-y plan for the sys-
tem parameters a = 0:7455 and c = 0:5619 and initial condi-
tions ðx0, y0, z0Þ = ð0:4,0:5,0:5Þ. When b = 0:28, it can be
observed that the FOCM (2) is asymptotically stable and
the system trajectories converge to the equilibrium point
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E4 (Figure 8(a)). When the parameter b increases, a periodic
route to chaos appears in the range b ∈ ð0:30,0:5Þ. In this
range of parameter b, the system exhibits limit cycles of dif-
ferent periods (see Figures 8(b) and 8(c)). Then, a chaotic
attractor appears at b = 0:53 (see Figure 8(d)) and the system
exhibits a chaotic behavior for b ∈ ð0:53,1Þ.

Now, the parameter b is fixed at the value b = 0:7367,
whereas the parameter a, which represents the growth rate

of the tumor cells, is varied in the interval ð0, 1Þ. The corre-
sponding bifurcation diagram for the three state variables x
ðtÞ, yðtÞ, and zðtÞ is plotted in Figure 9(a). Similarly, by fix-
ing the value b = 0:7367, the parameter c (i.e, the growth rate
of the effector cells) is varied in the interval ð0, 1Þ. The cor-
responding bifurcation diagram for the three state variables
xðtÞ, yðtÞ, and zðtÞ is plotted in Figure 9(b). By analyzing
the two bifurcation diagrams, it can be argued that the
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Figure 8: Time behaviors of the three state variables: xðtÞ, yðtÞ, and zðtÞ (in red, blue, and green color, respectively) along with the
corresponding phase portraits in the x-y plan when q = 0:99, a = 0:7455, c = 0:5619, and ðx0, y0, z0Þ = ð0:4,0:5,0:5Þ for: (a) b = 0:28, (b)
b = 0:38, (c) b = 0:45, and (d) b = 0:53.
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Figure 9: Bifurcation diagrams of the variables: xðtÞ, yðtÞ, and zðtÞ (in red, blue, and green color, respectively) of the commensurate FOCM
(2) with q = 0:99, b = 0:7367, and ðx0, y0, z0Þ = ð0:4,0:5,0:5Þ for the bifurcation parameters: (a) a ∈ ð0, 1Þ and (b) c ∈ ð0, 1Þ.
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FOCM (2) loses its stability when the values of the parame-
ters a and c are increased. Moreover, chaotic behaviors
appear in the FOCM (2) when a ∈ ð0:5,1Þ and c ∈ ð0:35,1
Þ.

Regarding the biological meaning of these results, it
should be noted that, for low values of the growth rates,
the FOCM (2) has a stable equilibrium point. On the other
hand, when the growth rates increase, the system loses its
stability. At this stage, the tumor is ready to become invasive
and even malignant [5]. With the further increase of the
growth rates, the chaotic attractor of the tumor appears,
being this higher tumor burden complicated by the presence

of several periodic and chaotic dynamics. This is similar to
what happens when parameter b increases in Figure 8. On
the other hand, when the growth rates decrease, the attractor
corresponding to high tumor burden disappears. This is
similar to what happens when a, b, and c decrease in
Figures 7 and 9. These results can help the doctors for con-
trolling the tumor burden, thus giving suggestions regarding
the medical treatments.

3.3. Comparison between the Dynamics of Integer-Order and
Commensurate Fractional-Order Cancer Models. Now, com-
parisons between the dynamics of integer-order and

q = 0.90
q = 0.95

q = 0.995
q = 1

0.7
0.65

0.6
0.55

0.5
0.45

0.4
0.35

0 50 100 150 200
t

x

(a)

q = 0.90
q = 0.95

q = 0.995
q = 1

0 50 100 150 200
t

x

4
3.5

2.5
2

1.5

0.5
0

1

3

(b)

q = 0.90
q = 0.95

q = 0.995
q = 1

0 50 100 150 200
t

x

1.4

1.2

1

0.8

0.6

0.4

(c)

q = 0.90
q = 0.95

q = 0.995
q = 1

0 50 100 150 200
t

x

3

2

1

0

5

4

(d)

q = 0.90
q = 0.95

q = 0.995
q = 1

0 50 100 150 200
t

x

0.5
0.45

0.4
0.35

0.3
0.25

0.2
0.15

0.1

(e)

q = 0.90
q = 0.95

q = 0.995
q = 1

0 50 100 150 200
t

x

4.5
4

3.5
3

2.5
2

1.5
1

0.5
0

(f)

Figure 10: Time behaviors of state variable xðtÞ of commensurate FOCM (2) for different fractional orders and system parameters: (a)
a = 0:1, (b) a = 0:50, (c) b = 0:1, (d) b = 0:53, (e) c = 0:1, and (f) c = 0:35.
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commensurate fractional-order cancer models are carried
out. The time behaviors of the state variable xðtÞ (represent-
ing the tumor population) are plotted in Figure 10 by select-
ing q = 0:90, q = 0:95, q = 0:99, and q = 1 and by taking
different values of the system parameters a, b, and c ranges.
It can be observed that for smaller values of the parameter a
(Figure 10(a)), of the parameter b (Figure 10(c)), and of the
parameter c (Figure 10(e)), the commensurate fractional
derivatives damp the oscillation behavior. Consequently,
the three states of tumor, host, and effector cells approach
faster the equilibrium point, indicating that the commensu-
rate fractional derivatives enlarge the region of stability.
When the values of the parameters a, b, and c increase, the
system is stable for small values of the fractional orders
(i.e., q = 0:90 and q = 0:95). Namely, by looking at
Figures 10(b), 10(d), and 10(e), it can be observed that the
system trajectories tend to the equilibrium point for q =
0:90 and q = 0:95. On the other hand, chaotic oscillations
with different amplitudes appear when for q = 0:995 and q
= 1. Note that the amplitude of the chaotic oscillation
reaches the maximum value for the integer-order case
(q = 1).

4. Dynamics of the Incommensurate
Fractional-Order Cancer Model

This section analyzes the dynamics of the incommensu-
rate FOCM (2) by taking the parameters a = 0:7455, b =
0:7367, and c = 0:5619 and initial conditions ðx0, y0, z0Þ
= ð0:4,0:5,0:5Þ and by selecting different values of the
fractional-orders q1, q2, and q3. At first, the bifurcation dia-
grams of the variable xðtÞ are plotted in Figure 11(a) for three
cases: q1 ∈ ð0:6,1Þ and q2 = q3 = 1; q2 ∈ ð0:6,1Þ and q1 = q3 =
1 ; q3 ∈ ð0:6,1Þ and q1 = q2 = 1. From Figure 11(a), it can be
seen that the equilibrium point is asymptotically stable when

q1 < 0:75, q2 < 0:74, and q3 < 0:74. When the values of q
increase, periodic windows appear for q1 ∈ ð0:75,0:86Þ, q2
∈ ð0:74,0:85Þ, and q3 ∈ ð0:74,0:85Þ, whereas chaotic behav-
iors are exhibited for q1 ∈ ð0:86,1Þ, q2 ∈ ð0:85,1Þ, and q3 ∈
ð0:85,1Þ. The existence of positive Lyapunov exponents is
confirmed by the plot as a function of the fractional-
order q, as shown in Figure 11(b). Namely, from
Figure 11(b), it can be seen that the fractional cancer sys-
tem (2) is chaotic for q1 ∈ ð0:86,1Þ, q2 ∈ ð0:85,1Þ, and q3 ∈
ð0:85,1Þ. Note that the maximum value of the variable x
ðtÞ is obtained by varying q3 (see Figure 11(a)).

Figure 12 shows the time behaviors of the three state var-
iables xðtÞ, yðtÞ, and zðtÞ (in red, blue, and green color,
respectively) along with the corresponding phase portraits
in the x-y plan, for the system parameters a = 0:7455, b
= 0:7367, and c = 0:5619 and initial conditions ðx0, y0, z0Þ
= ð0:4,0:5,0:5Þ. By taking different values of the fractional-
order q1, q2, and q3 in the incommensurate FOCM (2), some
chaotic attractors appear. For example, Figure 12(a) plots the
chaotic attractor obtained for q1 = 0:999 and q2 = q3 = 1,
whereas Figures 12(b) and 12(c) illustrate the chaotic attrac-
tors obtained for q2 = 0:999q1 = q3 = 1 and for q3 = 0:999, q1
= q2 = 1, respectively. By looking at the time behaviors of
the state variables, it can be noticed that the maximum
amplitudes of the trajectories change from one plot to the
other when the incommensurate orders are varied. Specifi-
cally, the population of the healthy host cells (i.e., the state var-
iable yðtÞ) is the largest when q1 = 0:999 (see Figure 12(a)), the
population of the effector immune cells (i.e., the state variable
zðtÞ) is the largest when q2 = 0:999 (see Figure 12(b)), whereas
the population of the tumor cells (i.e., the state variable xðtÞ) is
the largest when q3 = 0:999 (see Figure 12(c)).

Now, by fixing the system parameters a = 0:7455 and c
= 0:5619, the bifurcation diagrams for the variable xðtÞ as
a function of the parameter b are derived for three cases:
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Figure 11: Incommensurate FOCM (2) for a = 0:7455, b = 0:7367, c = 0:5619, and ðx0, y0, z0Þ = ð0:4,0:5,0:5Þ. (a) Bifurcation diagrams for
q1 ∈ ð0:6,1Þ, q2 = q3 = 1, q2 ∈ ð0:6,1Þ, q1 = q3 = 1, and q3 ∈ ð0:6,1Þ, q1 = q2 = 1 and (b) LLEs for q1 ∈ ð0:86,1Þ and q2, q3 ∈ ð0:85,1Þ.
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Figure 12: Time behaviors of the state variables: xðtÞ, yðtÞ, and zðtÞ (in red, blue, and green color, respectively) of the incommensurate
FOCM along with the corresponding phase portraits in x-y plan when a = 0:7455, b = 0:7367, c = 0:5619, and ðx0, y0, z0Þ = ð0:4,0:5,0:5Þ
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Figure 14: Chaotic attractors of incommensurate FOCM in 3D projection with taking initial conditions ðx0, y0, z0Þ = ð0:4,0:5,0:5Þ, fixing
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Figure 15: Time behaviors of the state variable xðtÞ of incommensurate FOCM (2) for different fractional-orders and system parameters: (a)
b = 0:1, (b) b = 0:50, (c) b = 0:1, (d) b = 0:5, (e) b = 0:1, and (f) b = 0:50.
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q1 = 0:999, q2 = q3 = 1; q2 = 0:999, q1 = q3 = 1; and q3 =
0:999, q1 = q2 = 1 (see Figure 13). It can be noticed that the
incommensurate system (2) exhibits chaos in all the three
cases when b ∈ ð0:38,1Þ.

Figure 14 presents the chaotic attractors of the incom-
mensurate FOCM (2) in 3D projection by taking the param-
eter b = 0:38 for: (a) q1 = 0:999, q2 = q3 = 1; (b) q2 = 0:999,
q1 = q3 = 1; and (c) q3 = 0:999, q1 = q2 = 1. By comparing this
chaotic range with the range that has been obtained in Sec-
tion 3 (see Figures 7 and 8), it can be observed that the
incommensurate fractional derivatives enlarge the chaotic
range of the solution. From the biological point of view, it
can be deduced that, when the growth rate decreases, the
attractor corresponding to the high tumor burden disap-
pears. This is in accordance with the results in Figure 13,
since when b decreases the system dynamics go towards sta-
ble behaviors.

Now, comparisons between the dynamics of integer-
order and incommensurate fractional-order cancer models
are carried out. The time behaviors of the state variable
xðtÞ (representing the tumor population) are plotted in
Figure 15 by selecting different values of the fractional-
orders q1, q2, and q3, when the parameter b assumes the
two values b = 0:1 (corresponding to the stable range)
and b = 0:5 (corresponding to the chaotic range). It can
be observed that for b = 0:1 (see Figures 15(a), 15(c), and
15(e)), the incommensurate fractional derivatives damp
the oscillation behavior. Consequently, the three states of
tumor, host, and effector cells approach faster the equilib-
rium point, indicating that the incommensurate fractional
derivatives enlarge the region of stability. When the parame-
ter b assumes the value b = 0:5, the system is stable for small
values of the fractional orders (i.e., q1, q2, q3 = 0:60, q1, q2,
q3 = 0:80). Namely, by looking at Figures 15(b), 15(d), and
15(e), it can be observed that the system trajectories tend to
the equilibrium point for q1, q2, q3 = 0:60 and q1, q2, q3 =
0:80. On the other hand, chaotic oscillations with different
amplitudes appear when q1, q2, q3 = 0:995 and q1, q2, q3 = 1.
Note that the amplitude of the chaotic oscillation reaches the
maximum value for the integer-order case (q1, q2, q3 = 1).
The motivation of the manuscript is to provide a complete
study of tumor-immune dynamics by presenting a new
model of cancer growth. In order to explain the physical
meaning of introducing the fractional-order into the model,
it is worth noting that biological systems are characterized
by memory or aftereffects, hereditary properties, and nonlo-
cal distributed behaviors [7]. Since these features are
neglected in integer-order modeling, this has motivated the
use of fractional calculus as a tool for accurately describing
dynamic phenomena in tumor-immune systems. The main
advantage of the results in this paper, compared with others
published in the literature, is that our approach represents
an exhaustive study of tumor-immune dynamics, since it
includes the bifurcation diagrams, Lyapunov exponents,
and phase plots for both the commensurate and the incom-
mensurate cases. No paper published in the literature so far
(to the best of the authors’ knowledge) includes such a com-
plete analysis of the fractional chaotic dynamics of tumor-
immune systems [12–16].

5. Conclusion

This paper has made a contribution to the study of tumor-
immune dynamics by presenting a new model of cancer
growth based on fractional-order differential equations. By
investigating the system dynamics, the manuscript has high-
lighted the chaotic behaviors of the proposed cancer model
for both the commensurate and the incommensurate cases.
In particular, by using the bifurcation diagrams, Lyapunov
exponents, phase plots, and a necessary condition to get
chaos, the paper has shown that, when the order of the
derivative goes beyond the threshold value q > 0:96, different
chaotic behaviors are found, indicating that the number of
the tumor cells, of the healthy host cells, and the effector
cells becomes unpredictable. Finally, simulation results
reported through the manuscript have highlighted that the
proposed approach can explain many biologically observed
tumor states, including stable, periodic, and chaotic behav-
iors. Regarding open research problems, an important issue
is related to the development of control techniques for sup-
pressing chaos in fractional-order biological systems. Our
future plan is to work on this issue, since we believe that
controlling chaos in fractional tumor-immune systems
might help biologists in the fight against cancer.

Appendix

A. Basic Concepts

We state certain key preliminaries in regard with the nonin-
teger calculus [21]:

Definition A.1. The integral operator of fractional-order q in
the sense of Riemann-Liouville of the function g ∈ Cmð0, T�
is outlined as

Iqg tð Þ = 1
Γ qð Þ

ðt
0

g sð Þ
t − sð Þ 1−qð Þ ds, ðA:1Þ

where q > 0, m ∈ℕ, and T > 0.

Definition A.2. The differential operator of fractional-order q in
the sense of Caputo of the function g ∈ Cmð0, T� is outlined as

Dqg tð Þ =
1

Γ m − qð Þ
ðt
0
t − sð Þm−q−1g mð Þ sð Þds, q ∈ m − 1,mð Þ,

g mð Þ tð Þ, q =m,

8><
>:

ðA:2Þ

where q ∈ ½m − 1,m�, m ∈ℕ and T > 0.

B. Numerical Method for Solving Fractional
Differential Equations

To approximate the fractional-order dynamical system
using the ABM and PECE numerical approximation method
consider [22]

Dqx = f t, xð Þ, ðB:1Þ
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where q is the fractional-order, 0 ≤ t ≤ T with initial values
xkð0Þ = xk0 for k ∈ ½0, n − 1�. Equation (B.1) can be solved
using the Volterra integral equation (VIE) given by

x tð Þ = 〠
n−1

k=0
xk0

tk

k!
+

1
Γ qð Þ

ðt
0

f τ, xð Þ
t − τð Þ1−q dτ: ðB:2Þ

The numerical approximation form of (B.2) can be
defined as

xh tn+1ð Þ = 〠
n−1

k=0
x kð Þ
0

tk+1n

k!
+

hq

Γ q + 2ð Þ f tn+1, x
p
h tn+1ð Þ� �

+
hq

Γ q + 2ð Þ〠aj,n+1 f tn+1, x
p
h tn+1ð Þ� �

,
ðB:3Þ

where

aj,n+1 =

nq+1 − n − qð Þ n + qð Þq+1, j = 0,

−2 n − j + 1ð Þq+1, 1 ≤ j ≤ n,

1, j = n + 1,

8>><
>>:

xph tn+1ð Þ = 〠
n−1

k=0
x kð Þ
0

tk+1n

k!
+

hq

Γ 2ð Þ〠
n

j=0
bj,n+1 t jxh t j

� �� �
,

bj,n+1 =
hq

q
n − j + 1ð Þq − n − jð Þqð Þ,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ðB:4Þ

h = T/N , and tn = nh with h ∈ ½0,N�. The error for this
method can be estimated as emax = max jxðt jÞ − xhðt jÞj = 0
ðhpÞ, where i = 0, 1,⋯,N and p =min ð2, 1 + qÞ.
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