
Research Article
Classification of Hepatocellular Carcinoma and Intrahepatic
Cholangiocarcinoma Based on Radiomic Analysis

Xiaoliang Xu ,1,2 Yingfan Mao,3 Yanqiu Tang,2 Yang Liu,1,2 Cailin Xue,1,2 Qi Yue,1,2

Qiaoyu Liu ,1,2 Jincheng Wang ,1,2,4 and Yin Yin 1,2

1Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
2Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
3Department of Radiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
4Preparatory School for Chinese Students to Japan, The Training Center of Ministry of Education for Studying Overseas,
Changchun, China

Correspondence should be addressed to Qiaoyu Liu; liuqiaoyunature@163.com, Jincheng Wang; 1057770573@qq.com,
and Yin Yin; jyinjyin@sina.com

Received 12 November 2021; Revised 22 January 2022; Accepted 2 February 2022; Published 21 February 2022

Academic Editor: Jun Yang

Copyright © 2022 Xiaoliang Xu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction. Considering the narrow window of surgery, early diagnosis of liver cancer is still a fundamental issue to explore.
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICCA) are considered as two different types of liver
cancer because of their distinct pathogenesis, pathological features, prognosis, and responses to adjuvant therapies. Qualitative
analysis of image is not enough to make a discrimination of liver cancer, especially early-stage HCC or ICCA. Methods. This
retrospective study developed a radiomic-based model in a training cohort of 122 patients. Radiomic features were extracted
from computed tomography (CT) scans. Feature selection was operated with the least absolute shrinkage and operator
(LASSO) logistic method. The support vector machine (SVM) was selected to build a model. An internal validation was
conducted in 89 patients. Results. In the training set, the AUC of the evaluation of the radiomics was 0.855 higher than for
radiologists at 0.689. In the valuation cohorts, the AUC of the evaluation was 0.847 and the validation was 0.659, which
indicated that the established model has a significantly better performance in distinguishing the HCC from ICCA. Conclusion.
We developed a radiomic diagnosis model based on CT image that can quickly distinguish HCC from ICCA, which may
facilitate the differential diagnosis of HCC and ICCA in the future.

1. Introduction

According to the latest report of the International Agency
for Research on Cancer, liver cancer is one of the most
common digestive cancers. Primary liver cancer is the
sixth most commonly occurring cancer and the third lead-
ing cause of cancer-related deaths worldwide, ranking fifth
in incidence and fourth in mortality [1]. Despite the avail-
able treatment options, the incidence and mortality rates
are nearly equal [2]. Surgery, with a narrow therapeutic
window, remains the mainstay of liver cancer therapy for
patients at early stage [3]. Thus, early diagnosis is still a
fundamental issue to explore.

The dominant histological types of primary liver cancer
are hepatocellular carcinoma (HCC) and intrahepatic cholan-
giocarcinoma (ICCA), accounting for over 99% of primary
liver cancer cases [4, 5]. Considering the clinical stages,
patients with HCC and ICCAmay be assigned to similar clin-
ical managements [6]. However, HCC and ICCA are consid-
ered as completely different two types of liver cancer because
of their distinct pathogenesis, pathological features, prognosis,
and responses to adjuvant therapies [7]. Therefore, early dis-
crimination of these two types of liver cancer contributes to
designing personalized treatment strategies.

Computed tomography (CT), as a common type of imag-
ing tool, plays a major part in diagnosis, staging, treatment,
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and follow-up of oncologic patients. During routine preopera-
tive evaluation in a clinical setting, three-dimensional (3D)
reconstruction of CT images helps formulate more reasonable
surgical planning [8]. The contrast-enhanced CT provides
higher resolution images and defines the nature of the lesion
[9, 10]. However, the diagnostic accuracy is dependent on
variations in radiologists’ level of experience, resulting in fre-
quent misdiagnosis [11]. Despite the development of modern
imaging techniques, qualitative analysis of image is not
enough to make a discrimination of liver cancer, especially
early-stage HCC or ICCA, which have puzzled researchers
for several years.

Radiomics, as a novel image processing technology, can
automatically provide a large number of quantitative image
features from medical images, which may be impossible for
naked eyes to recognize [12, 13] These image features can also
be combined withmachine learning algorithms to make a pre-
diction for diagnosis. Several studies have shown the outlook
of prediction for cancer outcome [14]. The radiomic-based
classifiers using routine magnetic resonance imaging (MRI)
sequences in differentiation of peripheral schwannomas and
neurofibromas showed higher area under the curve (AUC)
values on the receiver operator characteristic (ROC) curve
than expert human evaluators [15] and so was the random for-

est model based on CT radiomics [16]. Radiomics can signifi-
cantly improve the accuracy and consistency of diagnosis.
Unfortunately, very few studies have investigated the CT
radiomic-based model to distinguish HCC and ICCA.

In this study, we established a support vector machine
(SVM) based on radiomic features at noncontrast CT to
train a discriminative model for HCC and ICCA at early
stage. The diagnostic performance was also compared with
experienced radiologists.

2. Materials and Methods

2.1. Patients and Liver Pathological Diagnosis. The workflow
is schematically depicted in Figure 1. All patients with path-
ologic results of liver cancer underwent noncontrast CT at
our institution between August 2018 and November 2019.
Here are the exclusion criteria for patient screening: (1) lack
of abdominal noncontrast CT image at 1.5mm thickness
(n = 41), (2) poor image quality (n = 26), (3) an interval
between pathological results and CT examination of more
than 3 months (n = 11), (4) coinfection with virus such as
HBV or HCV (n = 38), and (5) incomplete clinical data
(n = 31).

All patients who underwent CT examination with
pathological results of liver cancer

(n = 332) 

1. Poor image quality (n = 26)
2. An interval between pathological
results and CT examination of
more than 3 months (n = 11)

Lack of abdominal no n-contrast CT
image at 1.5 mm thickness (n = 41)

Non - contrast CT available (n = 280)

Incomplete clinical data (n = 31)

Co-infected with other viruses (n = 38)

Patients enrolled in this study
(n = 211)

Training cohorts
(n = 122)

Validation cohort
(n = 89)

Figure 1: The flow chart of the patients’ inclusion.
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We partitioned the whole cohort into two parts, 122
patients for training (from August 2018 to March 2019)
and 89 patients for validation (from April 2019 to November
2019).

The clinical characteristics and the data of CT scan were
obtained from medical records. Clinical data included age,
sex, blood routine tests (red blood cell (RBC), white blood
cell (WBC), platelet (PLT) count, and hemoglobin (Hb)),
liver function examinations (ALT, aspartame aminotransfer-
ase (AST), alkaline phosphate (ALP), gluttony transpiration
(GGT), lactate dehydrogenase (LDH), total bilirubin (TB),
conjugated bilirubin (CB), albumin (ALB), globulin (GLOB),
total bile acid (TBA), and leucine acrylamide (LAP)),
lipid metabolism tests (total cholesterol (TC), high den-
sity lipoprotein cholesterol (HDL-C), low density lipopro-
tein cholesterol (LDL-C), apolipoprotein A1 (Apo A1), and
apolipoprotein B (Apo B)), C-reactive protein (CRP), and
blood coagulation function (prothrombin time (PT) and
international normalized ratio (INR)).

The histopathological analysis of the liver was made by
two pathologists with over 5-year working experience. And
the pathologists were blinded to the clinical information.

2.2. CT Image Acquisition and Evaluation. All patients
received the examination with the same CT scanner in
supine position (LightSpeed, VCT, or Discovery HD 750,
GE Healthcare, US). The CT scanner parameters are listed
as follows: tube voltage 120 kVp, tube current 250–350mA,
collimating slice thickness 5mm, reconstruction slice thick-
ness 1.25mm, slice interval 5mm, rotation time 0.6 s, helical
pitch 1.375, the field of view between 35 and 40 cm, and
matrix 512 × 512. The image was reconstructed using a stan-
dard algorithm. The CT images were reviewed by two inde-
pendent radiologists. The radiologists were aware of the
diagnostic criteria and blinded to the clinical radiological
details. Any differences were resolved through discussion.

2.3. The Establishment of Radiomic Model in the Training
Cohort. Regions of interest (ROIs) were selected in the liver
of all patients by two radiologists using 3D slicer (version
4.8.0; http://www.slicer.org) [17]. The ROIs were manually
segmented along the tumor contour on each transverse sec-
tion. Image preprocessing and feature extraction were per-
formed by Pyradiomics package (http://www.radiomics.io/
pyradiomics.html). The voxel spacing was standardized

Table 1: Radiomic features in the radiomic analysis.

Types Feature

Shape (n = 13)
Maximum3DDiameter, Maximum2DDiameterSlice, SphericityMinorAxis, Elongation,

SurfaceVolumeRatio, Volume, MajorAxis, SurfaceArea, Flatness, LeastAxis, Maximum2D
DiameterColumn, and Maximum2DDiameterRow

First-order statistics (n = 18)
InterquartileRange, Skewness, Uniformity, Median, Energy, RobustMeanAbsoluteDeviation,

MeanAbsoluteDeviation, TotalEnergy, Maximum, RootMeanSquared, 90Percentile, Minimum,
Entropy Range, Variance, 10Percentile, Kurtosis, and Mean

Textural features (n = 74)
GLDM (n = 14)

GrayLevelVariance, HighGrayLevelEmphasis, DependenceEntropy, DependenceNonUniformity,
GrayLevelNonUniformity, SmallDependenceEmphasis, SmallDependenceHighGrayLevelEmphasis,

DependenceNonUniformityNormalized, LargeDependenceEmphasis,
LargeDependenceLowGrayLevelEmphasis, DependenceVariance,

LargeDependenceHighGrayLevelEmphasis, SmallDependenceLowGrayLevelEmphasis,
and LowGrayLevelEmphasis

GLCM (n = 23)
JointAverage, SumAverage, JointEntropy, ClusterShade, MaximumProbability, Idmn,

JointEnergy, Contrast, DifferenceEntropy, InverseVariance, DifferenceVariance,
Idn, Idm, Correlation, Autocorrelation, SumEntropy, SumSquares, ClusterProminence,

Imc2, Imc1, DifferenceAverageId, and ClusterTendency

GLRLM (n = 16)

ShortRunLowGrayLevelEmphasis, GrayLevelVariance, LowGrayLevelRunEmphasis,
GrayLevelNonUniformityNormalized, RunVariance, GrayLevelNonUniformity,

LongRunEmphasis, ShortRunHighGrayLevelEmphasis, RunLengthNonUniformity,
ShortRunEmphasis, LongRunHighGrayLevelEmphasis, RunPercentage,

LongRunLowGrayLevelEmphasis, RunEntropy, HighGrayLevelRunEmphasis,
RunLengthNonUniformityNormalizedGrayLevelVariance, ZoneVariance,

GrayLevelNonUniformityNormalized, and SizeZoneNon

GLSZM (n = 16)

UniformityNormalized, SizeZoneNonUniformity, GrayLevelNonUniformity,
LargeAreaEmphasis, SmallAreaHighGrayLevelEmphasis, ZonePercentage,
LargeAreaLowGrayLevelEmphasis, LargeAreaHighGrayLevelEmphasis,

HighGrayLevelZoneEmphasis, SmallAreaEmphasis,
LowGrayLevelZoneEmphasis, and ZoneEntropySmallAreaLowGrayLevelEmphasis

NGTDM (n = 5) Coarseness, Complexity, Strength, Contrast, and Busyness

Wavelet transforms (n = 736) Wavelet-HLL, wavelet-LHL, wavelet-LHH, wavelet-LLH, wavelet-HLH, wavelet-HHH,
wavelet-HHL, and wavelet-LLL

GLCM: gray level cooccurrence matrix; GLRLM: gray level run length matrix; GLSZM: gray level size zone matrix; L: low; H: high.
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with the size of 1 × 1 × 1mm. The voxel intensity values
were discretized with a bin width of 25 HU to reduce the
interference of image noise and normalize intensities [18].
Eight hundred forty-one radiomic features (13 shape statis-
tics, 18 first-order statistics, 74 textural features, and 736
wavelet-based transformations) were extracted from each
ROI (Table 1).

The intra- and interobserver reliability for each radiomic
feature was calculated by using intraclass correlation coeffi-
cient (ICC). Radiomic features with both intra- and interob-
server ICC greater than 0.8 were selected for subsequent
analysis. The least absolute shrinkage and selection operator
(LASSO) logistic regression algorithm [19], along with pen-
alty parameter tuning conducted by 10-fold cross-validation,
was performed to select cirrhosis-related features (with non-
zero coefficients).

2.4. Statistical Analysis. Categorical and continuous variables
were compared by χ2 test and Student t test, respectively.
The R package “e1071” was used to perform the SVM, and
“glmnet” was used for LASSO regression on R software (ver-

sion 3.6.1, http://www.r-project.org). The diagnostic perfor-
mance of established models was evaluated by the ROC
curve and area under the curve (AUC) value. The DeLong
test was used to compare AUC values. Calibration curves
were plotted via bootstrapping with 1000 resamples, accom-
panied by the Hosmer-Lemeshow test, to evaluate the cali-
bration of the established model. The decision curve
analysis (DCA) was used to calculate the net benefit from
the use of established models. P < 0:05 was considered statis-
tically significant.

3. Results

3.1. Baseline Characteristics. The clinical characteristics are
shown in Table 2. There was no significant difference in
age, sex, AFP, CEA, CA199 between the training, and valida-
tion cohorts.

3.2. Radiomic Analysis. Of 841 extracted features, 76 features
(8 first-order statistics, 21 textural features, and 56 wavelet-
based transformations) with high reproducibility were selected

Table 2: Characteristics and clinical factors of patients.

Parameter Training (n = 122) Validation (n = 89) P value

Sex 0.214

Men 93 61

Women 29 28

Age 0.441

<60 62 50

≥60 60 39

CT-evaluated results 0.246

HCC 108 83

ICCA 14 6

Laboratory findings

AST 56:04 ± 52:66 64:15 ± 57:48 0.289

ALT 54:69 ± 49:81 65:31 ± 54:42 0.143

GGT 70:53 ± 41:55 73:69 ± 52:31 0.626

Total bilirubin 19:8 ± 23:24 17:6 ± 26:24 0.521

Platelet count 189:42 ± 63:24 181:89 ± 76:35 0.435

INR 1:06 ± 0:178 1:09 ± 0:193 0.245

AFP 0.251

>10 92 73

≤10 30 16

CEA 0.523

>5 8 4

≤5 114 85

CA199 0.976

>39 29 21

≤39 93 68

Histologic results 0.597

HCC 93 65

ICCA 29 24

HCC: hepatocellular carcinoma; ICCA: intrahepatic cholangiocarcinoma.
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for subsequent analysis. 43 independent significant features
were identified by the LASSO logistic regression model
(Figure 2). A radiomic model was constructed using SVM
algorithm, of which the type is eps-regression. The kernel
function is radial-based and the number of support vectors is
73.

3.3. Model Establishment and Validation. The ROC analysis
is shown in Figure 3 and the summary of the model is shown
in Table 3. In the training set, the AUC of the evaluation of
the radiomics was 0.855 higher than for radiologists at 0.689.
In the validation cohorts, the AUC of the radiomics model
was 0.847 and the radiologic evaluation was 0.659, which
indicated that the radiomics model have a significant benefit
in distinguish the HCC form ICCA. The calibration of the
training set model shows that the models established have
a great agreement with the actual result and preside results.
Besides, the curve of the validation cohorts shows the same
results. The Hosmer-Lemeshow test yielded P values of
0.056 and 0.217 in the training and validation cohort, indi-
cating no departure from the good fit.

The DCA is shown in Figure 4. Compared with scenarios
in which no prediction model would be used (i.e., treat-all or
treat-none scheme), the radiomic model can provide better
net benefit in distinguishing the HCC from ICCA than
radiologic evaluation for threshold probabilities of more
than 20% in the training and validation cohorts.

4. Discussion

This is a brand new study for making a discrimination anal-
ysis for HCC and ICCA by establishing a radiomic-based
classification model at noncontrast CT which showed higher
efficacy than experienced radiologists. There are 43 selected
radiomic features integrated in the model, and the great
diagnostic performance was achieved.

HCC and ICCA are classified into liver cancer in the
clinical classification but completely different in initiation
and progression. First, viral infections, alcoholism, and fatty
liver are leading risk factors for HCC, as primary sclerosing
cholangitis, bile duct cyst, and hepatolithiasis are for ICCA.
Second, HCC and ICCA originate from completely different
cell population. It is generally believed that HCC is a highly
aggressive epithelial tumor originating both from mature
hepatocytes and stem cells [20]. However, ICCA is likely
to arise from cholangiocytes or the epithelial cells lining
the biliary tree [21]. Third, although surgical resection is
the only preferred therapeutic option for both two cancers
at early stage, the nonoperative treatment is significantly
divergent [22]. Thus, early discrimination is of great value
to cancer patients.

Unfortunately, the discrimination owes a major debt to
image. The ability of radiologists plays major roles in that.
Imaging examination mainly distinguishes them according
to the difference of blood supply. The typical hepatocellular
carcinoma has an abundant blood supply, which can facili-
tate the presence of nonrim-like enhancement of an observa-
tion in the arterial phase and the wash out in the venous
phase [23]. Meanwhile, the hypovascular intrahepatic chol-
angiocarcinoma frequently results in insufficient enhance-
ment of arterial phase [24]. But when it comes to
nontypical HCC, it is difficult to identify HCC from ICCA
[25]. The gold standard diagnostic test for liver cancer is
the pathology, which need paracentesis or surgery. The
selection of cancer diagnostics and treatments may delay
for quite a long time. Therefore, it is necessary to find a more
reliable, efficient, and user-friendly method to distinguish
them.

The contrast-enhanced CT or MRI, which can provide
more information than noncontrast CT, was suggested by
guidelines for patients with liver mass. However, many
patients in China only accept noncontrast CT examinations
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Figure 2: Selection of radiomic features by the least absolute shrinkage and selection operator (LASSO) logistic regression. (a) Optimal λ
value was determined by the LASSO model using 10-fold cross-validation via minimum criteria. The misclassification error curves were
plotted versus log (λ). Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the 1 standard error of
the minimum criteria (the 1 –standard error criteria). The optimal λ value of 0.0442 was chosen.
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Figure 3: The ROC and calibration curves of the radiomic model. Comparison of ROC curve between radiomic model and radiological
evaluation in training (a) and validation (b) cohorts. The calibration curves of the radiomic model in the training (c) and validation (d) cohorts.

Table 3: The summary of model.

Training Validation
Radiomics Evaluation Radiomics vs evaluation Radiomics Evaluation Radiomics vs evaluation

AUC 0.855 0.689

DeLong test = 0:01727

0.847 0.659

DeLong test = 0:01186

CI (0.769, 0.942) (0.591, 0.787) (0.75, 0.945) (0.545, 0.773)

Cutoff -0.9982626 1 -0.9960851 1

Se 0.8275862 0.688172 0.8333333 0.6923077

Sp 0.8602151 0.6896552 0.8307692 0.625

PPV 0.6486486 0.8767123 0.6451613 0.8333333

NPV 0.9411765 0.4081633 0.9310345 0.4285714

DLR.Positive 5.9204244 2.2174432 4.9242424 1.8461538

DLR.Negative 0.200431 0.4521505 0.2006173 0.4923077

FP 13 9 11 9

FN 5 29 4 20

CI: 95% confidence interval.
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because of limited cost-effectiveness (mainly attributed to
price and waiting time). CT scan is one of the most econom-
ical, noninvasive, and convenient examination approaches
along the presurgical evaluation and postoperative follow-
up [26]. The radiomic approach relies on highly informative
image data. Indeed, this is exactly why we selected radiomic
analysis based on CT data. Researchers have determined the
ability of MR perfusion-based radiomics to discriminate
pseudoprogression from progressive disease in glioblastoma
patients [27] and the normal tissue (glandular) from benign
and malignant tumors in patients with breast mass [28].

There have beenmany liver cancer studies based on radio-
mics. However, these studies focused on the distinguishment
of microvasculature and prediction of prognosis while may
not meet the requirements for clinical application [29]. In this
study, we established the model by analyzing the image fea-
tures of patients and selected the features related to the patho-

logical types of patients through logistic regression analysis. By
analyzing the CT image features of the training cohort, we
selected the image features with high correlation with patient
diagnosis as factors of the radiomic model. To further verify
the diagnostic validity of the data model, we validated this in
the validation cohort. It is promising that the model we estab-
lished has higher accuracy than experienced clinical radiolo-
gist. A stable radiomic-based model may play an important
role in a regional hospital lack of experienced radiologists.

Meanwhile, some limitations pertain to our study. First,
it is a retrospective study with some considerable risk of bias
in the data-driven procedure. Second, the established model
was based on a single center. Larger, multicenter cohort
study analyses are needed to validate such model. Third, bio-
chemical markers significantly contirbute to liver cancer-
related studies, and this study did not involve biochemical
markers into the established model. The analysis combining
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Figure 4: The decision curve analysis for radiomic model in the training (a) and validation (b) dataset. The net benefit was shown in the y
-axis. The curve analysis showed that the radiomic model provides more benefit in distinguishing HCC from ICCA.

7Computational and Mathematical Methods in Medicine



biochemical indicators and image features should be consid-
ered in the subsequent studies.

5. Conclusion

In summary, we developed a radiomic diagnosis model
based on CT image that can quickly distinguish HCC from
ICCA, which may facilitate the differential diagnosis of
HCC and ICCA in the future.
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