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A new theoretical model of epidemic kinetics is considered, which uses elements of the physical model of the kinetics of the atomic
level populations of an active laser medium as follows: a description of states and their populations, transition rates between states,
an integral operator, and a source of influence. It is shown that to describe a long-term epidemic, it is necessary to use the concept
of the source of infection. With a model constant source of infection, the epidemic, in terms of the number of actively infected
people, goes to a stationary regime, which does not depend on the population size and the characteristics of quarantine
measures. Statistics for Moscow daily increase in infected is used to determine the real source of infection. An interpretation of
the waves generated by the source is given. It is shown that more accurate statistics of excess mortality can only be used to
clarify the frequency rate of mortality of the epidemic, but not to determine the source of infection.

1. Introduction

The situation with the epidemic of the coronavirus infection
dictates the use of laser physics methods to describe the
development of the epidemic. Elements of a physical model
of the kinetics of atomic level populations [1] for active
media of laser systems can be used to construct an epidemic
model. The four elements are as follows: states and their
populations, rates of transitions between states, a time inte-
gral operator, and a source of influence. As applied to the
description of the epidemic, the population of the settlement
(a set of atoms) is divided into groups (atoms are in different
states) as follows: healthy nonimmune, infected, recovered,
and fatal members of the population. Between these states,
similarly to laser physics, transitions take place at their
own speeds. The concepts of rates of infection, recovery,
and transition to the lethal group are introduced. The rates
of emptying of the states of the atom are equal to the recip-
rocal of the decay time of the states; therefore, following a
physical analogy, in epidemic kinetics, the rate of recovery
is equal to the reciprocal of the time period of the disease,

the same with the fatal outcome. The integral operator in
the kinetics of populations realizes the spatial connection
of atoms; in the model of epidemic kinetics, the integral
operator in time takes into account the infection of members
of the population during the incubation period of the disease
and mortality outside the incubation period. The time inte-
gral operator of epidemic kinetics is reduced to lagging
terms, which distinguishes it from the classical SIR model
(literally means susceptible-infected-recovered).

Epidemic modeling work is divided into two types. The
first [3–7] uses a balanced approach applicable for locality
or region. In [4], a 7-fraction model of the hepatitis B epi-
demic is considered. In [5, 6], 6-fraction (SEIARD and
SEIAHR) COVID-19 models were studied. In [7], a model
with vaccination of the population (SVEAIR) is presented.

The second approach [8] further describes the spatial
propagation epidemic. Thus, the mathematical model of
the Baroyan-Rvachev influenza epidemic [9, 10] is classified
as epidemic dynamics, since it can describe the undulating
spread of the epidemic between cities when taking into
account the passenger traffic (the model is similar to the
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equations of hydrodynamics). Moreover, all models do not
take into account the source of infection [11]. The need to
take into account the source of infection is indicated in [2].
Only in this case is it possible to build adequate epidemic
models that coincide with real statistics.

The aim of this work is to investigate the role of a non-
stationary source of infection in delayed epidemic kinetics.
In this case, a mathematical model of the epidemic is
applied, using elements of physical models of laser physics
associated with the description of active laser media.

2. Numerical Investigations of the Equations of
Epidemic Kinetics with Delay with a
Constant Source

The model is constructed on the basis of balanced equations,
similar to the physical problem of atomic level kinetics.

Let us first consider the model of epidemic kinetics with-
out taking into account the process of vaccination of citi-
zens. For example, in Russia, it was possible not to take
into account the vaccination of the population until May
2021. The model considers the development over time of
an epidemic of viral infection in a locality whose population
is a constant valueN0. The population of the locality is
divided into 4 categories: N1, healthy members of the popu-
lation who do not have immunity; N2, infected; N3, acquired
immunity (recovered); and N4, members of the population
who fell into the lethal group (died) during the entire
epidemic.

For a closed population, the law of population conserva-
tion is fulfilled

〠
4

i=1
Ni =N0: ð1Þ

To fulfill (1), it is necessary that the natural birth rate is
equal to the natural mortality of the population, and the
speed of departure of the population is equal to the speed
of arrival in the locality. For example, the population of
the city of Irkutsk has remained at a constant level for 30
years. In addition, the time of epidemic development T~2-
3 years is significantly less than the time of migration pro-
cesses for settlements such as an average city. All the above
values depend on time NiðtÞ, and N0 is a constant value.

The characteristics of the epidemic development are
“global statistics variables,” which are called the number of
infected members of the population since the beginning of
the epidemic N−(t), the number of recovered members of
the population since the beginning of the epidemic N+(t),
and the number of the lethal group since the beginning of
the epidemic Nc(t). It is easy to see that the values N+(t)
and Nc(t) coincide with N3ðtÞ and N4ðtÞ in the epidemic
kinetic model, which does not take into account vaccination.

N+ tð Þ ≡N3 tð Þ,Nc tð Þ ≡N4 tð Þ: ð2Þ

The variable of global infection statistics is related to the
parameters of epidemic kinetics as follows:

N1 tð Þ +N− tð Þ =N0: ð3Þ

From here, we get

N− tð Þ =N2 tð Þ +N3 tð Þ +N4 tð Þ: ð4Þ

We see that the number of infected persons can be
expressed in terms of global statistic variables

N2 tð Þ =N− tð Þ −N+ tð Þ −Nc tð Þ: ð5Þ

Let us write down an expression for the rate of change in
the number of infected persons

dN2 tð Þ
dt

= dN− tð Þ
dt

−
dN+ tð Þ
dt

−
dNc tð Þ
dt

= dN− tð Þ
dt

−
dN3 tð Þ
dt

−
dN4 tð Þ
dt

:

ð6Þ

The first term in the right part describes the rate of infec-
tion of members of the population; the second, the rate of
recovery; and the third, the rate of transition to the lethal
group. The rate of infection will be determined by the num-
ber of members of the population who are in the latent incu-
bation period of infection τ and those who carry the
infection in an asymptomatic manner, i.e., undetected car-
riers of infection

dN− tð Þ
dt

= k−
ðt
t−τ

dN− t ′
� �

dt ′
K t − t ′
� �

dt ′ + γ1

ðt−τ
0

dN− t ′
� �

dt ′
K t − t ′
� �

dt ′
0
@

1
A:

ð7Þ

Kðt − t ′Þ − is the core of the integral operator, which
describes the decrease in infected individuals over time.
The type of model function KðtÞ can be selected as

K tð Þ = exp −
t
τ+

� �2
" #

: ð8Þ

The real form of the kernel of the integral operator KðtÞ
should be determined by comparison with the statistics of
the epidemic.

Assuming KðtÞ = 1, which somewhat overestimates the
number of persons transmitting the infection, integrals in
(7) are revealed and lagging terms appear

dN− tð Þ
dt

= k− N− tð Þ − 1 − γ1ð ÞN− t − τð Þð Þ: ð9Þ

The rate of recovery of infected citizens is proportional
to the number of infected at a given time

dN3 tð Þ
dt

= k+N2 tð Þ: ð10Þ

The rate of death is determined by the number of infected
persons, taking into account the delay in the development of
the disease
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dN4 tð Þ
dt

= kcN2 t − τð Þ: ð11Þ

Given the large volume of testing of the population and the
isolation of asymptomatically ill persons in the city of Moscow,
it is possible to put γ1 ≅ 0. A significant change in the values
N3ðtÞ andN4ðtÞ occurs at times t > 3τ, whileN2ðtÞ is sensitive
to changes at times t < τ. Therefore,

N− tð Þ − 1 − γ1ð ÞN− t − τð Þ ≅N− tð Þ −N− t − τð Þ ≅N2 tð Þ −N2 t − τð Þ:
ð12Þ

As a result, we come to the following modification of the
epidemic kinetics model

dN1 tð Þ
dt

= −k− N2 tð Þ −N2 t − τð Þj j − А, dN2 tð Þ
dt

= k− N2 tð Þ −N2 t − τð Þj j − k+N2 tð Þ − kcN2 t − τð Þ
+ А, dN3 tð Þ

dt
= k+N2 tð Þ, dN4 tð Þ

dt
= kcN2 t − τð Þ:

ð13Þ

The equations with lagging terms in (13) are not first-order
differential equations. The delayed term N2ðt − τÞ can be
decomposed into a Taylor series. At the same time, higher-
order derivatives appear. For example, in [2], the second equa-
tion in system (13) was reduced to an ordinary differential
equation of the second order, which had a bell-shaped solution
of the epidemic wave type.

Here, the coefficients k−, k+, and kc have the dimension
of frequency, i.e., the inverse time, which is measured in
days. All data in epidemic statistics are presented per day.
The number of different categories of the population is
determined in persons.

The value A represents the rate of quasistationary perma-
nent sources of infection. The value of A can change slowly.
However, the time of such change is significantly longer than
the inverse frequencies present in the model and the time of

the latent incubation period of infection development

T ≫ k−ð Þ−1, k+
� �−1, kcð Þ−1, τ: ð14Þ

We note the following circumstance, which negates the
choice of a nonstationary model for epidemic kinetics.
Numerical calculations have shown that the unsteady mode
of epidemic development occurs only at the initial stage within
90-100 days. All the subsequent time, the epidemic develops in
a quasistationary mode, which weakly depends on the expres-
sion for the rate of infection. (Such modes are well known in
laser physics. They arise for long or generally stationary pulses
of pumping the active medium of the laser AðtÞ ≈ Const.)

For the COVID-19 disease caused by the SARS-CoV-2
coronavirus (as opposed to, for example, the flu), we take
the recovery time of the τ+ = 15 Day, then the recovery rate
is the reciprocal κ+ = 1/15Day−1. The frequency of death is
similar to κc = 1/50Day−1. The duration of the incubation
period of the τ = 7 Day and the frequency of infection are
represented by the expression

κ− tð Þ = p tð Þ _Δn tð Þ = p tð Þ _Δn0 tð ÞN1 tð Þ
N0

, 〠
4

i=1
Ni tð Þ =N0: ð15Þ

Expression (15) takes into account that the rate of contact
of an infected person with uninfected persons should decrease
as the epidemic proceeds in proportion to the share of healthy
noninfected persons in the population of the locality

_Δn tð Þ = _Δn0 tð ÞN1 tð Þ
N0

: ð16Þ

Here, _Δn0ðtÞ − is the rate of contacts with all persons who
were not ill and recovered.

The following expressions are used for the frequency of
contacts and the likelihood of infection:

_Δn tð Þ =

_Δnin ; 0 < t < t ′

_Δnin − _Δnin − _Δnf

� � t − t ′
t ′′ − t ′

; t ′ ≤ t ≤ t ′′,

_Δnf ; t ′′ ≤ t

8>>>><
>>>>:

p tð Þ =

pin ; 0 < t < t ′,

pin − pin − pf
� � t − t ′

t ′′ − t ′
pf ; t ′′ ≤ t:

8>>>>><
>>>>>:

; t ′ ≤ t ≤ t ′′,

ð17Þ
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Formula (17) describes the smooth introduction of san-
itary standards. Designations _Δnin, _Δnf and pin, pf corre-
spond to the initial and final values of the rate of contacts
and the possibility of infection. The calculations used the
values _Δnin = 30, _Δnf = 20 and pin = 0:01, pf = 0:005:

The statement of problem (13) should be supplemented
by the condition of nonnegativity of the sought functions
and by the initial conditions, for example,

Ni tð Þ ≥ 0, i = 1, ::4, N1 0ð Þ =N0, N2 0ð Þ = 1, N3 0ð Þ = 0, N4 0ð Þ = 0:
ð18Þ

To numerically solve the problem of epidemic kinetics
(8)–(12), a difference scheme is used, a feature of which ismem-
orizing the prehistory to a given moment t (for example, with a
step of 0.1 days) of already obtained functionsNiðsÞ, s ≤ t.

In the approximation N1ðtÞ ≈N0, the κ
−ðtÞ in (15) does

not depend on N1ðtÞ and the second equation in (13)
becomes independent, and the remaining components are
determined through this solution N2ðtÞ.

In the approximationN1ðtÞ ≈N0 at small times without
taking into account the delay from the second equation of
system (13),

dN2
dt

tð Þ = κ− 0ð Þ − κ+ð ÞN2 tð Þ + А: ð19Þ

We get the analytical expression

N2 tð Þ =N2 0ð Þe k− 0ð Þ−k+ð Þt + A

k− 0ð Þ − k+
� � e k− 0ð Þ−k+ð Þt − 1

h i
:

ð20Þ

An outbreak of morbidity (20) with a positive
increment k−ð0Þ − k+ > 0 can be extinguished only due to
the lagging terms in (13).

In a stationary case,

dN2
dt

= κ− N2 tð Þ −N2 t − τð Þj j − κ+N2 tð Þ − κсN2 t − τð Þ + А = 0,N2 tð Þ =N2 t − τð Þ:

ð21Þ

The solution, as in stationary models of laser physics
with constant pumping of the active medium, takes the form

N2 =
A

k+ + kс
� � : ð22Þ

The stationary value (22) does not depend on N0, k−.
Figure 1 shows epidemic curves whenN0 = 6∙105 a

constant source of infection operates in a settlement with a
population of people (a medium-sized city). Such a source
can be an infected contingent arriving in a settlement with
the external passenger traffic. Curve 1 corresponds to the
source A = 10 people/day and t ′ = 20 and t″ = 50 in coeffi-
cients (17). A later adoption of quarantine measures t ′ =
50 and t″ = 80 with the same source corresponds to curve

2, and the outbreak is extinguished only due to the lagging
terms in (13) before the quarantine measures are taken. Both
curves tend to one stationary value (22) determined by the
action of the source. Curve 3 corresponds to the source A
= 50 people/day and t ′ = 20 and t″ = 50 in the coefficients
(17) and reaches a stationary value (22) 5 times greater than
curves 1.2. Note that the wavy behavior to the right of the
maximum is due to the complex structure of the second
equation of system (13). The calculations do not depend
on the valueN1; this dependence can manifest itself when
the entire population of the city is ill or when it is vaccinated.

The form of the morbidity curve is standard (rise-
decline), qualitatively coincides with the results [5, 10, 11],
and differs significantly over long periods: an asymptotic tail
instead of a sharp exit to 0.

3. Inverse Problem of Epidemic Kinetics

To analyze the properties of the solution to problem (8)–(12),
it is necessary to know the function of the real source AðtÞ.
This function can be determined by solving the inverse prob-
lem of epidemic kinetics. In laser physics, this method is used
to determine the pump function from the experimental emis-
sion spectra of the atoms of themedium. In epidemic statistics,
infection rates (per dayΔt = 1) and death rates (per day) are
used, which correspond to the solution components (13).

ΔN2
Δt

= κ− N2 tð Þ −N2 t − τð Þj j + А, ð23Þ

ΔN4
Δt

= κсN2 t − τð Þ: ð24Þ

Determination of the source of infectionAðtÞ can be done
by solving the inverse problem (8), where the left side is the
statistics data [12] and the right side is the solution to system
(1) with the desired sourceAðtÞ. In the formulation of a direct
problem, the equations and coefficients are unchanged, and
only the initial population size changes. Step-by-step time fit-
ting is used as a numerical method for solving the inverse
problem. Figure 2 shows the daily statistics of morbidity in
Moscow (N0 = 1:2∙107) for the 539 days starting from 12
March 2020 (1, solid line); the source determined by solving
the inverse problem (23) and (13) (2, dashed line); calculated
data (23) of model (1) with the obtained source (3, points).

The average deviation of the calculation data and statis-
tics is 629 people/day, which corresponds to a relative error
of less than 7%. A wave can be understood as a maximum
amplitude with a width determined at half height. Waves
in the number of infected, the daily increment of the
infected, and the source of infection have shifted maximum
positions. The structure with source waves is primary and
determined according to epidemic statistics. Two main fac-
tors for the emergence of waves of infection are as follows:
the importation of infected with an external transport
stream and an internal increase in contacts due to noncom-
pliance with sanitary standards. The combination of these
factors is indirectly taken into account in the source as a
result of solving the inverse problem. The first wave has a
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Figure 1: Solution of system (1) withN0 = 6∙105:A = 10, t ′ = 20, and t″ = 50 (1);A = 10, t ′ = 50, and t″ = 80 (2);A = 50, t ′ = 20, and t″ = 50 (3).
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Figure 2: Statistical data of daily morbidity in Moscow for 539 days starting from 12 March 2020 (1, solid line); the source determined by
solving the inverse problem (23) and (13) (2, dashed line); calculated data of the model (1) with the obtained source (3, points).
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Figure 3: Estimated curves of morbidity (solid) and mortality (dotted line) with the received source and the modified coefficient.
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maximum of 54 days of calculations (5 May 2020), a rather
narrow width due to the adoption of strict quarantine mea-
sures in the form of lockdown, which are taken into account
in the quasistationary mode in the source indirectly through
statistical data. The second factor seems to have been pre-
dominant. The second wave, which was more extended,
had a large amplitude and was formed by a combination of
two factors. The development of the third wave is associated
with the emergence of the Indian strain, and the decline of
the wave is due to vaccination.

Figure 3 shows the curves of morbidityN2ðtÞ (solid) and
lethalityN4ðtÞ (dotted line), calculated according to model
(13) with the obtained source and the modified
coefficient kс = 1/200 .

The integral number of infected people in Moscow since
the beginning of the epidemic of 1 September 2021 is the fol-
lowing: statistical data, 1,568,767 7 people; calculation data
from the received source, 1,597,000 people.

Statistical data (23) and (24) in the quasistationary
approximation taking into account (22) can be represented as

ΔN2
Δt

= κ− N2 tð Þ −N2 t − τð Þj j + А ≈ А, ð25Þ

ΔN4
Δt

= κсN2 t − τð Þ ≈ kсA

k+ + kс
� � : ð26Þ

The quasistationary approximation is well known in the
theory of laser media. Such a regime arises when the time of
action of the pumping of the laser medium is many times lon-
ger than the times of depletion of the energy states of the
atoms of the active medium.

Both statistics (25) and (26) are determined by the source
of infection A. The model gives overestimated values for the
lethal group, which requires correction of the coefficient κс.
The coefficient κсis reduced by 4 times, while the residual value
changes from 626 people/day to 644 people/day with the same
source of infection, i.e., the dependence of the model results on
the coefficient is not significant. Mortality statistics (26) can-
not be used to independently determine the source of infection
due to the uncertainty in the frequency of death κс .

4. Analysis of the Correlation between the
Source of Infection and the
Number of InfectedN2ðtÞ

The source АðtÞ is obtained as a result of solving the inverse
problem of epidkinetics and the N2ðtÞ solution of the direct
problem of epidkinetics with the obtained source. Figure 4
shows a graph of the parametric АðN2Þas follows: thick
curve, the first wave; thin curve, the second wave; the dotted
line, the third wave; curve points–stationary relation

A =N2 k+ + kс
� �

, kс = 1
200 : ð27Þ

The dependence is of a spiral nature, so that the values
А,N2can be interpreted as waves, but their maxima do not
coincide, i.e., the waves are different. In general, the values

А,N2 are correlated, tend to a stationary connection, with
the exception of the lower part of the graphs, where N2
decreases at constant A, which does not contradict the
course of the incidence curve (Figure 1). CorrelationА,N2
means that the source is formed by the number of infected.
Areas marked with numbers 1, 2, 3a, and 3b are highlighted,
in which the source sharply increases with the number of
infected. Section 1 is a jump on the 50th day of observations
(1 May 2020, a holiday in the Russian Federation). Plot 2 -
smoother growth 171-202 days of observations (30 August
2020 – 30 September 2020 - the end of summer vacations
and the beginning of the school year). Points 3a -393 (12
April 2021), 3b - 456 (11 June 2021). A jump to the holiday,
the second factor works, 2 is a combination of factors, 3a is
the second factor, and 3b is the first factor (the import of an
Indian strain).

Application of the theory for other cities gives [13] for 1
September 2021 the position of the coordinate of the end
point of the spiral: Berlin, A = 906; New York, A = 4126;
and Catalonia, A = 636. Quantity information N2 is not
available. Recession of the epidemic is the approach of the
spiral to the origin.

5. Accounting for Vaccination in the Model of
Epidemic Kinetics

Vaccination above is indirectly accounted for by reducing
the source of infection. Direct accounting of vaccination
can be performed within the framework of the following
model:

〠
4

i=1
Ni tð Þ =N0,

dN1
dt

tð Þ = −κ− N2 tð Þ −N2 t − τð Þj j − А tð Þ − B tð Þ,
dN2
dt

tð Þ = κ− N2 tð Þ −N2 t − τð Þj j − κ+N2 tð Þ

− κсN2 t − τð Þ + А tð Þ, dN3
dt

tð Þ = κ+N2 tð Þ + B tð Þ, dN4
dt

tð Þ = κсN2 t − τð Þ:

ð28Þ

This adds the vaccination rate BðtÞ with a minus sign to the
equation forN1 and a plus sign to the equation forN3. In the sta-
tionary case, in the approximationАðtÞ ≈ const, BðtÞ ≈ const

N1 =N0 − A + Bð Þt ;N2 =
A

k+ + kс
� � ;N3 =

k+A
k+ + kс

+ B
� �

t ;N4 =
kсA

k+ + kс
� � t:

ð29Þ

Vaccination with this approach reduces the size of group 1,
increases the number of group 3, and directly not affects the
abundance and groups 2 and 4. The indirect impact of vaccina-
tion on the number of groups is obtained from (29) in the form
of evaluations and infection rate with the vaccinations.

κ− ~ N1 tð Þ
N0

~ 1 − A + Bð Þt
N0

: ð30Þ

6. Reproduction Coefficient

In epidemiology, the process of epidemic development is often
described using the reproduction coefficient. The rate of
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spread (reproduction) of virus RðtÞ is an indicator that deter-
mines the average number of people infected by one patient
before his isolation (or recovery). It is calculated based on
the data on the increase in new cases over the last τ0 days.
The virus spread coefficient is used to make decisions about
the transition to the next stage of lifting restrictions

R tð Þ = 1
N2 tð Þ

dN− tð Þ
dt

∙τ0: ð31Þ

N2ðtÞ is the number of infected persons, dN−ðtÞ/dt is the
rate of infections per day t, τ0 is the time of the spread of infec-
tion by an infected person, and N−ðtÞ is the global statistic
parameter (the number of infections since the outbreak).
Figure 5 shows the time course of the reproduction coefficient
based on statistical data for the city of Moscow and the value
of τ0 = τ+ =15 days.

The graph indicates an obvious weakening of the viral
infection compared to the first wave of the virus, as well as
the transition of the epidemic to a quasistationary mode,
where

R tð Þ ≈ τ+ k+ + kс
� �

≈ 1: ð32Þ

7. Discussion

The study of epidemic kinetics within the framework of a
new theoretical model reproduces the course of the infection
curve with three characteristic areas: rise, fall, and exit to a
stationary value. The spread of infection is described by
paired interactions with average speeds and the source of
infection. The dynamic system underlying the model is non-
standard—with lagging terms and a source that is deter-
mined as a result of solving the inverse problem. The
presence of a source leading to the possibility of describing

the stationary mode of the epidemic distinguishes the pro-
posed model from all other previously known ones.

The model with a source is minimal in the number of
group states, which allows, with the uncertainty of the coef-
ficients of the problem, to set and solve the inverse problem
of epidemic kinetics to determine the time course of the
source of infection for Moscow by one set of statistics in
the form of a daily increase in morbidity. Another set of
statistics is used to refine the coefficients. Next, a direct
problem is solved with the found source and all the charac-
teristics of the temporal evolution of the epidemic are
obtained, including an estimate of the reproduction coeffi-
cient. Solving the direct problem of epidemic kinetics with
the found source, the authors obtained a coincidence with
the statistical data for the city of Moscow with an error of
not more than 7%. The formulation and solution of the
inverse problem of epidemic kinetics within the framework
of the model under consideration is the second distinctive
feature of the approach used. The first wave of the epidemic
proceeds in a nonstationary mode and has the duration of
90-100 days. Further, while maintaining sanitary measures,
the epidemic proceeds in a quasistationary mode, for which
the source of infection is crucial. The spiral relationship of
the source with the number of infected determines the
dependence of the source on N2ðtÞ and the wave-like nature
of the epidemic development. The beginning of the rise of
waves is associated with an increase in contacts and incom-
ing traffic flow, and the decline of waves is associated with
the introduction of quarantine measures. The impact of vac-
cination in Moscow on the reduction of the third wave is
estimated as follows: mild quarantine measures reduce the
level of infection by 3 times, vaccination gives an additional
lowering coefficient (30), where the level of vaccination
reaches values of B≈105 person/day.

If appropriate statistical data are available, the model can
be implemented for any region of the world. The data given
for Berlin, A = 906; New York, A = 4126; and Catalonia, A =
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Figure 4: Parametric graph АðN2Þ: thick curve, first wave; thin curve, the second wave; the dotted line, the third wave; points–stationary
relation (9) with a coefficient kс = 1/200 .
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636 are not complete in this sense. They show only one coor-
dinate on the spiral in space ðN2, АÞ at a fixed moment. The
spiral connection through passenger traffic extends to other
cities and regions. Individual turns of the spiral may be degen-
erate due to the small amplitude of the wave. The ultimate goal
is to get out of the spiral to the origin: N2 = 0, A = 0.

Note that our model (13)–(18) is descriptive. In order to
proceed to predictions, you need to study in detail the for-
mation of the structure of the source AðtÞ. We hope that this
part of the problem will be solved in future works.

8. Conclusions

The article presents a study of epidemic kinetics within the
framework of a new theoretical model using kinetic elements
for populations of atomic levels of an active laser medium as
follows: a description of states and rates of transitions
between them, an integral operator, and a source of influ-
ence on the system. In this model, the time integral operator
is reduced to an algebraic form with lagging terms. It is
shown that the concept of the source of infection should
be used to describe a long-term epidemic. With a constant
source of infection, the epidemic, in terms of the number
of actively infected people, goes into a stationary mode,
which does not depend on the population and the specifics
of quarantine measures.

Structure of the source of quasistationary infection is not
known; however, the task of describing infection statistics
for a locality (city) can be solved as follows. At the first stage,
the inverse problem of epidemic kinetics is solved. To deter-
mine the real source of infection, statistics were used in Mos-
cow on the daily increase in the number of infected. At the
second stage, the direct problem of epidemic kinetics with
the already found source is solved. This made it possible to
obtain epidemic curves that coincide with statistical data
with an accuracy of 7% for the entire long-term stage of
the epidemic development, taking into account three waves
of infection.

The interpretation of epidemic waves generated by the
source is given. Waves of infection are formed by two main
factors: external incoming passenger traffic and, possibly, an
increase in contacts between citizens due to the weakening of
sanitary measures. In the formation of the first and third
waves, an increase in contacts prevails, and in the formation
of the second, a combination of factors.

It is shown that in the quasistationary mode of epidemic
development, the use of two statistical data on the frequency
of infection and mortality makes it possible to determine the
epidemic mortality rate, which for Moscow was about 0.5%
per day of the number of infected. At the same time, accurate
mortality statistics cannot be used to determine the source of
infection due to uncertainty in the κс mortality rate.

Data Availability

In the article, the authors used the data of the official state
statistics of the Russian Federation on the incidence of
COVID-19 in the city of Moscow, which are presented in
link [12] and in link [13] (New York, Berlin, and Catalonia).
From these data, the authors took the daily rates of infection,
recovery, and mortality of citizens living in the city of Mos-
cow for the period from the beginning of the epidemic
(March 12, 2020) to the present (September 2021), which
are incorporated into the presented epidemic model. The
data confirming the theoretical model were also taken from
the specified statistics. The calculation and statistics are close
with high accuracy when the coefficient ks varies.
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Figure 5: The time course of the reproduction coefficient (31) for the city of Moscow. Time t is specified in days.

8 Computational and Mathematical Methods in Medicine



Conflicts of Interest

The authors Andrey V Borovskiy and Andrey L Galkin
declare that they have no conflict of interests.

Acknowledgments

The work is done by Professor and Doctor of Physical and
Mathematical Sciences A.V. Borovsky at the expense of the
budget of the Baikal State University, Irkutsk, by Researcher
and Doctor of Physical and Mathematical Sciences A.L.
Galkin at the expense of the budget of the Institute of Gen-
eral Physics, and by A.M. Prokhorov of the Russian Acad-
emy of Sciences. International grants for the work were not
requested.

References

[1] A. V. Borovskiy, S. A. Zapryagaev, O. I. Zatsarinny, and N. L.
Manakov, Plasma of Multiply Charged Ions. Elementary Pro-
cesses, Kinetics and X-ray Lasers, St. Petersburg: Chemistry,
St. Petersburg branch, 1995.

[2] A. V. Borovskiy, “Model epidemic with delay,” in System Anal-
ysis and Mathematical Modeling, Т. 2, No 4. P.53-63 (2020)/
Borovskiy AV, Galkin AL, Model of Quasi-Stationary Epidemic
Hinetics, no. 2pp. 221–229, Bulletin of the Baikal State Univer-
sity. T. 31, 2021.

[3] P. Riyapan, S. E. Shuaib, and A. Intarasit, “A mathematical
model of COVID-19 pandemic: a case study of Bangkok, Thai-
land,” Computational and Mathematical Methods in Medicine,
vol. 2021, Article ID 6664483, 2021.

[4] X.-P. Li, N. Gul, M. A. Khan et al., “A new hepatitis B model in
light of asymptomatic carriers and vaccination study through
Atangana-Baleanu derivative,” Results in Physics, vol. 29, arti-
cle 104603, 2021.

[5] X.-P. Li, Y. Wang, M. A. Khan, M. Y. Alshahrani, and
T. Muhammad, “A dynamical study of SARS-COV-2: a study
of third wave,” Results in Physics, vol. 29, article 104705, 2021.

[6] X.-P. Li, H. A. Bayatti, A. Din, and A. Zeb, “A vigorous study of
fractional order COVID-19 model via ABC derivatives,”
Results in Physics, vol. 29, article 104737, 2021.

[7] Z.-H. Shen, Y.-M. Chu, M. A. Khan, S. Muhammad, A. Al-
Hartomy, and M. Higazy, “Mathematical modeling and opti-
mal control of the COVID-19 dynamics,” Results in Physics,
vol. 31, article 105028, 2021.

[8] A. Arenas, W. Cota, J. Gómez-Gardeñes et al., “Modeling the
spatio-temporal epidemic spreading of covid-19 and the
impact of mobility and social distancing interventions,” Phys-
ical Review X, vol. 10, no. 4, article 041055, 2020.

[9] O. V. Baroyan, L. A. Rvachev, and Y. Ivannikov,Modeling and
Forecasting of Influenza Epidemics for the Territory of the
USSR, Moscow, Institute of Epidemic Medicine. N.F. Gamalei,
1977.

[10] B. V. Boev, Forecasting and analytical models of epidemics.
(Assessment of the consequences of technogenic accidents and
natural disasters), Moscow Institute of Physics and Technol-
ogy, Lecture, 2005, http://www.armscontrol.ru/course/30.12
.2020.

[11] “Equation for epidemic spread with the quarantine measures:
application to COVID-19,” Physica Scripta, vol. 95, no. 10,
p. 001, 2020.

[12] https://datalens.yandex/7o7is1q6ikh23?tab=X1&utm_
source=cbregion&state=8f8de434378.

[13] https://www.google.com/search?q=statistik+covid+19
+berlin&ei=QxDsYPCzB6PrrgSB853QCw&oq=statistik
+ c o v i d + 1 9 + b e r l i n & g s _ l c p =
Cgdnd3Mtd2l6EAMyBwKgAADE.

9Computational and Mathematical Methods in Medicine

http://www.armscontrol.ru/course/30.12.2020
http://www.armscontrol.ru/course/30.12.2020
https://datalens.yandex/7o7is1q6ikh23?tab=X1&utm_source=cbregion&state=8f8de434378
https://datalens.yandex/7o7is1q6ikh23?tab=X1&utm_source=cbregion&state=8f8de434378
https://www.google.com/search?q=statistik+covid+19+berlin&ei=QxDsYPCzB6PrrgSB853QCw&oq=statistik+covid+19+berlin&gs_lcp=Cgdnd3Mtd2l6EAMyBwKgAADE
https://www.google.com/search?q=statistik+covid+19+berlin&ei=QxDsYPCzB6PrrgSB853QCw&oq=statistik+covid+19+berlin&gs_lcp=Cgdnd3Mtd2l6EAMyBwKgAADE
https://www.google.com/search?q=statistik+covid+19+berlin&ei=QxDsYPCzB6PrrgSB853QCw&oq=statistik+covid+19+berlin&gs_lcp=Cgdnd3Mtd2l6EAMyBwKgAADE
https://www.google.com/search?q=statistik+covid+19+berlin&ei=QxDsYPCzB6PrrgSB853QCw&oq=statistik+covid+19+berlin&gs_lcp=Cgdnd3Mtd2l6EAMyBwKgAADE

	Model of Epidemic Kinetics with a Source on the Example of Moscow
	1. Introduction
	2. Numerical Investigations of the Equations of Epidemic Kinetics with Delay with a Constant Source
	3. Inverse Problem of Epidemic Kinetics
	4. Analysis of the Correlation between the Source of Infection and the Number of Infected&thinsp;N2t
	5. Accounting for Vaccination in the Model of Epidemic Kinetics
	6. Reproduction Coefficient
	7. Discussion
	8. Conclusions
	Data Availability
	Ethical Approval
	Conflicts of Interest
	Acknowledgments

