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Objective. Measurement and monitoring of blood pressure are of great importance for preventing diseases such as cardiovascular
and stroke caused by hypertension. Therefore, there is a need for advanced artificial intelligence-based systolic and diastolic blood
pressure systems with a new technological infrastructure with a noninvasive process. The study is aimed at determining the
minimum ECG time required for calculating systolic and diastolic blood pressure based on the Electrocardiography (ECG)
signal. Methodology. The study includes ECG recordings of five individuals taken from the IEEE database, measured during
daily activity. For the study, each signal was divided into epochs of 2-4-6-8-10-12-14-16-18-20 seconds. Twenty-five features
were extracted from each epoched signal. The dimension of the dataset was reduced by using Spearman’s feature selection
algorithm. Analysis based on metrics was carried out by applying machine learning algorithms to the obtained dataset.
Gaussian process regression exponential (GPR) machine learning algorithm was preferred because it is easy to integrate into
embedded systems. Results. The MAPE estimation performance values for diastolic and systolic blood pressure values for 16-
second epochs were 2.44mmHg and 1.92mmHg, respectively. Conclusion. According to the study results, it is evaluated that
systolic and diastolic blood pressure values can be calculated with a high-performance ratio with 16-second ECG signals.

1. Introduction

1.1. Background and Motivation. The state of blood pressure
higher than usual is called hypertension [1]. Hypertension is
a risk factor for many cardiovascular diseases such as stroke,
renal failure, and heart attack that affect many people today
[2–4]. Hypertension is responsible for one out of every two
deaths in the world [3]. However, with BP data from 1.7 mil-
lion people in 31 provinces of China, many people with or

without hypertension or advanced disease have been identi-
fied, and they have developed methodologies for awareness,
diagnosis, and control of the disease [5]. The level of impor-
tance is emphasized in the study conducted in a country
with a significant population such as China. However, con-
tinuous blood pressure monitoring is essential for diagnosis
and treatment.

BP monitoring is an essential factor in the early diagno-
sis and treatment of hypertension [2, 3]. When the heart
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muscle contracts, systolic blood pressure occurs, and dia-
stolic blood pressure occurs when it relaxes. In other words,
high BP is an indicator of the pressure exerted by the blood
on the blood vessels [1, 3, 6]. SBP is about 80mmHg, and
DBP is about 120mmHg. Hypertension is defined as above
140mmHg SBP and 90mmHg DBP. If the BP is above aver-
age, the heart starts to work harder. An imbalanced heart

causes swelling in the vessels, blindness, and heart failure
causes many diseases [3]. Since the heart meets the nutri-
tional needs of all organs, imbalances in the heart indirectly
affect other organs. In this case, hypertension affects many
organs, especially the brain and kidneys [1–3].

Although the gold standard is mercury methods in BP
monitoring, many methods have been developed today [3,
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Figure 1: Application flowchart.
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Figure 2: Sample diary records.
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7]. Due to the toxic effects of mercury, reliable electronic
devices are recommended by the World Health Organiza-
tion [3].

According to the World Health Organization, the hyper-
tension diagnosis algorithm is as follows [3]. (1) A few days
of registration should be taken. (2) Measurements should be
made twice a day, in the morning and the evening. (3) Two
consecutive measurements are taken with at least one
minute between them in each measurement. The average
value of the measurements is taken. (4) Measurements are
taken in the sitting position. Although a few daily measure-
ments are considered sufficient by the World Health Organi-
zation, a one-week follow-up is recommended in some
studies [8].

Studies show that drug treatments can control hyperten-
sion [1, 9]. In patients with hypertension, the disease and
drug treatment follow-up are vital. For this reason, it is rec-
ommended that patients follow their treatments meticu-
lously [1, 3, 9].

In the past, BP measurements were made in health cen-
ters since devices for BP measurements were not widely
used. However, today, with the widespread use of BP mea-
suring devices, the possibilities of measuring at home have
increased. The most important feature of the devices was
that individuals could measure without the need for techni-
cal knowledge [7, 10]. Although the devices are easy to use,
measurement accuracy is vital. For this reason, it is recom-
mended to prefer verified devices [10].

Each device can use a different measurement technique
and location [7]. However, the World Health Organization
recommends measurement from the upper arm in a sitting
position [3]. It is known that upper arm measurement pro-
duces more accurate results than wrist measurement [3]. In
patients who cannot be in every position, such as pregnant,
there is a significant change in the results because the mea-
surement standard is exceeded [11].

Although BP monitors take measurements from differ-
ent places and calculate BP with different methods, they
are subject to the same design protocols. There are many
protocols in the literature [10]. The aim of all of them is to
develop a quality measuring system. The International Orga-
nization for Standardization (ISO) [12], the European Soci-
ety of Hypertension International Protocol (ESH-IP)
[13–15], and the Association for the Advancement of Medi-
cal Instrumentation (AAMI) standard [16] are just a few of
them.

Noninvasive brachial BP measurement is a primary
method in diagnosing hypertension diseases [17, 18]. How-
ever, this measurement creates significant problems for pub-
lic health. Every year, in American states, it has been
determined that the BP measurement of approximately one
million people is measured above or below normal by
5mmHg. With the resulting extra costs, people have suffered
the adverse effects of the wrong treatment [17]. For this rea-
son, it is essential to determine the correct BP measurement
method. There are many BP estimation methods in the liter-
ature, such as auscultatory methods, plethysmography,
tonometry, and oscillometric methods [7, 10]. Although
cuffed devices have been produced for many years, the new
target is to measure BP without causing discomfort to the
patient [10, 19]. Noninvasive methods, including PPG- and
electrocardiography- (ECG-) based signal processing and
artificial intelligence, are promising BP measurement
methods [10, 19, 20].

Many methods with invasive and noninvasive structures
are used in BP measurements. Invasive measurement sys-
tems often cause problems such as incorrect measurements
and loss of time. However, noninvasive models cause many
problems, such as ease of use and hardware and software
costs. If it is mentioned in a few articles in the literature that
these problems are seen, the initial states of the model
designed with a neural network using a genetic algorithm
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Table 1: Representation of features mathematical and code.

Nu Feature Equation

1 Kurtosis xkur =
∑n

i=1 x ið Þ − �xð Þ4
n − 1ð ÞS4

2 Skewness xske =
∑n

i=1 xi − �xð Þ3
n − 1ð ÞS3

3 ∗IQR IQR = iqr xð Þ

4 CV CV =
S
�x

� �
100

5 Geometric mean G = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1+⋯+xnn

p

6 Harmonic mean H =
n

1/x1ð Þ+⋯+ 1/xnð Þ
7 Activity-Hjort parameters A = S2

8 Mobility-Hjort parameters M =
S21
S2

9 Complexity-Hjort parameters C =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S22
S21

� �2

−
S21
S2

� �2
s

10 ∗Maximum xmax = max xið Þ

11 Median x
~ =

x n+1ð Þ/2ð Þ : x odd

1
2 xn/2 + x n/2ð Þ+1
� �

: x even

8<
:

12 ∗Mean absolute deviation MAD=mad xð Þ
13 ∗Minimum xmin = min xið Þ
14 ∗Central moments CM=moment x, 10ð Þ

15 Mean �x =
1
n
〠
n

i=1
=
1
n

x1+⋯+xnð Þ

16 Average curve length CL =
1
n
〠
n

i=2
xi − xi−1j j

17 Average energy E = 1
n
〠
n

i=1
x2i

18 Root mean squared Xrms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
xij j2

s

19 Standard error S�x =
Sffiffiffi
n

p

20 Standard deviation S =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
xi − �xð Þ

s

21 Shape factor SF =
Xrms

1/n∑n
i=1

ffiffiffiffiffiffiffi
xij jp

22 ∗Singular value decomposition SVD = svd xð Þ
23 ∗ 25% trimmed mean T25 = trimmean x, 25ð Þ
24 ∗ 50% trimmed mean T50 = trimmean x, 50ð Þ

25 Average Teager energy TE = 1
n
〠
n

i=3
x2i−1 − xixi−2
� �

∗ The property was computed using MATLAB. IQR: interquartile range; CV: coefficient of variation. S2: variance of the signal x. S21: variance of the 1st
derivative of the signal x. S22: variance of the 2nd derivative of the signal x:
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were tried to be optimized, but this caused problems in
terms of time and hardware cost and caused only a tiny
change in the accuracy rate. While the impact of BP mea-
surements on human life is of such high importance, devel-
oping these systems is of great importance for researchers.

For BP measurement models, each study applies a different
methodology. This study takes its place with a different
approach between these studies, which differ in their superi-
ority to each other. A study on the determination of blood
pressure measurement time has not been found so far. For

Table 3: Distribution of training and testing data.

Dataset Train (%80) Test (%20) Total

Diastolic 3866 966 4832

Systolic 3866 966 4832

Table 4: SBP prediction models for 2-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 7.15 9.10 11.79 138.93 11.79 0.62 0.39

GPR 6.24 7.91 10.00 99.97 10.00 0.66 0.44

EBT 6.54 8.30 10.62 112.75 10.62 0.64 0.41

2 3 10

FT 5.38 6.92 10.04 100.83 10.04 0.79 0.62

GPR 6.31 7.99 9.99 99.84 9.99 0.66 0.44

EBT 4.64 5.95 8.33 69.45 8.33 0.83 0.69

3 4 15

FT 5.11 6.58 9.74 94.86 9.74 0.81 0.66

GPR 5.05 6.45 8.63 74.44 8.63 0.82 0.67

EBT 4.37 5.62 7.94 63.10 7.94 0.85 0.73

4 5 20

FT 5.11 6.58 9.74 94.86 9.74 0.81 0.66

GPR 4.99 6.38 8.57 73.49 8.57 0.82 0.67

EBT 4.35 5.59 7.91 62.58 7.91 0.86 0.73

5 6 25

FT 5.19 6.68 9.85 97.07 9.85 0.81 0.65

GPR 5.00 6.39 8.58 73.60 8.58 0.82 0.67

EBT 4.39 5.63 7.96 63.41 7.96 0.85 0.73

6 8 30

FT 5.20 6.69 9.87 97.46 9.87 0.81 0.65

GPR 4.93 6.30 8.52 72.49 8.51 0.82 0.68

EBT 4.37 5.61 7.91 62.57 7.91 0.86 0.73

7 9 35

FT 4.66 6.01 9.01 81.15 9.01 0.85 0.72

GPR 4.64 5.93 8.18 66.86 8.18 0.84 0.71

EBT 4.12 5.29 7.52 56.47 7.51 0.88 0.77

8 10 40

FT 4.22 5.47 8.25 68.11 8.25 0.88 0.78

GPR 4.10 5.28 7.32 53.54 7.32 0.88 0.78

EBT 3.73 4.82 6.90 47.54 6.89 0.90 0.81

9 11 45

FT 4.22 5.48 8.26 68.14 8.25 0.88 0.78

GPR 4.12 5.31 7.34 53.92 7.34 0.88 0.78

EBT 3.77 4.87 6.96 48.40 6.96 0.90 0.81

10 13 50

FT 3.24 4.24 6.44 41.41 6.43 0.95 0.90

GPR 2.86 3.73 5.39 29.06 5.39 0.96 0.92

EBT 2.76 3.60 5.32 28.29 5.32 0.96 0.92

11 25 100

FT 3.19 4.16 6.49 42.12 6.49 0.95 0.91

GPR 2.68 3.49 5.12 26.18 5.12 0.97 0.93

EBT 2.58 3.37 5.05 25.48 5.05 0.97 0.93

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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this reason, the study presents an original model. Instead of
complex and sophisticated mathematical expressions seen in
deep learning algorithms, a model based on machine learn-
ing techniques has been developed. In addition, the findings
obtained in the literature review show that the designed
model has a higher accuracy rate than other models.

Signal processing, spectrum segmentation, feature
extraction applications, and morphological filters are used
in many fields. In this study, signal segmentation and feature
selection were performed. These processes occur not only in
fields such as biomedicine, medicine, and image processing
but also in engineering and commerce. It has applications

with various methodologies in different fields. Tabatabaei
et al. performed signal analysis with acoustic emission
method (AEM) to detect defects on angular contact bear-
ings. The authors applied feature extraction with empirical
mode decomposition (EMD) algorithm on the signals
obtained with AEM [21]. EMD is used to analyze nonlinear
and nonstationary signals by separating them into compo-
nents with different resolutions [22]. Using this method,
the authors extracted intrinsic mode functions from the sig-
nals as if they were extracting time and frequency domain
properties, and by transforming these functions into an ana-
lytical expression with Hilbert transform, they created a

Table 5: SBP prediction models for 4-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 6.54 8.45 11.24 126.33 11.24 0.63 0.40

GPR 5.86 7.55 9.73 94.61 9.73 0.66 0.43

EBT 6.09 7.85 10.30 106.13 10.30 0.64 0.41

2 3 10

FT 3.83 5.01 7.40 54.74 7.40 0.92 0.85

GPR 4.09 5.28 7.30 53.20 7.29 0.91 0.82

EBT 3.22 4.20 6.20 38.43 6.20 0.94 0.87

3 4 15

FT 3.60 4.73 7.14 50.94 7.14 0.93 0.86

GPR 3.27 4.28 6.31 39.83 6.31 0.93 0.86

EBT 3.04 3.99 5.94 35.24 5.94 0.94 0.89

4 5 20

FT 3.60 4.73 7.14 50.94 7.14 0.93 0.86

GPR 3.28 4.29 6.30 39.73 6.30 0.93 0.86

EBT 3.04 3.99 5.94 35.21 5.93 0.94 0.88

5 6 25

FT 3.63 4.77 7.22 52.07 7.22 0.93 0.86

GPR 3.27 4.28 6.30 39.67 6.30 0.93 0.86

EBT 3.07 4.02 5.97 35.61 5.97 0.94 0.88

6 8 30

FT 3.63 4.77 7.25 52.50 7.25 0.93 0.86

GPR 3.26 4.27 6.29 39.56 6.29 0.93 0.86

EBT 3.05 4.01 5.96 35.53 5.96 0.94 0.89

7 9 35

FT 3.56 4.68 7.09 50.19 7.08 0.93 0.86

GPR 3.09 4.04 6.05 36.58 6.05 0.94 0.88

EBT 3.00 3.94 5.89 34.64 5.89 0.94 0.89

8 10 40

FT 3.38 4.45 6.86 47.00 6.86 0.94 0.87

GPR 2.93 3.84 5.80 33.67 5.80 0.94 0.89

EBT 2.85 3.75 5.68 32.30 5.68 0.95 0.90

9 11 45

FT 3.38 4.45 6.86 47.00 6.86 0.94 0.87

GPR 2.90 3.80 5.78 33.39 5.78 0.95 0.89

EBT 2.83 3.72 5.63 31.65 5.63 0.95 0.90

10 13 50

FT 2.98 3.95 6.21 38.55 6.21 0.96 0.92

GPR 2.53 3.33 5.03 25.25 5.02 0.96 0.93

EBT 2.53 3.34 5.08 25.83 5.08 0.96 0.93

11 25 100

FT 2.82 3.72 5.92 35.01 5.92 0.96 0.92

GPR 2.42 3.18 4.89 23.91 4.89 0.97 0.94

EBT 2.34 3.09 4.86 23.62 4.86 0.97 0.94

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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model that can detect defects on bearings. However, the
same application process has been applied by different
authors in classifying electroencephalography (EEG) signals
as seizure and nonseizure [23]. EEG signals are decomposed
into intrinsic mode functions by the EMD method. These
functions were converted into an analytical expression and
extracted from the bandwidth properties of the signals. Clas-
sification based on ML techniques was created at the end of
the model. Two articles with similar content applied the
exact solution to different problems. In yet another article,
different domain properties were used to detect defects on
angular contact bearings, which is one of the crucial sub-

groups of bearings, and as a result, the model that would
make the best defect detection was realized by using time-
domain properties [24]. Zhang and Wang extracted 21-
time domain features for BP detection from PPG signals
[25]. They provided the size optimization with mean impact
value (MIV). By calculating the effect factor on the signals of
each feature, they extracted 8 features with a shallow impact.
He created a new model by optimizing the initial conditions
of the neural network, the last used ML technique, with the
genetic algorithm. This article, which has the same research
subject, has created its model with a specific approach [25].
However, considering that the amount of features used is

Table 6: SBP prediction models for 6-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 6.31 8.19 11.09 122.81 11.08 0.65 0.42

GPR 5.58 7.22 9.52 90.49 9.51 0.70 0.49

EBT 5.87 7.60 10.14 102.83 10.14 0.67 0.44

2 3 10

FT 5.11 6.68 9.80 95.97 9.80 0.79 0.62

GPR 5.68 7.34 9.56 91.31 9.56 0.70 0.49

EBT 4.63 6.01 8.39 70.43 8.39 0.82 0.68

3 4 15

FT 5.11 6.67 9.79 95.81 9.79 0.79 0.62

GPR 5.67 7.33 9.56 91.24 9.55 0.70 0.50

EBT 4.58 5.94 8.36 69.83 8.36 0.83 0.68

4 5 20

FT 5.11 6.67 9.79 95.81 9.79 0.79 0.62

GPR 5.67 7.34 9.56 91.27 9.55 0.70 0.49

EBT 4.59 5.97 8.38 70.12 8.37 0.82 0.68

5 6 25

FT 5.08 6.64 9.89 97.72 9.89 0.79 0.62

GPR 5.07 6.56 8.97 80.47 8.97 0.78 0.61

EBT 4.46 5.79 8.23 67.75 8.23 0.83 0.70

6 8 30

FT 5.08 6.64 9.89 97.79 9.89 0.79 0.62

GPR 4.99 6.45 8.89 79.01 8.89 0.78 0.61

EBT 4.45 5.79 8.22 67.58 8.22 0.83 0.70

7 9 35

FT 5.03 6.58 9.80 96.04 9.80 0.79 0.62

GPR 4.97 6.44 8.88 78.79 8.88 0.78 0.61

EBT 4.43 5.77 8.22 67.52 8.22 0.83 0.70

8 10 40

FT 5.05 6.61 9.80 95.97 9.80 0.79 0.63

GPR 4.97 6.44 8.88 78.77 8.88 0.78 0.61

EBT 4.45 5.80 8.28 68.56 8.28 0.83 0.69

9 11 45

FT 4.59 6.01 9.23 85.13 9.23 0.83 0.70

GPR 4.80 6.20 8.57 73.41 8.57 0.81 0.65

EBT 4.19 5.45 7.85 61.59 7.85 0.86 0.74

10 13 50

FT 2.98 3.95 6.27 39.31 6.27 0.95 0.91

GPR 2.62 3.47 5.28 27.87 5.28 0.96 0.92

EBT 2.57 3.41 5.26 27.61 5.25 0.96 0.92

11 25 100

FT 2.73 3.61 6.06 36.68 6.06 0.96 0.92

GPR 2.36 3.13 4.94 24.41 4.94 0.97 0.94

EBT 2.27 3.00 4.83 23.31 4.83 0.97 0.94

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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high, the use of optimization algorithms causes a minimal
change in the accuracy of blood pressure detection, and it
is thought that it will be expensive in terms of hardware cost.
It is concluded that it is not a good model.

The development of machine learning algorithms makes
it possible to create innovative models for the same problem.
The article’s methodology is presented step by step by
addressing such processes. First, signal processing is applied
so that the signals can be used efficiently. There are many
studies based on signal processing in the literature. These
are frequently preferred because they are noninvasive
methods [26–28]. Although its measurement is relatively

difficult compared to PPG, some studies use oscillometric
waveforms [29, 30], auscultatory and oscillometric wave-
forms [31], and peripheral signals [26]. In addition to these,
speech-based measurement methods are also available [32].
These studies applied signal processing processes, and
machine learning algorithms were used in BP estimation
according to the need. PPG and ECG are a group of biomed-
ical signals that are very easy to measure. ECG can be easily
measured on bedside monitors and Holter devices. On the
other hand, PPG can now be measured even on intelligent
wristbands. For this reason, interest in ECG- and PPG-
based BP estimation studies has increased in the literature

Table 7: SBP prediction models for 8-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 5.88 7.69 10.61 112.46 10.60 0.68 0.46

GPR 5.31 6.92 9.08 82.35 9.07 0.73 0.54

EBT 5.53 7.20 9.67 93.48 9.67 0.71 0.50

2 3 10

FT 4.49 5.91 8.75 76.48 8.75 0.84 0.71

GPR 5.20 6.76 8.93 79.66 8.93 0.77 0.59

EBT 4.49 5.85 8.09 65.43 8.09 0.84 0.70

3 4 15

FT 4.49 5.91 8.75 76.54 8.75 0.84 0.71

GPR 5.20 6.77 8.94 79.82 8.93 0.76 0.58

EBT 4.45 5.80 8.05 64.72 8.05 0.84 0.71

4 5 20

FT 4.49 5.91 8.75 76.54 8.75 0.84 0.71

GPR 5.20 6.77 8.95 80.04 8.95 0.76 0.58

EBT 4.52 5.89 8.19 67.03 8.19 0.83 0.69

5 6 25

FT 4.50 5.90 8.91 79.40 8.91 0.84 0.70

GPR 5.20 6.77 8.95 80.02 8.95 0.76 0.58

EBT 4.14 5.39 7.63 58.12 7.62 0.86 0.74

6 8 30

FT 4.66 6.09 9.23 85.13 9.23 0.82 0.67

GPR 4.72 6.15 8.44 71.21 8.44 0.81 0.65

EBT 3.98 5.20 7.49 56.01 7.48 0.87 0.76

7 9 35

FT 4.66 6.09 9.23 85.13 9.23 0.82 0.67

GPR 4.67 6.08 8.36 69.77 8.35 0.81 0.66

EBT 3.97 5.19 7.50 56.13 7.49 0.87 0.75

8 10 40

FT 4.70 6.15 9.26 85.72 9.26 0.82 0.67

GPR 4.61 6.01 8.29 68.67 8.29 0.82 0.67

EBT 3.97 5.19 7.48 55.87 7.47 0.87 0.76

9 11 45

FT 4.68 6.13 9.19 84.31 9.18 0.82 0.68

GPR 4.60 6.00 8.28 68.47 8.27 0.82 0.67

EBT 3.98 5.20 7.51 56.32 7.50 0.87 0.75

10 13 50

FT 4.48 5.87 8.97 80.37 8.96 0.85 0.72

GPR 4.41 5.74 8.01 64.18 8.01 0.84 0.70

EBT 3.83 5.01 7.24 52.37 7.24 0.88 0.78

11 25 100

FT 2.54 3.37 5.71 32.62 5.71 0.96 0.93

GPR 2.20 2.91 4.50 20.28 4.50 0.97 0.95

EBT 2.13 2.81 4.56 20.74 4.55 0.97 0.95

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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[10, 19, 20]. ECG signals were preferred in this study because
they are easy to measure.

Signal processing studies include digital filtering, feature
extraction, feature selection, and machine learning-based
regression steps [20, 27, 33]. In the case of using deep learn-
ing, feature extraction and selection operations are per-
formed by deep learning [34]. The success of the signal
processing process depends on the designed steps. The fea-
ture extraction steps often focuses on the formal properties
of the signals [29–31]. In the event of deformities, the sys-
tem’s collapse is expected. However, examining the statisti-

cal properties of the signal instead of the formal properties
will reduce the errors and help catch the overlooked infor-
mation [35–37]. In this study, 25 statistical-based features
were extracted instead of the standard features used in the
literature.

Although deep learning methods include feature extrac-
tion and selection steps, the training periods are pretty long
[20, 28, 34]. Compared to classical machine learning algo-
rithms, the success rate of deep learning is relatively high.
This study proposes a method based on classical machine
learning algorithms by optimizing signal processing

Table 8: SBP prediction models for 10-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 5.68 7.42 10.29 105.82 10.29 0.71 0.50

GPR 5.17 6.74 8.85 78.30 8.85 0.75 0.57

EBT 5.31 6.92 9.37 87.64 9.36 0.73 0.53

2 3 10

FT 5.10 6.68 9.91 98.04 9.90 0.77 0.59

GPR 5.08 6.63 8.75 76.43 8.74 0.76 0.58

EBT 4.73 6.16 8.59 73.71 8.59 0.81 0.65

3 4 15

FT 5.10 6.68 9.91 98.04 9.90 0.77 0.59

GPR 5.07 6.62 8.74 76.39 8.74 0.76 0.58

EBT 4.66 6.08 8.57 73.33 8.56 0.81 0.65

4 5 20

FT 5.09 6.66 9.91 98.20 9.91 0.77 0.60

GPR 4.91 6.39 8.66 74.92 8.66 0.78 0.61

EBT 4.57 5.97 8.50 72.24 8.50 0.81 0.66

5 6 25

FT 4.57 5.97 9.03 81.45 9.02 0.83 0.68

GPR 4.91 6.39 8.66 74.92 8.66 0.78 0.61

EBT 4.13 5.39 7.73 59.69 7.73 0.86 0.73

6 8 30

FT 4.59 5.99 9.13 83.22 9.12 0.83 0.68

GPR 4.46 5.82 8.15 66.38 8.15 0.83 0.68

EBT 4.01 5.22 7.70 59.19 7.69 0.86 0.74

7 9 35

FT 4.56 5.96 9.11 82.98 9.11 0.83 0.68

GPR 4.46 5.81 8.15 66.28 8.14 0.83 0.68

EBT 3.99 5.21 7.67 58.82 7.67 0.86 0.74

8 10 40

FT 4.60 6.02 9.14 83.52 9.14 0.82 0.68

GPR 4.47 5.82 8.15 66.39 8.15 0.83 0.68

EBT 4.01 5.23 7.70 59.23 7.70 0.86 0.74

9 11 45

FT 4.60 6.01 9.14 83.39 9.13 0.82 0.68

GPR 4.44 5.79 8.14 66.20 8.14 0.83 0.68

EBT 3.99 5.21 7.68 58.85 7.67 0.86 0.74

10 13 50

FT 2.97 3.93 6.07 36.86 6.07 0.95 0.90

GPR 2.66 3.51 5.17 26.75 5.17 0.96 0.91

EBT 2.58 3.41 5.14 26.39 5.14 0.96 0.92

11 25 100

FT 2.40 3.21 5.44 29.60 5.44 0.97 0.93

GPR 2.17 2.88 4.50 20.27 4.50 0.97 0.95

EBT 2.08 2.75 4.37 19.11 4.37 0.97 0.95

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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processes. This study’s Gaussian process regression (GPR),
regression tree ensembles, and regression trees were pre-
ferred because of their high-performance [38–40].

Feature selection algorithms are generally not preferred
in BP estimation studies [26, 27, 31]. In studies where classi-
cal machine learning algorithms are preferred, model perfor-
mance is increased using feature selection algorithms
[41–43]. The Spearman correlation coefficient-based feature
selection algorithm was preferred in this study due to its
high performance.

In the literature, studies on BP estimation seem to be one
step ahead of learning-based studies [20, 28, 32]. Model per-

formance values in BP estimation models developed with
ECG and PPG signals are 0:84 < R < 0:95, 3:36 <MAE <
5:48, and 0:78 < RMSE < 13:83 [20, 33, 34]. In a study with
auscultatory and oscillometric waveforms, the model perfor-
mance was −0:9 <MAE < 11,032 and 0:423 < R < 0:948.

Although models have been developed in the literature,
there is no information about how many seconds the models
can measure. This study is aimed at determining the mini-
mum duration of ECG signal required to estimate SBP and
DBP with ECG. Firstly, ten different datasets were created
in the study by dividing the ECG signal into epochs of 2,
4, 6, 8, 10, 12, 14, 16, 18, and 20 seconds. Then, 25 features

Table 9: SBP prediction models for 12-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 5.45 7.18 10.02 100.18 10.01 0.71 0.51

GPR 4.95 6.46 8.61 73.99 8.60 0.77 0.60

EBT 5.10 6.70 9.11 82.95 9.11 0.74 0.55

2 3 10

FT 4.67 6.18 9.16 83.80 9.15 0.81 0.65

GPR 4.76 6.25 8.37 69.95 8.36 0.79 0.62

EBT 4.28 5.60 7.95 63.19 7.95 0.84 0.71

3 4 15

FT 4.67 6.18 9.16 83.80 9.15 0.81 0.65

GPR 4.76 6.25 8.38 70.11 8.37 0.79 0.62

EBT 4.21 5.50 7.92 62.60 7.91 0.84 0.71

4 5 20

FT 4.64 6.12 9.01 81.00 9.00 0.81 0.66

GPR 4.53 5.94 8.21 67.28 8.20 0.81 0.65

EBT 4.13 5.42 7.83 61.28 7.83 0.84 0.71

5 6 25

FT 4.21 5.57 8.32 69.10 8.31 0.87 0.75

GPR 3.80 5.01 7.20 51.76 7.19 0.87 0.77

EBT 3.73 4.90 7.07 49.98 7.07 0.89 0.79

6 8 30

FT 3.79 5.01 7.83 61.25 7.83 0.89 0.79

GPR 3.58 4.73 6.95 48.30 6.95 0.89 0.79

EBT 3.35 4.40 6.58 43.26 6.58 0.91 0.83

7 9 35

FT 3.79 5.01 7.83 61.25 7.83 0.89 0.79

GPR 3.56 4.70 6.89 47.38 6.88 0.89 0.79

EBT 3.35 4.39 6.61 43.65 6.61 0.91 0.83

8 10 40

FT 3.80 5.02 7.84 61.44 7.84 0.89 0.78

GPR 3.56 4.70 6.88 47.29 6.88 0.89 0.79

EBT 3.34 4.39 6.58 43.26 6.58 0.91 0.83

9 11 45

FT 3.80 5.02 7.85 61.48 7.84 0.89 0.78

GPR 3.56 4.71 6.87 47.07 6.86 0.89 0.79

EBT 3.31 4.35 6.51 42.26 6.50 0.91 0.83

10 13 50

FT 2.94 3.91 6.09 37.06 6.09 0.95 0.90

GPR 2.73 3.65 5.31 28.18 5.31 0.95 0.91

EBT 2.58 3.42 5.16 26.57 5.15 0.96 0.92

11 25 100

FT 2.38 3.19 5.53 30.51 5.52 0.97 0.93

GPR 2.04 2.73 4.39 19.25 4.39 0.98 0.95

EBT 2.05 2.73 4.46 19.90 4.46 0.98 0.95

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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were extracted from each epoch in the time domain. With
the help of the Spearman feature selection algorithm, rele-
vant features were selected, and BP values were estimated
with the help of machine learning algorithms.

1.2. Literature Review. Machine learning, the application of
artificial intelligence, creates a paradigm shift in medicine
with its features in pathological diagnosis, patient monitor-
ing, and helping treatment [44]. Numerous studies are being
conducted on the relationship between biomedical signals
and blood pressure for the appropriate and timely treatment
of hypertension using machine learning algorithms [45]. A

typical biomedical signal processing system includes the bio-
logical system of interest, the sensors used to capture the
activity of the biomedical system, and the process of extract-
ing the appropriate methodology to analyze the signals and
extract the desired information from the relevant signal.
The biological signal examined in this study is the ECG sig-
nal, which shows the heart’s electrical activities.

Recent technological advances have made wearable bio-
sensors suitable for daily use. Wearable biosensors provide
an opportunity for real-time monitoring of vital human
signs, providing timely feedback, and providing early diag-
nosis and treatment possibilities [46, 47]. Unlike

Table 10: SBP prediction models for 14-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 3.56 4.75 6.42 41.10 6.41 0.92 0.84

GPR 3.02 4.02 5.39 29.00 5.39 0.94 0.87

EBT 3.31 4.41 5.90 34.81 5.90 0.92 0.85

2 3 10

FT 3.23 4.33 6.12 37.41 6.12 0.94 0.88

GPR 3.28 4.38 12.62 159.13 12.61 0.94 0.88

EBT 2.96 3.91 5.70 32.48 5.70 0.94 0.89

3 4 15

FT 3.23 4.33 6.12 37.41 6.12 0.94 0.88

GPR 3.73 5.01 27.49 754.77 27.47 0.94 0.88

EBT 2.88 3.82 5.44 29.54 5.44 0.94 0.89

4 5 20

FT 3.18 4.28 6.06 36.63 6.05 0.94 0.89

GPR 4.97 6.77 105.52 11118.50 105.44 0.95 0.90

EBT 2.85 3.78 5.43 29.41 5.42 0.95 0.90

5 6 25

FT 3.01 4.02 5.91 34.90 5.91 0.95 0.90

GPR 3.58 4.83 30.51 929.23 30.48 0.95 0.90

EBT 2.72 3.58 5.35 28.60 5.35 0.96 0.91

6 8 30

FT 2.93 3.91 5.99 35.81 5.98 0.95 0.91

GPR 5.40 7.36 117.78 13851.43 117.69 0.95 0.90

EBT 2.59 3.43 5.06 25.61 5.06 0.96 0.92

7 9 35

FT 2.93 3.91 5.99 35.81 5.98 0.95 0.91

GPR 3.97 5.22 7.43 55.09 7.42 0.86 0.75

EBT 2.61 3.45 5.11 26.03 5.10 0.96 0.92

8 10 40

FT 2.92 3.90 5.96 35.48 5.96 0.95 0.91

GPR 4.96 6.72 101.53 10293.64 101.46 0.95 0.90

EBT 2.61 3.46 5.13 26.25 5.12 0.96 0.92

9 11 45

FT 2.91 3.89 5.96 35.45 5.95 0.95 0.91

GPR 3.97 5.22 7.48 55.84 7.47 0.86 0.75

EBT 2.62 3.47 5.22 27.23 5.22 0.96 0.92

10 13 50

FT 2.76 3.65 5.70 32.49 5.70 0.95 0.91

GPR 2.49 3.33 4.81 23.14 4.81 0.96 0.93

EBT 2.47 3.27 4.85 23.50 4.85 0.96 0.93

11 25 100

FT 2.24 3.00 5.14 26.41 5.14 0.97 0.94

GPR 2.00 2.68 4.38 19.19 4.38 0.98 0.95

EBT 2.05 2.72 4.39 19.22 4.38 0.98 0.95

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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conventional BP sensors, which are subject to a specific mea-
surement procedure, modern wearable biosensors monitor
the relevant signals all day long and do not create a burden
other than wearing the device. Reliably receiving these sig-
nals from the human body and collecting the received signal
data brings along important research [48–50]. Securely col-
lecting, verifying, and transporting electronic data is
achieved through the integration of the internet of things
(IoT) and artificial intelligence technology [51–53]. The dif-
ficulty of effectively guaranteeing the quality of IoT equip-
ment brings with it the difficulty of ensuring the reliability

and accuracy of the data [54, 55]. This situation is of great
importance in the accuracy of algorithms based on ML tech-
niques. Ahamed and Farid states that datasets produced with
IoT terminals cannot fully cover medical scenarios, and
intelligent diagnosis will be significantly reduced [56]. How-
ever, advances are currently being made in IoT, allowing
high-reliability acquisition of medical image data and multi-
waveform data [57]. Good results are obtained from such
devices in real-life conditions. Superficial temporal artery
tonometry-based device [58], PPG optical sensor [59], ART-
SENS (Arterial Stiffness Assessment for Noninvasive

Table 11: SBP prediction models for 16-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 3.18 4.25 5.86 34.29 5.86 0.94 0.88

GPR 2.87 3.82 5.17 26.64 5.16 0.94 0.89

EBT 2.94 3.92 5.39 29.05 5.39 0.94 0.88

2 3 10

FT 3.07 4.11 5.76 33.10 5.75 0.94 0.89

GPR 2.78 3.72 5.48 30.00 5.48 0.94 0.89

EBT 2.78 3.70 5.24 27.42 5.24 0.95 0.90

3 4 15

FT 3.07 4.11 5.75 33.06 5.75 0.94 0.89

GPR 5.33 7.27 124.66 15514.79 124.56 0.94 0.89

EBT 2.77 3.69 5.18 26.80 5.18 0.95 0.90

4 5 20

FT 3.07 4.11 5.75 33.06 5.75 0.94 0.89

GPR 6.77 9.27 192.70 37072.41 192.54 0.94 0.89

EBT 2.79 3.71 5.27 27.68 5.26 0.95 0.90

5 6 25

FT 2.92 3.91 5.73 32.83 5.73 0.95 0.90

GPR 8.36 11.48 268.79 72126.37 268.56 0.94 0.89

EBT 2.67 3.54 5.13 26.29 5.13 0.96 0.91

6 8 30

FT 2.87 3.83 5.72 32.71 5.72 0.95 0.91

GPR 6.49 8.86 179.87 32299.68 179.72 0.95 0.89

EBT 2.53 3.36 4.98 24.77 4.98 0.96 0.92

7 9 35

FT 2.87 3.83 5.72 32.72 5.72 0.95 0.91

GPR 63.68 88.44 2946.64 8668294.47 2944.20 0.95 0.90

EBT 2.56 3.40 4.98 24.74 4.97 0.96 0.92

8 10 40

FT 2.91 3.88 5.75 33.03 5.75 0.95 0.90

GPR 3.25 4.35 22.40 500.78 22.38 0.95 0.90

EBT 2.54 3.38 4.91 24.10 4.91 0.96 0.92

9 11 45

FT 2.90 3.87 5.75 32.97 5.74 0.95 0.90

GPR 5.67 7.73 138.96 19278.64 138.85 0.95 0.90

EBT 2.53 3.36 4.95 24.47 4.95 0.96 0.92

10 13 50

FT 2.45 3.30 5.12 26.19 5.12 0.96 0.93

GPR 2.50 3.33 4.91 24.05 4.90 0.96 0.92

EBT 2.27 3.02 4.57 20.88 4.57 0.97 0.94

11 25 100

FT 2.00 2.69 4.66 21.70 4.66 0.98 0.95

GPR 1.92 2.56 4.09 16.66 4.08 0.98 0.96

EBT 1.95 2.60 4.22 17.80 4.22 0.98 0.96

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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Scanning) pressure for brachial arterial pressure [60], a BP
estimator based on the principle of volume compensation
citeTanaka2007, and the Modulated Magnetic Blood Signa-
ture mechanism [61] noninvasive are some of the measure-
ment systems developed for BP monitoring.

Most research on blood pressure estimation uses either
electrocardiogram and photoplethysmograph signals or a
combination. While this causes more problems, it also
brings with it the need for equipment. Taking PPG signal
measurements requires the use of many techniques
[62–65]. Proper use of these techniques requires accurate

measurement of PPG signals. Therefore, the use of PPG sig-
nals for BP measurement is not a correct option [66, 67].
This study, on the other hand, is aimed at estimating BP
with the dataset created by extracting statistical features
from ECG signals.

1.3. Aims and Contributions. In real-life situations, in vehi-
cles, at home, or in hospitals, BP can only be measured
with a stand-alone BP device. On the other hand, modern
telemedicine allows the development of biosensors in elec-
trodes attached to the patient’s chest, allowing the

Table 12: SBP prediction models for 18-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 5.28 6.93 9.64 92.73 9.63 0.75 0.57

GPR 4.74 6.21 8.20 67.10 8.19 0.81 0.66

EBT 4.92 6.45 8.86 78.40 8.85 0.77 0.60

2 3 10

FT 4.01 5.30 7.89 62.06 7.88 0.88 0.77

GPR 4.55 5.97 7.80 60.80 7.80 0.85 0.72

EBT 3.83 5.00 7.24 52.29 7.23 0.89 0.80

3 4 15

FT 4.17 5.51 8.18 66.86 8.18 0.87 0.75

GPR 3.83 5.05 7.04 49.43 7.03 0.89 0.79

EBT 3.66 4.82 7.00 48.94 7.00 0.89 0.80

4 5 20

FT 4.17 5.51 8.18 66.86 8.18 0.87 0.75

GPR 3.83 5.05 7.02 49.13 7.01 0.89 0.79

EBT 3.73 4.90 7.08 50.05 7.07 0.89 0.79

5 6 25

FT 4.17 5.51 8.18 66.86 8.18 0.87 0.75

GPR 3.83 5.06 7.02 49.13 7.01 0.89 0.79

EBT 3.71 4.89 7.02 49.22 7.02 0.89 0.80

6 8 30

FT 3.72 4.93 7.59 57.58 7.59 0.89 0.79

GPR 3.71 4.90 6.92 47.74 6.91 0.89 0.80

EBT 3.30 4.33 6.38 40.59 6.37 0.92 0.84

7 9 35

FT 3.72 4.93 7.59 57.58 7.59 0.89 0.79

GPR 3.70 4.87 6.91 47.66 6.90 0.90 0.80

EBT 3.34 4.39 6.43 41.24 6.42 0.92 0.84

8 10 40

FT 3.70 4.91 7.58 57.35 7.57 0.89 0.80

GPR 3.70 4.88 6.89 47.33 6.88 0.90 0.80

EBT 3.34 4.39 6.40 40.90 6.39 0.92 0.84

9 11 45

FT 3.70 4.91 7.58 57.37 7.57 0.89 0.79

GPR 3.70 4.89 6.89 47.40 6.88 0.90 0.81

EBT 3.40 4.47 6.51 42.34 6.51 0.91 0.84

10 13 50

FT 2.76 3.69 5.67 32.10 5.67 0.96 0.92

GPR 2.65 3.56 5.13 26.25 5.12 0.96 0.91

EBT 2.57 3.41 5.03 25.24 5.02 0.96 0.92

11 25 100

FT 2.12 2.84 4.91 24.04 4.90 0.97 0.94

GPR 1.97 2.63 4.38 19.18 4.38 0.97 0.95

EBT 1.99 2.64 4.39 19.27 4.39 0.98 0.95

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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measurement of BP to be obtained. The proposed method
offers usage areas ranging from clinical situations to mili-
tary environments with wearable sensor technology. In
addition, a suitable methodology has been developed to
reduce the need to connect various sensors to the human
body. The developed model is aimed at determining the
SBP and DBP estimation time based on artificial
intelligence-based ECG signals. Although there are many
studies in the literature that detect blood pressure with
ECG, there has been no study on how long blood pressure
can be measured.

2. Methodology

The basic approach to providing BP estimation is shown as a
flow diagram in Figure 1. The process given in the flow chart
was applied step by step. First, the ECG signals are sourced
from the IEEE open-source data-sharing platform [68, 69].
In the received dataset, epoching was applied to estimate
BP in the shortest possible time frame for ECG signals. After
this step, the time domain features of each ECG signal are
taken for feature extraction. Derived features are used as
inputs for various machine learning algorithms. Finally, a

Table 13: SBP prediction models for 20-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 5.03 6.59 9.31 86.53 9.30 0.76 0.58

GPR 4.71 6.14 8.31 68.84 8.30 0.80 0.64

EBT 4.76 6.22 8.61 73.99 8.60 0.78 0.60

2 3 10

FT 4.20 5.54 8.22 67.46 8.21 0.86 0.73

GPR 3.95 5.19 7.36 54.01 7.35 0.87 0.75

EBT 3.72 4.87 7.22 52.08 7.22 0.88 0.78

3 4 15

FT 4.20 5.55 8.22 67.49 8.22 0.86 0.73

GPR 3.97 5.21 7.37 54.21 7.36 0.87 0.75

EBT 3.73 4.90 7.25 52.45 7.24 0.88 0.77

4 5 20

FT 4.20 5.55 8.22 67.49 8.22 0.86 0.73

GPR 3.98 5.22 7.39 54.54 7.38 0.87 0.75

EBT 3.74 4.90 7.29 53.09 7.29 0.88 0.78

5 6 25

FT 3.83 5.04 7.54 56.69 7.53 0.88 0.78

GPR 3.82 5.02 7.25 52.40 7.24 0.88 0.77

EBT 3.39 4.43 6.73 45.15 6.72 0.91 0.82

6 8 30

FT 3.73 4.90 7.66 58.48 7.65 0.88 0.78

GPR 3.65 4.81 6.92 47.83 6.92 0.89 0.79

EBT 3.28 4.29 6.55 42.87 6.55 0.91 0.83

7 9 35

FT 3.73 4.90 7.66 58.48 7.65 0.88 0.78

GPR 3.66 4.82 6.91 47.72 6.91 0.89 0.79

EBT 3.36 4.39 6.72 45.04 6.71 0.91 0.82

8 10 40

FT 3.72 4.90 7.67 58.74 7.66 0.88 0.78

GPR 3.65 4.80 6.90 47.51 6.89 0.89 0.79

EBT 3.29 4.31 6.52 42.39 6.51 0.91 0.83

9 11 45

FT 3.72 4.90 7.67 58.75 7.66 0.88 0.78

GPR 3.65 4.80 6.90 47.54 6.90 0.89 0.79

EBT 3.32 4.35 6.62 43.70 6.61 0.91 0.83

10 13 50

FT 2.39 3.23 5.11 26.08 5.11 0.96 0.93

GPR 2.44 3.26 4.80 23.00 4.80 0.96 0.92

EBT 2.28 3.02 4.70 22.05 4.70 0.97 0.93

11 25 100

FT 2.17 2.89 5.15 26.43 5.14 0.97 0.94

GPR 1.96 2.62 4.13 16.98 4.12 0.98 0.96

EBT 1.96 2.60 4.29 18.41 4.29 0.98 0.95

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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suitable feature selection algorithm was applied to the model
to increase the performance. The described process will be
discussed in detail in the following sections.

2.1. Data Preprocessing

2.1.1. Data Acquisition. In this study, the open-source data-
set on the IEEE database sharing platform was used [68, 69].
In this dataset, there are ECG, PPG, and BP records. These
records were obtained from five young, healthy individuals
(one female and four male) who did not have peripheral or
cardiovascular disease and ranged from sedentary to regular

activity levels. The dataset was created by taking records for
six and a half hours each day for three days. Example ECG
signals of these individuals are given in Figure 2.

2.1.2. Epoching. The ECG signal with a sampling frequency
of 64Hz was split into epochs of 2-4-6-8-10-12-14-16-18-
20 seconds to generate the BP prediction model. SBP and
DBP signals were obtained for each period. Example ECG
and BP signals of the 4-second epoch are given in Figure 3.

Figure 3 contains simultaneous BP signal for 4-second
ECG recording. The BP signal has four maximum and min-
imum points for 4 seconds. The minimum points of the BP

Table 14: DBP prediction models for 2-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 8.43 6.18 8.32 69.21 8.32 0.62 0.39

GPR 7.31 5.32 7.10 50.40 7.10 0.66 0.44

EBT 7.69 5.62 7.52 56.61 7.52 0.64 0.41

2 3 10

FT 6.47 4.80 7.25 52.54 7.25 0.79 0.62

GPR 6.99 5.10 6.88 47.33 6.88 0.73 0.53

EBT 5.53 4.06 6.03 36.37 6.03 0.83 0.69

3 4 15

FT 6.16 4.56 7.00 48.97 7.00 0.81 0.66

GPR 5.98 4.38 6.21 38.52 6.21 0.82 0.67

EBT 5.22 3.85 5.77 33.30 5.77 0.85 0.73

4 5 20

FT 6.16 4.56 7.00 48.97 7.00 0.81 0.66

GPR 5.96 4.36 6.19 38.34 6.19 0.82 0.67

EBT 5.25 3.86 5.80 33.59 5.80 0.85 0.73

5 6 25

FT 6.17 4.56 7.02 49.30 7.02 0.81 0.66

GPR 5.89 4.31 6.16 37.93 6.16 0.82 0.68

EBT 5.25 3.86 5.78 33.40 5.78 0.85 0.73

6 8 30

FT 6.19 4.57 7.04 49.48 7.03 0.81 0.66

GPR 5.99 4.39 6.21 38.56 6.21 0.81 0.66

EBT 5.26 3.86 5.81 33.69 5.80 0.85 0.73

7 9 35

FT 5.65 4.17 6.55 42.94 6.55 0.85 0.72

GPR 5.58 4.09 5.95 35.36 5.95 0.84 0.70

EBT 5.01 3.68 5.57 31.07 5.57 0.87 0.76

8 10 40

FT 5.26 3.90 6.20 38.44 6.20 0.87 0.76

GPR 5.07 3.73 5.49 30.13 5.49 0.88 0.77

EBT 4.58 3.38 5.20 27.08 5.20 0.90 0.81

9 11 45

FT 5.26 3.89 6.20 38.39 6.20 0.87 0.76

GPR 4.93 3.63 5.39 29.02 5.39 0.88 0.78

EBT 4.60 3.39 5.20 27.03 5.20 0.90 0.81

10 13 50

FT 4.15 3.11 5.20 27.06 5.20 0.95 0.90

GPR 3.65 2.68 4.31 18.57 4.31 0.96 0.92

EBT 3.50 2.58 4.26 18.16 4.26 0.96 0.92

11 25 100

FT 4.06 3.03 5.23 27.33 5.23 0.95 0.91

GPR 3.56 2.61 4.21 17.70 4.21 0.96 0.92

EBT 3.31 2.43 4.06 16.52 4.06 0.97 0.93

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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signal represent DBP, while the maximum points represent
SBP. DBP and SBP values are calculated over these points.
SBP corresponds to the average of the maximum points
and DBP to the average of the minimum points. If
Figure 3 is examined in detail, it will be observed that there
are similar characteristics of ECG and BP signals.

2.2. Feature Extraction. The five simultaneous ECG signals
obtained must have certain inputs for the machine learning
algorithms to be applied. These inputs are descriptive
parameters often used in statistical science. Descriptive
parameters include information such as standard deviation,

central moment, IQR, and 25 in total. A total of 125 features
were extracted from five signals (Table 1). Here, feature
extraction is aimed at obtaining ECG signal information
with the help of different parameters by preventing informa-
tion loss.

2.3. Feature Selection Algorithm. In other words, feature
selection, called size optimization, is an algorithm that elim-
inates irrelevant features in the dataset [32]. Feature selec-
tion is applied to increase the performance of machine
learning algorithms and reduce the size of the dataset con-
taining the feature entries and the computational load [27].

Table 15: DBP prediction models for 4-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 7.92 5.75 7.89 62.24 7.89 0.63 0.40

GPR 7.10 5.11 6.87 47.21 6.87 0.65 0.43

EBT 7.40 5.34 7.27 52.86 7.27 0.64 0.41

2 3 10

FT 4.87 3.53 5.57 31.06 5.57 0.92 0.85

GPR 5.00 3.56 5.34 28.54 5.34 0.90 0.82

EBT 4.11 2.93 4.71 22.13 4.70 0.94 0.88

3 4 15

FT 4.69 3.39 5.44 29.59 5.44 0.93 0.86

GPR 4.21 3.01 4.77 22.72 4.77 0.93 0.86

EBT 3.97 2.83 4.55 20.67 4.55 0.94 0.89

4 5 20

FT 4.69 3.39 5.44 29.59 5.44 0.93 0.86

GPR 4.17 2.98 4.74 22.41 4.73 0.93 0.86

EBT 3.97 2.83 4.56 20.81 4.56 0.94 0.88

5 6 25

FT 4.68 3.37 5.47 29.93 5.47 0.93 0.86

GPR 4.21 3.01 4.77 22.71 4.77 0.93 0.86

EBT 3.98 2.84 4.57 20.91 4.57 0.94 0.88

6 8 30

FT 4.72 3.40 5.49 30.11 5.49 0.93 0.86

GPR 4.20 3.00 4.75 22.59 4.75 0.93 0.86

EBT 4.01 2.86 4.60 21.13 4.60 0.94 0.88

7 9 35

FT 4.60 3.34 5.39 29.04 5.39 0.93 0.86

GPR 4.02 2.86 4.61 21.21 4.61 0.94 0.88

EBT 3.92 2.79 4.53 20.53 4.53 0.94 0.89

8 10 40

FT 4.44 3.20 5.24 27.42 5.24 0.93 0.87

GPR 3.84 2.73 4.45 19.83 4.45 0.94 0.89

EBT 3.74 2.66 4.39 19.28 4.39 0.95 0.90

9 11 45

FT 4.44 3.20 5.24 27.42 5.24 0.93 0.87

GPR 3.86 2.75 4.46 19.92 4.46 0.94 0.89

EBT 3.74 2.67 4.40 19.32 4.40 0.95 0.90

10 13 50

FT 3.97 2.84 4.76 22.60 4.75 0.96 0.91

GPR 3.42 2.42 3.99 15.92 3.99 0.96 0.93

EBT 3.39 2.40 4.04 16.32 4.04 0.96 0.93

11 25 100

FT 3.76 2.68 4.74 22.41 4.73 0.96 0.92

GPR 3.28 2.31 3.89 15.15 3.89 0.97 0.94

EBT 3.17 2.24 3.85 14.82 3.85 0.97 0.94

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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Many parameters are used to calculate the level of relation-
ship between features in statistics. This study used a Spear-
man correlation coefficient-based feature selection
algorithm for feature selection.

2.3.1. Spearman Correlation Coefficients. Spearman’s corre-
lation coefficient ðrsÞ is a statistical method used to express
the level of correlation of features in a dataset with the label
(SBP or DBP). It takes values between -1 and +1 [70]. While
+1 indicates a perfect fit between the data, -1 indicates a neg-
ative perfect fit. 0 indicates that there is no relationship level.

Accordingly, the level of relationship between SBP and DBP
values and 125 features is presented in Table 2.

2.4. Machine Learning Algorithms. The study’s machine
learning algorithms are ensemble bagged tree, fine tree,
and Gaussian process regression. These models have good
performance, simple structure, and widespread use in
regression problems [43]. The top three algorithms with
the best performance were selected for use in a software
environment with extensive machine learning algorithms.
Performance monitoring of each epoched signal has been
made for the selected ML techniques. The explanation based

Table 16: DBP prediction models for 6-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 7.74 5.50 7.71 59.44 7.71 0.65 0.42

GPR 6.80 4.79 6.64 44.00 6.63 0.71 0.50

EBT 7.18 5.07 7.06 49.84 7.06 0.67 0.45

2 3 10

FT 6.40 4.52 6.87 47.23 6.87 0.79 0.62

GPR 6.94 4.89 6.67 44.52 6.67 0.70 0.49

EBT 5.77 4.01 5.89 34.73 5.89 0.83 0.68

3 4 15

FT 6.40 4.51 6.87 47.11 6.86 0.79 0.62

GPR 6.92 4.87 6.67 44.41 6.66 0.70 0.49

EBT 5.71 3.99 5.90 34.74 5.89 0.83 0.68

4 5 20

FT 6.40 4.51 6.87 47.11 6.86 0.79 0.62

GPR 6.89 4.85 6.66 44.34 6.66 0.71 0.51

EBT 5.73 3.99 5.91 34.85 5.90 0.82 0.68

5 6 25

FT 6.41 4.57 7.07 49.97 7.07 0.79 0.62

GPR 6.24 4.37 6.28 39.43 6.28 0.78 0.61

EBT 5.57 3.90 5.85 34.23 5.85 0.83 0.70

6 8 30

FT 6.38 4.57 7.02 49.27 7.02 0.79 0.62

GPR 6.15 4.31 6.23 38.81 6.23 0.78 0.61

EBT 5.54 3.88 5.82 33.85 5.82 0.84 0.70

7 9 35

FT 6.39 4.53 6.99 48.88 6.99 0.80 0.63

GPR 6.16 4.31 6.22 38.65 6.22 0.78 0.61

EBT 5.53 3.88 5.82 33.88 5.82 0.84 0.70

8 10 40

FT 6.40 4.55 7.00 48.94 7.00 0.79 0.62

GPR 6.14 4.30 6.22 38.65 6.22 0.78 0.61

EBT 5.56 3.89 5.85 34.24 5.85 0.83 0.69

9 11 45

FT 5.87 4.14 6.61 43.68 6.61 0.83 0.70

GPR 5.94 4.14 6.02 36.22 6.02 0.81 0.65

EBT 5.27 3.67 5.61 31.45 5.61 0.86 0.73

10 13 50

FT 3.96 2.75 4.70 22.04 4.69 0.95 0.91

GPR 3.60 2.46 4.11 16.85 4.10 0.96 0.92

EBT 3.46 2.38 4.04 16.35 4.04 0.96 0.92

11 25 100

FT 3.53 2.52 4.43 19.62 4.43 0.96 0.92

GPR 3.32 2.27 3.87 15.00 3.87 0.97 0.94

EBT 3.14 2.15 3.79 14.34 3.79 0.97 0.94

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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on the working principle of these algorithms is presented in
detail in the following sections.

2.4.1. Ensemble Bagged Tree: Prediction of SBP and DBP.
Classification and regression trees (CART) is a machine
learning technique developed by Breiman et al. (1984) [71].
The change in training sampling in the dataset causes an
imbalance in the technique in question [72]. For this reason,
the ensemble technique was preferred in the study. In addi-
tion, the nonlinear structure of the output values of the study
data has been a good reason for the use of this method. It
was created by combining several decision tree structures

[73] to increase the performance value derived from a single
decision tree structure. Ensemble has three methods: bag-
ging, random forests, and boosting [72]. EBT was used to
estimate SBP and DBP in the study. This model was
designed based on a statistical method called boostrap [71,
74].

In bagging, many bootstrap samples are taken from the
ECG signal training dataset. The regression model for each
sample was carried out, the generated bootstrap samples
were combined, and the model took its final form. The bag-
ging predictor is determined by taking the average of this
regression model. It is desired that the mean value is low,

Table 17: DBP prediction models for 8-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 7.05 5.13 7.26 52.72 7.26 0.67 0.45

GPR 6.41 4.59 6.25 39.05 6.25 0.73 0.53

EBT 6.73 4.76 6.68 44.60 6.68 0.71 0.50

2 3 10

FT 5.55 3.89 6.03 36.30 6.03 0.85 0.73

GPR 6.43 4.44 6.24 38.86 6.23 0.77 0.59

EBT 5.60 3.85 5.70 32.41 5.69 0.84 0.71

3 4 15

FT 5.55 3.89 6.03 36.33 6.03 0.85 0.73

GPR 6.43 4.44 6.25 39.00 6.25 0.77 0.59

EBT 5.57 3.84 5.71 32.56 5.71 0.84 0.70

4 5 20

FT 5.55 3.89 6.03 36.33 6.03 0.85 0.73

GPR 6.47 4.47 6.26 39.10 6.25 0.76 0.58

EBT 5.68 3.92 5.80 33.57 5.79 0.83 0.69

5 6 25

FT 5.80 4.02 6.28 39.35 6.27 0.83 0.69

GPR 6.45 4.45 6.26 39.15 6.26 0.77 0.59

EBT 5.27 3.61 5.46 29.75 5.45 0.86 0.74

6 8 30

FT 5.95 4.09 6.39 40.82 6.39 0.83 0.68

GPR 5.89 4.04 5.92 35.04 5.92 0.81 0.66

EBT 5.10 3.47 5.33 28.33 5.32 0.87 0.76

7 9 35

FT 5.95 4.09 6.39 40.82 6.39 0.83 0.68

GPR 5.83 4.00 5.87 34.40 5.87 0.82 0.67

EBT 5.13 3.49 5.36 28.73 5.36 0.87 0.76

8 10 40

FT 5.96 4.10 6.46 41.71 6.46 0.83 0.68

GPR 5.76 3.96 5.83 33.97 5.83 0.82 0.67

EBT 5.10 3.45 5.36 28.68 5.36 0.87 0.76

9 11 45

FT 5.98 4.11 6.49 42.11 6.49 0.82 0.68

GPR 5.78 3.97 5.84 34.03 5.83 0.82 0.68

EBT 5.14 3.49 5.38 28.88 5.37 0.87 0.76

10 13 50

FT 5.50 3.87 6.15 37.73 6.14 0.85 0.72

GPR 5.60 3.82 5.67 32.07 5.66 0.84 0.70

EBT 4.93 3.36 5.23 27.32 5.23 0.88 0.78

11 25 100

FT 3.31 2.35 4.23 17.90 4.23 0.96 0.93

GPR 3.23 2.11 3.59 12.86 3.59 0.97 0.94

EBT 3.11 2.04 3.63 13.19 3.63 0.97 0.95

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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and the variance is high. For this reason, it is aimed that the
algorithm structure that will perform the SBP and DBP esti-
mation will work with a high accuracy rate. Accordingly, the
performance of EBT on each epoched signal was
determined.

2.4.2. Fine Tree: Prediction of SBP and DBP. There are many
original structures developed for CART [75, 76]. EBT, one of
these structures, is explained in detail. The decision tree
structure examined in the EBT is implemented using a single
decision tree for this model. The model is designed by per-
forming depth control with the split number of the decision

tree. In addition, the decision tree is divided into fine,
medium, and coarse according to the performance values
(from best to worst) for certain split numbers in the software
environment. A FT algorithm has been applied for the
model design, which exhibits a reasonable prediction accu-
racy rate with its fit to the dataset.

Empirical evidence predicts that a correct, step-by-step
decision tree is faster than a model in which the entire train-
ing dataset is tested and constructed. However, the final
model of an iteratively designed tree cannot be reached with-
out using the entire training set [77]. In addition to these
contradictions, the model design must be clear, simple, and

Table 18: DBP prediction models for 10-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 6.56 4.86 6.93 48.00 6.93 0.71 0.50

GPR 5.99 4.42 6.05 36.51 6.04 0.75 0.57

EBT 6.14 4.52 6.35 40.26 6.35 0.74 0.54

2 3 10

FT 6.04 4.47 6.75 45.55 6.75 0.77 0.59

GPR 5.85 4.32 5.98 35.71 5.98 0.76 0.58

EBT 5.51 4.03 5.93 35.13 5.93 0.81 0.65

3 4 15

FT 6.04 4.47 6.75 45.55 6.75 0.77 0.59

GPR 5.86 4.32 5.98 35.76 5.98 0.76 0.58

EBT 5.48 4.02 5.92 35.04 5.92 0.81 0.65

4 5 20

FT 6.03 4.46 6.80 46.14 6.79 0.78 0.60

GPR 5.66 4.15 5.94 35.19 5.93 0.79 0.62

EBT 5.36 3.92 5.86 34.32 5.86 0.82 0.67

5 6 25

FT 5.34 3.96 6.08 36.90 6.07 0.83 0.69

GPR 5.68 4.15 5.95 35.36 5.95 0.79 0.62

EBT 4.89 3.58 5.42 29.31 5.41 0.86 0.74

6 8 30

FT 5.62 4.11 6.51 42.36 6.51 0.82 0.67

GPR 5.20 3.81 5.63 31.65 5.63 0.83 0.69

EBT 4.73 3.44 5.36 28.74 5.36 0.87 0.75

7 9 35

FT 5.59 4.08 6.48 41.89 6.47 0.82 0.68

GPR 5.20 3.80 5.64 31.73 5.63 0.83 0.69

EBT 4.75 3.46 5.40 29.13 5.40 0.86 0.75

8 10 40

FT 5.65 4.13 6.50 42.24 6.50 0.82 0.67

GPR 5.21 3.81 5.61 31.48 5.61 0.83 0.68

EBT 4.74 3.45 5.38 28.95 5.38 0.87 0.75

9 11 45

FT 5.60 4.09 6.48 41.90 6.47 0.82 0.68

GPR 5.18 3.80 5.60 31.32 5.60 0.83 0.69

EBT 4.75 3.45 5.39 29.03 5.39 0.87 0.75

10 13 50

FT 3.66 2.73 4.58 21.00 4.58 0.95 0.90

GPR 3.27 2.40 3.84 14.71 3.84 0.96 0.92

EBT 3.23 2.36 3.87 14.94 3.86 0.96 0.92

11 25 100

FT 3.05 2.30 4.16 17.32 4.16 0.96 0.93

GPR 2.85 2.08 3.53 12.46 3.53 0.97 0.94

EBT 2.69 1.96 3.42 11.67 3.42 0.97 0.95

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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have a high accuracy rate. This study achieved the desired
targets by keeping the number of splits to a minimum. SBP
and DBP prediction models were created for each epoched
signal. The highest performance ratio was obtained in the
eleventh feature group. However, FT was observed to be
low compared to the performances of other used EBT and
GPR models. This can be explained as the dataset used does
not fit well with the algorithm.

2.4.3. Gaussian Process Regression: Prediction of SBP and
DBP. Gaussian process regression (GPR), a Bayesian
method, is a robust algorithm used for nonlinear regression

models. Since the input parameters are nonlinear and more
than one, SBP and DBP estimation were performed with this
algorithm.

m xð Þ = E f xð Þð Þ, ∀x ∈ X mean functionð Þ, ð1Þ

k x, x′
� �

= Cov f xð Þ, f x′
� �� �

, ∀x, x′ ∈ X covariance functionð Þ:
ð2Þ

A Gaussian operation can be defined by its mean (1) and
covariance function (2) [30]. The GPR covariance of the

Table 19: DBP prediction models for 12-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 6.68 4.75 6.85 46.83 6.84 0.71 0.50

GPR 5.97 4.20 5.89 34.62 5.88 0.78 0.60

EBT 6.19 4.37 6.22 38.69 6.22 0.74 0.55

2 3 10

FT 5.83 4.12 6.21 38.47 6.20 0.81 0.66

GPR 5.77 4.07 5.73 32.84 5.73 0.79 0.63

EBT 5.38 3.69 5.54 30.68 5.54 0.84 0.71

3 4 15

FT 5.83 4.12 6.21 38.47 6.20 0.81 0.66

GPR 5.77 4.07 5.74 32.88 5.73 0.79 0.63

EBT 5.28 3.64 5.50 30.19 5.49 0.84 0.71

4 5 20

FT 5.79 4.09 6.24 38.90 6.24 0.83 0.68

GPR 5.52 3.86 5.65 31.93 5.65 0.81 0.66

EBT 5.33 3.63 5.52 30.40 5.51 0.85 0.71

5 6 25

FT 5.15 3.62 5.71 32.59 5.71 0.88 0.77

GPR 4.72 3.28 5.07 25.63 5.06 0.88 0.77

EBT 4.78 3.23 4.99 24.88 4.99 0.89 0.80

6 8 30

FT 4.84 3.39 5.43 29.42 5.42 0.89 0.79

GPR 4.54 3.17 4.92 24.16 4.92 0.89 0.79

EBT 4.35 2.91 4.65 21.57 4.64 0.92 0.84

7 9 35

FT 4.84 3.39 5.43 29.42 5.42 0.89 0.79

GPR 4.48 3.14 4.86 23.58 4.86 0.89 0.79

EBT 4.39 2.93 4.72 22.22 4.71 0.91 0.84

8 10 40

FT 4.85 3.39 5.44 29.55 5.44 0.89 0.79

GPR 4.48 3.14 4.85 23.53 4.85 0.89 0.79

EBT 4.40 2.94 4.72 22.21 4.71 0.91 0.83

9 11 45

FT 4.81 3.37 5.44 29.53 5.43 0.89 0.80

GPR 4.48 3.13 4.85 23.50 4.85 0.89 0.79

EBT 4.40 2.95 4.72 22.21 4.71 0.91 0.83

10 13 50

FT 3.91 2.71 4.49 20.12 4.49 0.95 0.90

GPR 3.60 2.48 3.99 15.91 3.99 0.95 0.91

EBT 3.57 2.34 3.95 15.56 3.95 0.96 0.92

11 25 100

FT 3.15 2.17 4.01 16.09 4.01 0.97 0.94

GPR 2.88 1.99 3.49 12.18 3.49 0.97 0.95

EBT 3.01 1.95 3.52 12.35 3.51 0.97 0.95

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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input variables is named as kernel or covariance function.
The use of mean function and kernel function together
refers to GPR.

2.5. Performance Evaluation Criteria. Mean absolute per-
centage error (MAPE-Equation (3)), mean absolute devia-
tion (MAD-Equation (4)), standard error (SE-Equation
(5)), mean squared error (MSE)-equation refMSE), root
mean square error (RMSE-Equation (7)), R, and R2 are used

in 7 parameters [43].

MAPE = 1
n
〠
n

i=1

ti − yij j
ti

× 100, ð3Þ

MAD=
1
n
〠
n

i=1
ti − yij j, ð4Þ

Table 20: DBP prediction models for 14-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 4.62 3.18 4.55 20.68 4.55 0.92 0.84

GPR 3.98 2.68 3.97 15.75 3.97 0.94 0.88

EBT 4.28 2.92 4.22 17.82 4.22 0.93 0.86

2 3 10

FT 4.18 2.83 4.29 18.36 4.29 0.94 0.89

GPR 4.16 2.83 8.41 70.58 8.40 0.94 0.88

EBT 4.24 2.64 4.44 19.69 4.44 0.94 0.88

3 4 15

FT 4.18 2.83 4.29 18.36 4.29 0.94 0.89

GPR 4.24 2.90 9.98 99.45 9.97 0.94 0.88

EBT 4.04 2.57 4.13 17.04 4.13 0.95 0.90

4 5 20

FT 4.25 2.92 4.40 19.29 4.39 0.94 0.89

GPR 9.65 7.18 174.80 30511.96 174.68 0.95 0.89

EBT 4.07 2.57 4.17 17.37 4.17 0.95 0.90

5 6 25

FT 4.10 2.77 4.41 19.42 4.41 0.95 0.91

GPR 4.85 3.31 23.40 546.56 23.38 0.95 0.90

EBT 3.83 2.41 4.04 16.32 4.04 0.96 0.91

6 8 30

FT 4.18 2.64 4.55 20.69 4.55 0.95 0.91

GPR 4.45 3.28 28.94 836.05 28.91 0.94 0.89

EBT 3.77 2.35 3.96 15.65 3.96 0.96 0.92

7 9 35

FT 4.18 2.64 4.55 20.69 4.55 0.95 0.91

GPR 4.51 2.86 9.87 97.34 9.87 0.95 0.90

EBT 3.87 2.39 4.06 16.44 4.05 0.96 0.92

8 10 40

FT 4.18 2.64 4.55 20.71 4.55 0.95 0.91

GPR 5.30 3.38 5.29 27.93 5.28 0.87 0.75

EBT 3.80 2.34 3.98 15.85 3.98 0.96 0.92

9 11 45

FT 4.16 2.62 4.53 20.53 4.53 0.95 0.91

GPR 5.19 3.83 40.68 1652.57 40.65 0.95 0.90

EBT 3.88 2.37 4.06 16.49 4.06 0.96 0.92

10 13 50

FT 3.75 2.51 4.18 17.43 4.17 0.95 0.91

GPR 3.60 2.26 3.77 14.22 3.77 0.96 0.92

EBT 3.65 2.22 3.84 14.72 3.84 0.96 0.93

11 25 100

FT 3.18 2.07 3.82 14.57 3.82 0.97 0.94

GPR 3.37 1.97 3.66 13.40 3.66 0.97 0.95

EBT 3.28 1.87 3.64 13.25 3.64 0.98 0.95

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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SH =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 ti − yið Þ2
n − 2

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1ei
2

n − 2

r
, ð5Þ

MSE =
1
n
〠
n

i=1
ei
2, ð6Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
ei
2

s
: ð7Þ

The dataset for training and testing is divided as speci-

fied in Table 3. The performance value of the model was
evaluated for both split datasets.

3. Results

The study mainly aims to create models that can detect SBP
and DBP estimation as soon as possible based on machine
learning algorithms with ECG signals. In line with this goal,
the application was carried out step by step according to the
flow diagram given in Figure 1. First, the IEEE open-source
data-sharing platform obtained a PPG, ECG, and BP infor-
mation dataset. ECG and BP data from five individuals were

Table 21: DBP prediction models for 16-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 3.71 2.81 4.17 17.33 4.16 0.94 0.88

GPR 3.33 2.50 3.72 13.84 3.72 0.94 0.89

EBT 3.46 2.61 3.88 15.02 3.88 0.94 0.88

2 3 10

FT 3.62 2.76 4.04 16.32 4.04 0.95 0.89

GPR 3.87 2.96 19.45 377.68 19.43 0.94 0.89

EBT 3.34 2.48 3.86 14.86 3.85 0.95 0.90

3 4 15

FT 3.62 2.76 4.04 16.32 4.04 0.95 0.89

GPR 5.93 4.62 76.65 5865.87 76.59 0.94 0.89

EBT 3.34 2.50 3.79 14.34 3.79 0.95 0.90

4 5 20

FT 3.62 2.76 4.04 16.32 4.04 0.95 0.89

GPR 7.76 6.09 127.74 16289.21 127.63 0.94 0.89

EBT 3.35 2.50 3.87 14.93 3.86 0.95 0.90

5 6 25

FT 3.31 2.52 4.03 16.23 4.03 0.95 0.91

GPR 6.20 4.84 84.13 7066.21 84.06 0.94 0.89

EBT 3.19 2.36 3.76 14.09 3.75 0.96 0.91

6 8 30

FT 3.46 2.62 4.13 17.06 4.13 0.95 0.90

GPR 21.04 16.78 499.07 248655.06 498.65 0.95 0.90

EBT 3.04 2.26 3.59 12.87 3.59 0.96 0.92

7 9 35

FT 3.45 2.62 4.13 17.03 4.13 0.95 0.90

GPR 20.87 16.64 493.67 243303.01 493.26 0.95 0.90

EBT 3.08 2.29 3.69 13.56 3.68 0.96 0.92

8 10 40

FT 3.37 2.55 4.07 16.55 4.07 0.95 0.90

GPR 5.70 4.41 67.87 4599.29 67.82 0.95 0.89

EBT 3.06 2.28 3.66 13.41 3.66 0.96 0.92

9 11 45

FT 3.37 2.55 4.07 16.55 4.07 0.95 0.90

GPR 4.36 3.24 4.94 24.34 4.93 0.88 0.78

EBT 3.10 2.30 3.72 13.80 3.72 0.96 0.92

10 13 50

FT 3.06 2.32 3.74 13.95 3.73 0.96 0.92

GPR 3.01 2.26 3.59 12.89 3.59 0.96 0.92

EBT 2.85 2.11 3.51 12.30 3.51 0.97 0.93

11 25 100

FT 2.61 1.99 3.71 13.73 3.71 0.97 0.95

GPR 2.44 1.83 3.11 9.64 3.10 0.98 0.95

EBT 2.44 1.81 3.23 10.42 3.23 0.98 0.95

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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used in the total. Afterward, the signals were epoched up to
20 at intervals of two seconds, starting from 2 for the epoch-
ing process. Since the dataset does not have input informa-
tion, 25 feature extractions were made in the time domain.
In order to achieve size optimization, feature selection was
made in the next step. Performance evaluation based on
the three best-performing machine learning algorithms was
conducted for 11 selected feature sets. Finally, the algorithm
that performs the estimation of SBP and DBP with the best
performance ratio in the shortest time is expressed both
graphically and numerically.

In the first part of the study, SBP models were prepared
for each epochated signal (Tables 4–13). Twenty-five feature
extractions were performed as ECG signal input informa-
tion. Feature selection was carried out to reduce the size of
the feature vector and get rid of the workload of unnecessary
features. The correlation of 25 features was calculated by
Spearman’s method, and they were ranked from the highest
correlation level to the lowest correlation level. Feature vec-
tors were selected at 5% intervals according to the order. Ini-
tially, 5% of 25 features are taken (rounded to integers) to 1,
10% to 3, 15% to the fourth feature vector, up to 50%, 13. It

Table 22: DBP prediction models for 18-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 5.86 4.37 6.31 39.75 6.30 0.76 0.57

GPR 5.21 3.87 5.41 29.17 5.40 0.82 0.67

EBT 5.44 4.04 5.76 33.14 5.76 0.78 0.61

2 3 10

FT 4.65 3.49 5.31 28.19 5.31 0.87 0.76

GPR 5.00 3.72 5.16 26.57 5.15 0.85 0.72

EBT 4.29 3.15 4.85 23.52 4.85 0.89 0.80

3 4 15

FT 4.75 3.56 5.50 30.17 5.49 0.86 0.75

GPR 4.27 3.18 4.68 21.90 4.68 0.89 0.79

EBT 4.15 3.08 4.69 21.98 4.69 0.89 0.80

4 5 20

FT 4.75 3.56 5.50 30.17 5.49 0.86 0.75

GPR 4.26 3.18 4.67 21.75 4.66 0.89 0.79

EBT 4.19 3.11 4.77 22.67 4.76 0.89 0.79

5 6 25

FT 4.75 3.56 5.50 30.17 5.49 0.86 0.75

GPR 4.25 3.17 4.65 21.60 4.65 0.89 0.79

EBT 4.16 3.09 4.72 22.23 4.71 0.89 0.80

6 8 30

FT 4.41 3.32 5.27 27.74 5.27 0.89 0.79

GPR 4.14 3.09 4.62 21.32 4.62 0.89 0.80

EBT 3.78 2.80 4.35 18.93 4.35 0.91 0.84

7 9 35

FT 4.41 3.32 5.27 27.74 5.27 0.89 0.79

GPR 4.13 3.08 4.60 21.15 4.60 0.90 0.80

EBT 3.78 2.79 4.36 19.00 4.36 0.92 0.84

8 10 40

FT 4.41 3.32 5.27 27.74 5.27 0.89 0.79

GPR 4.13 3.08 4.59 21.06 4.59 0.90 0.81

EBT 3.78 2.80 4.35 18.87 4.34 0.91 0.84

9 11 45

FT 4.41 3.32 5.27 27.73 5.27 0.89 0.79

GPR 4.14 3.09 4.60 21.09 4.59 0.90 0.81

EBT 3.81 2.82 4.38 19.19 4.38 0.92 0.84

10 13 50

FT 3.21 2.43 3.99 15.89 3.99 0.96 0.91

GPR 3.05 2.30 3.53 12.42 3.52 0.96 0.91

EBT 2.98 2.20 3.54 12.48 3.53 0.96 0.93

11 25 100

FT 2.58 1.95 3.63 13.17 3.63 0.97 0.94

GPR 2.53 1.89 3.39 11.48 3.39 0.97 0.94

EBT 2.49 1.83 3.24 10.45 3.23 0.97 0.95

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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was continued in the same way, and finally, the feature vec-
tor of the 25th column was obtained by taking 100%. Eleven
groups were created with the ECG signal, and the perfor-
mance evaluation table of 33 models was produced. Accord-
ing to this table, the best model is determined by dark color.
EBT, the model created using all feature vectors (11 items),
was the best performing algorithm with MAPE = 2:58
mmHg and R = 0:97mmHg SBP values (Table 4).

The working process continued in the same way for the
other epoched signals. For the 4-second epoch, SBP estima-
tion models were created by evaluating the performance of
each algorithm. A total of 11 groups were created with the

ECG signal, and a performance evaluation table of 33
models was produced (Table 5). For the model constructed
using all feature vectors, the EBT was the best performing
algorithm with SBP values of MAPE = 2:34mmHg and R
= 0:97mmHg. There are 25 feature vectors for the 6-
second epoched ECG signal. The best-performing columns
of these feature vectors were taken at 5% intervals, and per-
formance evaluation was made for 11 features. For the 11th
feature group, the best performing algorithm with MAPE
= 2:27mmHg and R = 0:97mmHg SBP values were deter-
mined as EBT (Table 6). The same operations were per-
formed for each epoched signal. The 11th feature vector

Table 23: DBP prediction models for 20-second epoching.

Info Performance evaluation criteria
L FN FP Model MAPE MAD SE MSE RMSE R R2

1 1 5

FT 5.58 4.16 6.09 36.96 6.08 0.77 0.59

GPR 5.21 3.85 5.48 29.96 5.47 0.80 0.63

EBT 5.25 3.91 5.65 31.89 5.65 0.78 0.61

2 3 10

FT 4.66 3.48 5.35 28.52 5.34 0.86 0.75

GPR 4.39 3.26 4.90 23.97 4.90 0.87 0.76

EBT 4.26 3.14 4.92 24.16 4.92 0.88 0.77

3 4 15

FT 4.65 3.47 5.34 28.48 5.34 0.86 0.75

GPR 4.41 3.28 4.91 24.06 4.91 0.87 0.75

EBT 4.20 3.11 4.89 23.84 4.88 0.88 0.77

4 5 20

FT 4.65 3.47 5.34 28.48 5.34 0.86 0.75

GPR 4.29 3.18 4.89 23.83 4.88 0.88 0.77

EBT 4.23 3.13 4.91 24.10 4.91 0.88 0.77

5 6 25

FT 4.19 3.14 4.86 23.54 4.85 0.89 0.79

GPR 4.39 3.26 4.93 24.26 4.93 0.87 0.76

EBT 3.87 2.84 4.58 20.89 4.57 0.91 0.82

6 8 30

FT 4.24 3.15 5.12 26.12 5.11 0.88 0.78

GPR 4.05 3.02 4.64 21.47 4.63 0.89 0.79

EBT 3.75 2.77 4.45 19.80 4.45 0.91 0.83

7 9 35

FT 4.24 3.15 5.12 26.12 5.11 0.88 0.78

GPR 4.04 3.00 4.63 21.40 4.63 0.89 0.79

EBT 3.83 2.83 4.53 20.49 4.53 0.91 0.82

8 10 40

FT 4.26 3.17 5.15 26.43 5.14 0.88 0.78

GPR 4.04 3.00 4.62 21.33 4.62 0.89 0.79

EBT 3.76 2.77 4.51 20.27 4.50 0.91 0.83

9 11 45

FT 4.25 3.15 5.14 26.33 5.13 0.88 0.78

GPR 4.06 3.02 4.63 21.44 4.63 0.89 0.79

EBT 3.78 2.79 4.49 20.14 4.49 0.91 0.83

10 13 50

FT 2.90 2.19 3.67 13.45 3.67 0.96 0.93

GPR 2.86 2.13 3.41 11.59 3.40 0.96 0.93

EBT 2.76 2.04 3.43 11.76 3.43 0.96 0.93

11 25 100

FT 2.72 2.02 3.77 14.17 3.76 0.97 0.94

GPR 2.49 1.85 3.14 9.82 3.13 0.97 0.95

EBT 2.37 1.75 3.17 10.04 3.17 0.97 0.95

L: level; FN: number of feature; FP: percentage of feature; FT: fine tree; GPR: Gaussian process regression; EBT: ensemble bagged tree.
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per second was the best performing group. Accordingly,
MAPE = 2:20mmHg and R = 0:97mmHg SBP values were
determined for the 8-second epoch with the GPR algorithm
(Table 7). According to the 10-second epoched ECG signal,
MAPE = 2:08mmHg and R = 0:97mmHg SBP values were
calculated using the EBT algorithm. Gradually improving
performance values were calculated as MAPE = 2:04mmHg
and R = 0:98mmHg for the 12-second epoched ECG signal
(Table 8). Considering the increasing epoching times, the
algorithm’s best performance has varied each time. For the
epoching times where the increase was observed, the GPR
algorithm increased the R value while it caused a decrease
in the MAPE value. For the 14-second epoch, SBP were

obtained as MAPE = 2:00mmHg and R = 0:98mmHg
(Table 10). For the 16-second epoch, SBP values were
obtained as MAPE = 1:92mmHg and R = 0:98mmHg
(Table 11). For the 18-second epoch, SBP values were
obtained as MAPE = 1:97mmHg and R = 0:98mmHg
(Table 12). For the 20-second epoch, SBP values were
obtained as MAPE = 1:96mmHg and R = 0:98mmHg
(Table 13).

While the R value did not change much before the 16th
second, the MAPE value decreased. After the 16th second,
the MAPE value decreases, while the R value decreases.
MAPE should be as low as possible and R as high. According
to all these, it is evaluated that using the ECG signal and the

Table 24: Performance chart of the best algorithms for the entire epoching process.

Info Performance evaluation criteria
ES BP FN Model MAPE MAD SE MSE RMSE R R2

2
SBP 11 EBT 2.58 3.37 5.05 25.48 5.05 0.97 0.93

DBP 11 EBT 3.31 2.43 4.06 16.52 4.06 0.97 0.93

4
SBP 11 EBT 2.34 3.09 4.86 23.62 4.86 0.97 0.94

DBP 11 EBT 3.17 2.24 3.85 14.82 3.85 0.97 0.94

6
SBP 11 EBT 2.27 3.00 4.83 23.31 4.83 0.97 0.94

DBP 11 EBT 3.14 2.15 3.79 14.34 3.79 0.97 0.94

8
SBP 11 GPR 2.20 2.91 4.50 20.28 4.50 0.97 0.95

DBP 11 EBT 3.11 2.04 3.63 13.19 3.63 0.97 0.95

10
SBP 11 EBT 2.08 2.75 4.37 19.11 4.37 0.97 0.95

DBP 11 EBT 2.69 1.96 3.42 11.67 3.42 0.97 0.95

12
SBP 11 GPR 2.04 2.73 4.39 19.25 4.39 0.98 0.95

DBP 11 GPR 2.88 1.99 3.49 12.18 3.49 0.97 0.95

14
SBP 11 GPR 2.00 2.68 4.38 19.19 4.38 0.98 0.95

DBP 11 EBT 3.28 1.87 3.64 13.25 3.64 0.98 0.95

16
SBP 11 GPR 1.92 2.56 4.09 16.66 4.08 0.98 0.96

DBP 11 GPR 2.44 1.83 3.11 9.64 3.10 0.98 0.95

18
SBP 11 GPR 1.97 2.63 4.38 19.18 4.38 0.97 0.95

DBP 11 EBT 2.49 1.83 3.24 10.45 3.23 0.97 0.95

20
SBP 11 GPR 1.96 2.62 4.13 16.98 4.12 0.98 0.96

DBP 11 EBT 2.37 1.75 3.17 10.04 3.17 0.97 0.95

ES: epoch second; FN: number of feature; BP: blood pressure; SBP: systolic blood pressure; DBP: diastolic blood pressure; EBT: ensemble bagged tree; GPR:
Gaussian process regression.
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Figure 4: Blant-Altman plots for proposed (a) DBP and (b) SBP models.
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GPR algorithm, and BP detection can be performed in 16
seconds in the minimum desired time.

The tabular models defined for SBP apply to DBP. The
tables for the whole process are modeled separately
(Tables 14–23). Models using all feature groups obtained
the best performance value for each epoched period.
Accordingly, DBP of MAPE = 3:31mmHg and 0:97mmHg
for 2 seconds were obtained using the EBT algorithm
(Table 14). DBP values of MAPE = 3:17mmHg and 0:97
mmHg for the 4 seconds were obtained using the EBT algo-
rithm (Table 15). DBP values of MAPE = 3:14mmHg and
0:97mmHg for 6 seconds were obtained using the EBT algo-
rithm (Table 16). DBP values of MAPE = 3:11mmHg and
0:97mmHg for 8 seconds were obtained using the EBT algo-
rithm (Table 17). DBP values of MAPE = 2:69mmHg and
0:97mmHg for 10 seconds were obtained using the EBT
algorithm (Table 18). DBP values of MAPE = 2:88mmHg
and 0:97mmHg for the 12 seconds were obtained using
the GP algorithm (Table 19). DBP values of MAPE = 3:28
mmHg and 0:98mmHg for 14 seconds were obtained using
the EBT algorithm (Table 20). DBP values of MAPE = 2:44
mmHg and 0:98mmHg for 16 seconds were obtained using
the GPR algorithm (Table 21). DBP values MAPE = 2:49
mmHg and 0:97mmHg for the 18 seconds were obtained
using the EBT algorithm (Table 22). DBP values of MAPE
= 2:37mmHg and 0:97mmHg for the 20 seconds were
obtained using the EBT algorithm (Table 23).

The performance tables of the models created for DBP
prediction should be carefully examined. For each increasing
epoch time, both decreases and increases in MAPE were
observed together, and the lowest MAPE value was obtained
in Table 23. Accordingly, considering the R value, the max-
imum value was obtained in Tables 20 and 21. It is desirable
for MAPE to be as low as possible and R high. According to
all these, it is evaluated that DBP detection can be performed
in 16 seconds using the ECG signal and the GPR algorithm
in the minimum desired time. A 0.07 drop-in MAPE for
20 seconds is not very significant. For this reason, 16 seconds
is considered suitable for time determination. Also, the sum-
marized pattern table for the whole process is given in
Table 24. In addition to all these, the GPR algorithm is eval-
uated to be appropriate for SBP and DBP time detection
since it fits well with the ECG-based dataset.

Bland-Altman plots were prepared for the proposed
models (Figure 4). It was determined that the resulting error
rates of the models were close to zero, and the correlation
values were R = 0:97 (Table 23). The difference between
the actual and predicted values is expected to be zero. Each
scatter being close to zero indicates good performance.

The best findings obtained in the study were compared
with literature studies (Table 23). The findings show that
the proposed models are compatible with the literature and
are a step forward in performance and low processing time.

4. Discussions

Since hypertension is known as a silent killer, patients with
hypertension should be followed constantly [1, 3]. In order
to keep hypertension under control, patients are expected

to strictly comply with drug treatments [3]. There is a need
for new technologies that can be used without the need for
technical knowledge for continuous monitoring of hyperten-
sion at home [2, 3]. This study is aimed at calculating the
ECG signal and machine learning-based minimum BP time
response in hypertension patients. First, ECG signal data of
five individuals were collected in the study. The signals were
then divided into periods of 2-4-6-8-10-12-14-16-18-20 sec-
onds. 25 statistical features in the time domain were
extracted from each epoched signal. The feature selection
algorithm is used to reduce the model’s unnecessary work-
load and provide size optimization. With EBT, GPR, and
FT algorithms, selected features were used for BP estimation.
BP estimation performance values for each epoched period
were calculated within certain characteristics and recorded
in tables (Tables 4–23). According to these tables, BP estima-
tion can be evaluated at a minimum time. The model pro-
posed in the study differs significantly from the studies in
the literature in terms of time epoching. BP calculation was
performed for each period. Calculated BP values exhibited
a unique structure at each step and increased performance.
After first determining the statistical inputs for the ECG sig-
nal, it was determined that the model’s performance was low
against some features. On the other hand, unnecessary fea-
tures were removed by optimizing the size. In this way, the
performance increase was observed on datasets with high
correlation levels. In this system, which tried to be improved
gradually, periodic observations were made graphically, and
minimum time detection was achieved with a high accuracy
rate. The proposed model is among the algorithms with high
accuracy obtained in the literature so far (Table 23, R = 0:98
mmHg).

The most striking feature of the study is that it detects
BP values for each period by epoching the ECG signal.
Research on ECG, PPG, and BP properties is carried out
extensively in the literature [31, 33, 78]. Among these sig-
nals, QRS and other components exhibited in a heartbeat
in the ECG signal, which is the research subject of the study,
are generally preferred as feature input [27, 33, 34]. Due to
changes in the ECG signal, feature extraction can cause
workload and computational complexity. On the other
hand, statistical parameters were used, and BP estimation
performance evaluation was made on epoched ECG signals.
The best performance value that can be calculated in mini-
mum time is R = 0:98 (Table 24, 16 seconds). It is under-
stood that BP can be detected with high accuracy for two
seconds, and applications can be performed within this
period. The study used the 16-second epoched signal model
for BP estimation. This is because we can reduce the error
rate and see the minimum and maximum points in an
epoch. ECG and BP are similar signals. The averages of the
BP signal’s local minimum points and local maximum
points correspond to the DBP and SBP values, respectively.
The multiplicity of these points reduces the error rate and
increases the execution time. In this condition, the design
was realized. In the literature studies, no research has yet
been carried out to determine BP in a certain period.
Although the article has an original research topic, it has
the infrastructure to answer new research questions.
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Accordingly, with how many seconds of ECG recording can
a highly accurate BP prediction model be developed? The
study findings show that BP estimation can be made with
an ECG signal with at least two-second epochs. However,
the highest performance was achieved in the 16-second
epoch, but the performance change is not appreciable. For
this reason, it is considered that high performance can be
obtained from two-second epochs with different signal pro-
cessing processes.

The datasets are summarized significantly with the help
of descriptive statistical parameters. In this study, the ECG
signal with 25 feature sets was converted to a clearer dataset
(Table 2). Studies in the literature are often based on specific
characteristics [31, 33, 34]. In addition, temporal, chaotic,
and morphological features are most well-liked in deep
learning-based studies [20, 34]. However, studies based on
different feature extraction algorithms seem to be insuffi-
cient in terms of performance (Table 25) [27, 29]. In this
respect, it can be considered that the feature extraction algo-
rithm used in the study has a better structure compared to
the literature.

The feature selection process with classical machine
learning methods is recommended. However, this process
has not been applied in many BP estimation studies [28,
31, 33]. The feature selection algorithm performed better
than the literature by optimizing the size of the model used
and eliminating unnecessary features.

EBT, GPR, and FT algorithms in the proposed model
have been an important element in determining model per-
formance. The performance values of these models on each
epoched signal show how compatible that algorithm is with
the epoched dataset. This situation indicates that there is
algorithm variation between epoched signals in Table 24.
The proposed models are one step ahead of the studies in
the literature in terms of performance (Table 25).

4.1. Strengths and Limitations. The use of machine learning
algorithms in terms of continuous cuffless BP estimation,
feature extraction, and evaluation processes that do not
require calibration is still a matter of debate for accurate
diagnosis and treatment. This study compares their perfor-
mance using various ML techniques. Statistical feature
extraction was applied from each epoched signal by applying
the epoching process to the ECG signals. The dataset in
which ML techniques were evaluated showed high perfor-
mance for each epoch. Although different feature sets have
been extracted for the model, the morphological features of
the ECG signal have not been investigated. In addition,
increasing the demographic information of the subjects can
improve the BP prediction performance. Even if there are
technical failures in the collection of the dataset, the opera-
tions applied to the signal in the software environment pre-
vent this data loss, and its effect on performance is
minimized.

5. Conclusions

Monitoring of BP is vital for the follow-up and treatment of
hypertension. Algorithms and devices that comply with new

reliable standards are needed for home BP monitoring.
These technologies are expected to offer effortless measure-
ment. This study developed artificial intelligence-based algo-
rithms to monitor BP with ECG. The study’s main question
is “What is the minimum time required for BP determina-
tion by ECG?” For this purpose, models have been devel-
oped for signals with different durations between 2 and 20
seconds, and algorithms have been tested.

It has been determined that BP estimation can be made
with high accuracy for any time including 2 seconds. While
R = 0:98 for 14- and 16-second epochs, it was determined as
R = 0:97 for 2-second epoch. It varies in the range of 0:97
≤ R ≤ 0.98 in other periods. This sitution indicates that BP
can be detected with high accuracy for ECG.

The innovations included in the findings of this study
are as follows. (1) With ECG, BP can be predicted accu-
rately. (2) Shortening the ECG signal time does not affect
the success rate. (3) BP can be estimated with a 2-second
epoch. (4) Feature extraction and selection processes
improved model performance. (5) Artificial intelligence-
based models have increased system reliability. Due to the
high performance and reliability of the proposed model, it
is considered that it can be used as an auxiliary software
for BP monitoring in all systems that can measure ECG
signals.

6. Future Work

With these encouraging results, future studies are planned.
The scope of the study can be expanded by using a dataset
containing many diverse groups of people and more specific
ML techniques. Increasing the sampling frequency of the
signals will prevent information loss. For this reason, a sam-
pling frequency of at least 2.5 times the signal frequency
range is recommended for new studies. In addition, studies
can be continued by looking at the relationship between
ECG and BP from another perspective by considering the
morphological features of the ECG signal and extracting
the frequency domain feature groups on the dataset.
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