
Research Article
Boosted Sine Cosine Algorithm with Application to
Medical Diagnosis

Xiaojia Ye ,1 Zhennao Cai ,2 Chenglang Lu ,3,4 Huiling Chen ,2,4 and Zhifang Pan 3,4

1Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China
2College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
3College of Modern Information Technology, Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou,
Zhejiang 310051, China
4The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China

Correspondence should be addressed to Chenglang Lu; luchenglang@zime.edu.cn, Huiling Chen; chenhuiling.jlu@gmail.com,
and Zhifang Pan; panzhifang@wmu.edu.cn

Received 24 April 2022; Revised 19 May 2022; Accepted 26 May 2022; Published 22 June 2022

Academic Editor: Pan Zheng

Copyright © 2022 Xiaojia Ye et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The sine cosine algorithm (SCA) was proposed for solving optimization tasks, of which the way to obtain the optimal solution is
mainly through the continuous iteration of the sine and cosine update formulas. However, SCA also faces low population diversity
and stagnation of locally optimal solutions. Hence, we try to eliminate these problems by proposing an enhanced version of SCA,
named ESCA_PSO. ESCA_PSO is proposed based on hybrid SCA and particle swarm optimization (PSO) by incorporating
multiple mutation strategies into the original SCA_PSO. To validate the effect of ESCA_PSO in handling global optimization
problems, ESCA_PSO was compared with quality algorithms on various types of benchmark functions. In addition, the
proposed ESCA_PSO was employed to tune the best parameters of support vector machines for dealing with medical diagnosis
tasks. The results prove the efficiency of the proposed algorithms in solving optimization problems.

1. Introduction

1.1. Motivation. Many problems in real life can be summa-
rized as global optimization problems. When it comes to
increasingly complex optimization problems, traditional
methods are generally unsatisfactory [1]. Therefore, many
scholars began to explore new solutions. The metaheuristic
algorithm (MA) is developed for obtaining and grasping
information to effectively find approximately optimal solu-
tions through learning strategies. MA has been applied to
many scenarios owing to its effective optimization capability
[2]. For example, MA has found the great potential in wind
speed prediction [3], scheduling problem [4], parameter
optimization [5], PID optimization control [6], gate resource
allocation [7], fault diagnosis of rolling bearings [8], cloud
workflow scheduling [9], energy vehicle dispatch [10], com-
bination optimization problems [11], traveling salesman
problem [12], object tracking [13], neural network training
[14], and multiattribute decision making [15].

In 2016, a new swarm intelligence algorithm named sine
cosine algorithm (SCA) [16] was proposed. SCA searches
the solution based on the sine function and cosine function.
It owns strong global searchability, which can significantly
increase the global optimal solution through enough itera-
tions. However, SCA also is faced with some problems, for
instance, slow convergence speed, low convergence accu-
racy, and easily falling into local optimum. To overcome
the problems existing in SCA, a hybrid SCA and PSO algo-
rithm (SCA_PSO) was put forward by Nenavath et al. [17],
which aims to solve optimization problems and target track-
ing. The search mechanism of the PSO algorithm is added to
the traditional SCA to guide the search for potential candi-
date solutions. It should be noted that though the SCA_
PSO has achieved promising results on object tracking when
dealing with complex problems, it is still easy to skip the true
optimal solution and lead to premature convergence.

According to “No Free Lunch” [18], we have introduced
the differential evolution algorithm (DE) and combined
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mutation strategies into the original SCA_PSO to strengthen
its capability of local search and reduce the occurrence of
premature convergence. The proposed ESCA_PSO was vali-
dated on a benchmark test which includes various types of
functions. Experimental results demonstrated that ESCA_
PSO was significantly better than SCA_PSO and other com-
petitive counterparts. In addition, the ESCA_PSO was also
used to construct an optimal support vector machine model
(SVM) to deal with the medical diagnosis problems in an
effective manner. In general, ESCA_PSO has improved the
performance of SCA_PSO in a significant manner.

1.2. Literature Review. SCA has been widely studied and
applied in many fields because of its simple implementation
and relatively excellent performance in realizing complex
problems. For example, SCA was employed to tackle the

scheduling problem in [19]. A multiobjective SCA was pro-
posed to solve engineering optimization problems in [20]
and forecast the wind speed in [21]. SCA was employed to
predict the time series by constructing an optimal support
vector regression model in [22]. In [23], SCA was utilized
to optimize the parameters of fuzzy k-nearest neighbor to
build an optimized classifier for predicting the intention of
students for a postgraduate entrance examination. In [24],
SCA was applied to optimize the SVM’s parameters and
the boosted classifier was trained to predict students’ entre-
preneurial intentions.

In addition to applications, scholars have also proposed
many improved SCA variants. Issa et al. [25] proposed a
new idea of SCA, that is, the combination of SCA and
PSO. This algorithm was used to solve the problem of pair-
wise local alignment to look for the longest continuous

Input: MaxFEs,dim,ub,lb
Output: best_fitness
While ðt ≤MaxFEsÞ

For each search agent
Calculate fitness value
If fitness value <SCA Pbest in the iteration

Move the current value to <SCA Pbest matrix
End if
If Fitness value <SCA Gbest

Set current value as <SCA Gbest
End if

End for
For each search agent

Update r1, r2, r3, r4
Ifr4 < 0:5

Update X using Eq.(1)
Else

Update X using Eq.(2)
End if
Check and correct the new positions based on ub, lb

End for
For each particle

Initialize particle with PSO Pbest
Set PSO Gbest as SCA Gbest

End for
While ðt ≤MaxFEsÞ

For each particle
Calculate fitness value

If fitness value <PSO Pbest in history
Set current value as new PSO Pbest

End if
End for

Choose the particle with the best fitness value of all the particle as the PSO Gbest
For each particle

vt+1i =wt + C1 ∗ rand ∗ ðSCA Pt
best − xtiÞ + C2 ∗ rand ∗ ðSCA Gt

best − xtiÞ
xt+1i = xt+1i + vt+1i

End for
End while
best_fitness = PSO Gbest
Return best_fitness

Pseudocode 1: The pseudocode of the SCA_PSO.
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substring between two biological sequences, which has
shown good performance in accuracy and calculation time.
Nenavath and Jatoth [26] proposed to select the DE algo-
rithm to merge into SCA and applied it to target tracking.
Abd Elaziz et al. [27] mutated SCA (OBSCA) with
opposition-based learning mechanisms, which has effec-
tively boosted SCA’s search efficiency and expanded its
search scope. Qu et al. [28] improved the SCA by adding
three strategies. Kumar et al. [29] tried to mix SCA with
Cauchy and Gaussian distributions, which were named
CGSCA. Simulations showed that the single-sensor tracking
scheme based on CGSCA had better results in terms of

tracking time and tracking efficiency. Long et al. [30] com-
bined SCA with inertia weight based on a position updating
equation and a nonlinear conversion parameter strategy to
ameliorate SCA’s ability in solving high-dimensional prob-
lems. Tu et al. [24] proposed to adopt the chaotic local
search enhanced SCA for training an optimal support vector
machine to predict students’ entrepreneurial intentions.
Turgut [31] proposed that mixing SCA with a backtracking
search algorithm (BSA) was an efficient way to realize the
shell and tube evaporator’s optimal design. With the pro-
posed optimization method, the optimal values of the total
design cost of the heat exchanger and the total heat transfer

Input: noP,MaxFEs, ub, lb, dim, fobj.
Output: SCA gbest, cg curve:
While (t≤MaxFEs)

For each search agent
Calculate fitness agent
If fitness value < SCA Pbest in this iteration

Move the current value to SCA Pbest matrix
End if
If Fitness value < SCA Gbest

Set current value as SCA Gbest
End if

End for
For each search agent

Update r1, r2, r3, r4
Ifr4 < 0:5

Update X using Eq.(1)
Else

Update X using Eq.(2)
End if
Check and correct the new positions based on ub, lb

End for
For each particle

Initialize particle with PSO Pbest
Set PSO Gbest as SCA Gbest

End for
Perform DE strategy
While ðt PSO ≤ PSOMaxFEsÞ

For each particle
Calculate fitness value

If fitness value <PSO Pbest in history
Set current value as new PSO Pbest

End if
End for

Choose the particle with the best fitness value of all the particle as the PSO Gbest
For each particle

Update vðkÞ with Eq. (9)
Update vðkÞ with Eq. (10)

End for
End while
Update X_m_Levy using Eq. (14)
Update X_m_gaus using Eq. (12)
Update X_m_cauchy using Eq. (13)

End while
Return SCAgbest and cg curve

Pseudocode 2: Pseudocode of the ESCA_PSO.
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coefficient were better than the results of the other opti-
mizers in the literature. Guo et al. [32] introduced the Riesz
fractional derivative and the OBL strategy into SCA and
applied the method to deal with the engineering problems.
Gupta and Deep [33] proposed to add a leading guidance
mechanism and simulated quenching algorithm together to
SCA and applied it to train multilayer perceptron. Gupta
and Deep [34] utilized the OBL strategy and the self-
adaptive component to enhance the SCA. And this
improved algorithm’s efficacy was confirmed by lots of
benchmark problems and engineering problems. Tawhid
and Savsani [20] proposed a novel and effective multiobjec-
tive version of SCA (MO-SCA). The difference between
MO-SCA and SCA is mainly reflected in two aspects, one
is to improve the nondominated level by adding an elite
nondominated sorting strategy, and the other is to maintain
the diversity of optimal solutions by adding crowded dis-
tance method. At present, machine learning methods are
still a research hotspot [35–42]. However, the hyperpara-
meters of the model have a crucial impact on its perfor-
mance. Therefore, combining the improved version of SCA
with machine learning methods to obtain the best hyper-
parameter combination model is also a novel research angle.

1.3. Contribution and Paper Organization. The main contri-
butions of this study are as follows:

(a) An improved SCA named ESCA_PSO is proposed

(b) The proposed ESCA_PSO has achieved superior
performance to other peers on function optimization
and machine learning tasks

(c) Successfully applied ESCA_PSO to SVM parameter
optimization problem

(d) Successfully use ESCA_PSO-SVM in the field of
medical diagnosis

The rest part of this paper is assigned as follows: The
introduction of SCA and SCA-PSO is arranged in Section
2. Our proposed ESCA_PSO is presented in Section 3. The
details information on experimental results and discussions
are described in Section 4. Finally, in Section 5, conclusions
and future works are summarized.

2. An Overview of SCA_PSO Algorithm

2.1. Standard SCA. In recent years, many new intelligent algo-
rithms have been proposed to solve practical problems, such
as hunger games search (HGS) [43], weighted mean of vectors
(INFO) [44], Harris hawks optimization (HHO) [45], slime
mould algorithm (SMA) [46], and Runge Kutta optimizer
(RUN) [47]. These algorithms have shown great potential in
various fields such as engineering, medicine, energy, finance,
and education. In 2016, Mirjalili [16] put forward a novel
swarm intelligence algorithm called SCA for global optimiza-
tion tasks. Similar to other metaheuristics, it looks for the

Start

Initialize the
computational variables

Yes
No

Initialize the population
of PSO

Calculate the fitness of
every individual

Sort the fitness values and of
the best agent as food source 

Update location with SCA

Return back the particles that go beyond
the boundaries of the search

Update the optimal solution and the
corresponding population location

Mutate the population by using the DE
algorithm

Perform gaussian, gauchy and levy
mutation separately for the population

Select the minimum value as the current
optimal solution

Is iteration
completed?

End

Figure 1: Flowchart of ESCA_PSO.
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solution in a random searching space. SCA obtains the opti-
mal solution through triangle sine cosine functions [16].

The following location updating formulas are proposed
for two phases:

Xt+1
i = Xt

i + r1 × sin r2ð Þ × r3P
t
i − Xt

i

�� ��, ð1Þ

Xt+1
i = Xt

i + r1 × cos r2ð Þ × r3P
t
i − Xt

i

�� ��, ð2Þ

where Xt
i is the position of the current solution in i-th

dimension at t-th iteration, r1,r2, r3 are random numbers,
Pi is the position of the target point in i-th dimension, and
|| indicates absolute value.

Combining the above, the following equation can be
obtained:

Xt+1
i =

Xt
i + r1 × sin r2ð Þ × r3P

t
i − Xt

i

�� ��, r4 < 0:5,

Xt
i + r1 × cos r2ð Þ × r3P

t
i − Xt

i

�� ��, r4 ≥ 0:5,

(
ð3Þ

where r4 is a random number in the range [0, 1].

Table 1: Description of 30 benchmark functions.

ID Function equation Range Optimum value

Unimodal functions

F1 Rotated high conditioned elliptic function [-100, 100] f1 Xminf g = 100
F2 Rotated bent cigar function [-100, 100] f2 Xminf g = 200
F3 Rotated discus function [-100, 100] f3 Xminf g = 300
Simple multimodal functions

F4 Shifted and rotated Rosenbrock’s function [-100, 100] f4 Xminf g = 400
F5 Shifted and rotated Ackley’s function [-100, 100] f5 Xminf g = 500
F6 Shifted and rotated Weierstrass function [-100, 100]] f6 Xminf g = 600
F7 Shifted and rotated Griewank’s function [-100, 100] f7 Xminf g = 700
F8 Shifted Rastrigin’s function [-100, 100] f8 Xminf g = 800
F9 Shifted and rotated Rastrigin’s function [-100, 100] f9 Xminf g = 900
F10 Shifted Schwefel’s function [-100, 100] f10 Xminf g = 1000
F11 Shifted and rotated Schwefel’s function [-100, 100] f11 Xminf g = 1100
F12 Shifted and rotated Katsuura function [-100, 100] f12 Xminf g = 1200
F13 Shifted and rotated HappyCat function [-100, 100] f13 Xminf g = 1300
F14 Shifted and rotated HGBat function [-100, 100] f14 Xminf g = 1400
F15 Shifted and rotated expanded Griewank’s plus Rosenbrock’s function [-100, 100] f15 Xminf g = 1500
F16 Shifted and rotated expanded Scaffer’s F6 function [-100, 100] f16 Xminf g = 1600
Hybrid functions

F17 Hybrid function 1 (N = 3) [-100, 100] f15 Xminf g = 1700
F18 Hybrid function 2 (N = 3) [-100, 100] f16 Xminf g = 1800
F19 Hybrid function 3 (N = 4) [-100, 100] f17 Xminf g = 1900
F20 Hybrid function 4 (N = 4) [-100, 100] f18 Xminf g = 2000
F21 Hybrid function 5 (N = 5) [-100, 100] f19 Xminf g = 2100
F22 Hybrid function 6 (N = 5) [-100, 100] f22 Xminf g = 2200
Composition functions

F23 Composition function 1 (N = 5) [-100, 100] f23 Xminf g = 2300
F24 Composition function 2 (N = 3) [-100, 100] f24 Xminf g = 2400
F25 Composition function 3 (N = 3) [-100, 100] f25 Xminf g = 2500
F26 Composition function 4 (N = 5) [-100, 100] f26 Xminf g = 2600
F27 Composition function 5 (N = 5) [-100, 100] f27 Xminf g = 2700
F28 Composition function 6 (N = 5) [-100, 100] f28 Xminf g = 2800
F29 Composition function 7 (N = 3) [-100, 100] f29 Xminf g = 2900
F30 Composition function 8 (N = 3) [-100, 100] f30 Xminf g = 3000
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As the above formulae reveal, r1, r2, r3 and r4 are four
important parameters with different meanings. The r1
mainly decides whether the position of the next move is
within the boundary range of solution and destination or
outside the range. r2 represents the distance required for
the movement to reach the destination. The coefficient r3
carries a random load for the destination to stochastically
emphasize (r3> 1) or deemphasize (r3 <1) the effect of des-
tination in describing the distance. r4 switches from sine
function to cosine function or vice versa in Eq. (3). The
values of r2 were set in ½0, 2π� in this study.

To achieve a steady global and local search, the range of
sine and cosine functions in Eqs. (1)–(3) are altered adap-
tively according to the following formula:

r1 = a − t
a
T
, ð4Þ

where t means the current iteration, T means the maxi-
mum number of iterations, and a is a constant with the
value of 2.

2.2. SCA_PSOAlgorithm.To eliminate the shortcoming of SCA,
Nenavath et al. [17] came up with an improved hybrid SCA_
PSO for dealing with optimization tasks. The SCA_PSO inte-
grates PSO’s strengths in exploitation and the SCA’s strengths
in exploration to approach the global optimal solution.

By adding internal storage to SCA, each individual is per-
mitted to follow the coordinates associated with the adaptive
values in the search space. And the personal historical best
solution of each search agent in the present population is
stored in the form of a matrix, SCA-Pbest, which is the same
as the concept of Pbest in PSO each iteration. In addition, the
solution also keeps track of the optimal value achieved so far
by any nearby solution. As a new concept in SCA, Pbest and
Gbest enhance the exploitation ability of SCA. The pseudocode
of SCA_PSO is shown in Pseudocode 1.

3. Proposed ESCA_PSO

The improved ESCA_PSO is combined with two efficient
strategies. Firstly, a DE with the “random variation” mode is

successfully combined with the SCA_PSO to strengthen the
global search capability of the SCA_PSO. Then, a combined
mutation with the mixed distributions of Gaussian, Cauchy,
and Lévy was added to the combination mutation strategy,
which can further improve the accuracy of the solution.

3.1. Combined Mutation of Gaussian, Cauchy, and Lévy.
Gaussian distribution (GD) [48] is a significant probability
distribution in many subjects such as engineering and mathe-
matics. GD has many excellent features. Plenty of random var-
iables and objects in nature can be presumably expressed as
GD, and many probability distributions can be approximated
or exported by this distribution. The probability density func-
tion of the GD can be expressed according to Eq. (5):

f xð Þ = 1ffiffiffiffiffiffi
2π

p
σ
exp −

x − μð Þ2
2σ2

 !
, ð5Þ

where μ and σ represent the mean and standard deviation,
respectively.

Cauchy distribution [49] is also called Cauchy-Lorentz
distribution. It is a continuous probability distribution
named after Augustine-Louis-Cauchy and Hendrick-
Lorentz. It is similar to normal distribution. Cauchy distri-
bution is also widely used in statistics. It has the characteris-
tics of the nonexistence of expectation and variance and
additivity. The probability density function of the Cauchy
distribution can be expressed according to Eq. (6):

f x ; x0, yð Þ = 1
π

γ

x − x0ð Þ2 + γ2

 !
, ð6Þ

where x0 is the position parameter defining the location of
the distribution peak; γ is the scale parameter defining half
the width of the maximum half.

Lévy flights [50] based on Lévy distribution are consis-
tent with the search behavior of many organisms in the
nature and are widely used in optimization algorithms and
optimal search processes. Moreover, the stochastic process
can maximize the search efficiency of resources under uncer-
tain conditions. In the search process, Lévy flights can make
the whole search process more effective and stable, balancing
the proportion of local search and global search. Due to the
existence of the random process of the Lévy flight, the short-
range exploratory local search and the occasional long-
distance walk are in phase. Thus, the algorithm’s local
searching speed is faster, and the solutions are more easily
searched near the current optimum. The decomposition
can search far away from the current optimal value, thus
ensuring that the algorithm does not fall into the local opti-
mum (LO). The Lévy formula used is as follows:

σ = Γ 1 + βð Þ sin πβ/2ð Þ
Γ 1 + β/2½ �β2β‐1/2

� � 1/βð Þ
, ð7Þ

where Γ (x) is a continuation function of the factorial, that
is, when the x is a positive integer Γðx + 1Þ = x! The value

Table 2: Parameters setting for involved algorithms.

Method Parameter

ESCA_PSO a = 2; c1 = 2; c2 = 2; vmax = 6
SCADE cmin = 0:2; cmax = 0:8; pCR = 0:8
SCA a = 2
SCA-PSO M = 4; N = 9; vmax = 6; wmax = 0:9; wmin = 0:2
CGSCA Delta = 0:1
GWO a = 0, 2½ �
MFO b = 1; t = −1, 1½ �; a = −1,−2½ �
BA a = 0:5; r = 0:5
PSO c1 = 2; c2 = 2; vmax = 6
LSHADE Pb = 0:1; Ar = 1:4
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Table 3: Results of ESCA_PSO versus other algorithms on 30 benchmark functions.

F1 F2 F3

Avg Std Avg Std Avg Std

ESCA_PSO 8.77E+06 3.47E+06 7.49E+07 7.38E+06 9.44E+03 2.27E+03

SCADE 4.23E +08 9.19E+07 2.97E+10 4.56E+09 5.46E+04 6.21E+03

SCA 2.52E+08 7.02E+07 1.76E+10 2.68E+09 3.72E+04 5.71E+03

SCA_PSO 8.01E+06 2.83E+06 3.83E+07 8.40E+06 2.99E+03 1.04E+03

CGSCA 2.85E+08 8.98E+07 1.82E+10 4.06E+09 4.15E+04 5.63E+03

GWO 5.76E+07 4.69E+07 2.18E+09 2.05E+09 3.24E+04 8.29E+03

MFO 8.50E+07 1.06E+08 1.22E+10 7.01E+09 1.10E+05 6.34E+04

BA 7.40E+05 2.88E+05 5.24E+05 2.80E+05 4.11E+02 1.40E+02

PSO 9.30E+06 2.45E+06 1.46E+08 1.63E+07 9.60E+02 9.65E+01

LSHADE 4.41E+03 7.34E+03 2.00E+02 3.77E-14 3.00E+02 1.74E-11

F4 F5 F6

Avg Std Avg Std Avg Std

ESCA_PSO 4.73E+02 3.72E+01 5.21E+02 4.33E-02 6.29E+02 3.45E+00

SCADE 2.40E+03 5.90E+02 5.21E+02 3.58E-02 6.35E+02 1.86E+00

SCA 1.43E+03 2.20E+02 5.21E+02 4.98E-02 6.34E+02 2.32E+00

SCA_PSO 4.77E+02 4.19E+01 5.21E+02 6.37E-02 6.29E+02 3.03E+00

CGSCA 1.63E+03 2.92E+02 5.21E+02 5.14E-02 6.34E+02 2.33E+00

GWO 7.02E+02 2.37E+02 5.21E+02 5.08E-02 6.13E+02 2.06E+00

MFO 1.34E+03 8.51E+02 5.20E+02 1.59E-01 6.24E+02 3.73E+00

BA 4.40E+02 3.98E+01 5.21E+02 5.19E-02 6.34E+02 3.36E+00

PSO 4.68E+02 3.39E+01 5.21E+02 4.82E-02 6.23E+02 2.99E+00

LSHADE 4.04E+02 1.61E+01 5.20E+02 1.00E-03 6.11E+02 2.23E+00

F7 F8 F9

Avg Std Avg Std Avg Std

ESCA_PSO 7.02E+02 5.88E-02 9.83E+02 2.14E+01 1.13E+03 2.09E+01

SCADE 9.10E+02 3.53E+01 1.07E+03 1.63E+01 1.21E+03 1.63E+01

SCA 8.43E+02 2.36E+01 1.04E+03 2.05E+01 1.18E+03 1.64E+01

SCA_PSO 7.01E+02 7.70E-02 9.97E+02 3.65E+01 1.13E+03 3.53E+01

CGSCA 8.67E+02 2.74E+01 1.06E+03 1.61E+01 1.18E+03 1.59E+01

GWO 7.23E+02 1.75E+01 8.81E+02 1.77E+01 9.99E+02 2.43E+01

MFO 8.15E+02 7.39E+01 9.36E+02 2.91E+01 1.12E+03 5.57E+01

BA 7.01E+02 1.55E-01 1.03E+03 4.75E+01 1.20E+03 6.92E+01

PSO 7.02E+02 1.62E-01 9.71E+02 2.31E+01 1.12E+03 3.57E+01

LSHADE 7.00E+02 1.17E-02 8.00E+02 1.82E-01 9.36E+02 1.36E+01

F10 F11 F12

Avg Std Avg Std Avg Std

ESCA_PSO 4.71E+03 6.56E+02 5.69E+03 6.28E+02 1.20E+03 3.92E-01

SCADE 7.41E+03 3.71E+02 8.10E+03 3.58E+02 1.20E+03 2.15E-01

SCA 6.93E+03 4.80E+02 8.10E+03 3.38E+02 1.20E+03 2.81E-01

SCA_PSO 5.26E+03 7.19E+02 5.62E+03 7.81E+02 1.20E+03 3.01E-01

CGSCA 7.19E+03 3.88E+02 8.05E+03 3.20E+02 1.20E+03 2.86E-01

GWO 3.34E+03 4.08E+02 3.93E+03 4.80E+02 1.20E+03 8.77E-01

MFO 4.56E+03 9.40E+02 5.40E+03 8.30E+02 1.20E+03 2.55E-01

BA 5.16E+03 6.27E+02 5.43E+03 6.13E+02 1.20E+03 3.10E-01

PSO 4.97E+03 5.63E+02 5.70E+03 5.81E+02 1.20E+03 2.82E-01

LSHADE 1.00E+03 7.66E-01 2.91E+03 4.12E+02 1.20E +03 3.80E-02
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Table 3: Continued.

F13 F14 F15

Avg Std Avg Std Avg Std

ESCA_PSO 1.30E+03 9.71E-02 1.40E+03 3.81E-02 1.52E+03 1.41E+00

SCADE 1.30E+03 3.33E-01 1.49E+03 1.18E+01 2.17E+04 7.85E+03

SCA 1.30E+03 3.27E-01 1.45E+03 8.31E+00 5.16E+03 3.72E+03

SCA_PSO 1.30E+03 6.25E-02 1.40E+03 4.86E-02 1.52E+03 1.49E+00

CGSCA 1.30E+03 3.16E-01 1.45E+03 1.06E+01 8.10E+03 5.63E+03

GWO 1.30E+03 3.97E-01 1.41E+03 7.06E+00 1.82E+03 8.98E+02

MFO 1.30E+03 1.45E+00 1.43E+03 2.16E+01 1.28E+05 3.08E+05

BA 1.30E+03 1.38E-01 1.40E+03 4.97E-02 1.53E+03 6.26E+00

PSO 1.30E+03 7.09E-02 1.40E+03 1.19E-01 1.52E+03 1.11E+00

LSHADE 1.30E+03 7.43E-02 1.40E+03 9.17E-02 1.51E+03 1.76E+00

F16 F17 F18

Avg Std Avg Std Avg Std

ESCA_PSO 1.61E+03 3.67E-01 4.35E+05 2.41E+05 1.93E+06 6.44E+05

SCADE 1.61E+03 2.26E-01 1.58E+07 5.49E+06 1.54E+08 9.16E+07

SCA 1.61E+03 2.37E-01 5.52E+06 2.43E+06 1.74E+08 7.49E+07

SCA_PSO 1.61E+03 4.47E-01 1.79E+05 1.09E+05 7.62E+05 4.43E+05

CGSCA 1.61E+03 2.29E-01 6.77E +06 3.75E+06 1.43E+08 7.47E+07

GWO 1.61E+03 7.29E-01 1.49E+06 1.54E+06 2.88E+06 1.02E+07

MFO 1.61E+03 4.74E-01 2.40E+06 3.10E+06 2.64E+07 9.98E+07

BA 1.61E+03 2.59E-01 1.09E+05 8.01E+04 9.42E+04 4.63E+04

PSO 1.61E+03 5.31E-01 2.76E+05 1.21E+05 2.19E+06 7.43E+05

LSHADE 1.61E+03 3.85E-01 1.49E+04 6.33E+04 1.95E+03 5.46E+01

F19 F20 F21

Avg Std Avg Std Avg Std

ESCA_PSO 1.92E+03 2.29E+00 3.81E+03 1.57E+03 1.29E+05 1.10E+05

SCADE 2.02E+03 1.98E+01 2.52E+04 1.06E+04 2.18E+06 1.12E+06

SCA 1.99E+03 2.80E+01 1.56E+04 3.39E+03 1.23E+06 6.00E+05

SCA_PSO 1.92E+03 2.72E+00 2.47E+03 2.22E+02 9.35E+04 4.63E+04

CGSCA 1.99E+03 1.65E+01 1.88E+04 5.54E+03 1.67E+06 7.22E+05

GWO 1.94E+03 2.47E+01 1.97E+04 1.35E+04 6.56E+05 1.16E+06

MFO 1.96E+03 4.95E+01 7.19E+04 8.18E+04 8.20E+05 1.10E+06

BA 1.92E+03 1.83E+01 2.36E+03 1.13E+02 5.26E +04 3.10E+04

PSO 1.92E+03 2.43E+00 2.32E+03 7.07E+01 1.17E+05 6.92E+04

LSHADE 1.91E+03 1.84E+00 3.11E+03 3.51E+03 2.78E+03 2.77E+02

F22 F23 F24

Avg Std Avg Std Avg Std

ESCA_PSO 2.97E+03 2.43E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

SCADE 3.11E+03 1.85E+02 2.50E+03 0.00E+00 2.60E+03 5.15E-06

SCA 2.99E+03 1.42E+02 2.67E+03 1.07E+01 2.60E+03 1.00E-01

SCA_PSO 3.17E+03 2.89E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

CGSCA 3.07E+03 1.26E+02 2.50E+03 0.00E+00 2.60E+03 3.55E-06

GWO 2.59E+03 1.83E+02 2.63E+03 9.77E+00 2.60E+03 9.56E-04

MFO 3.12E+03 2.90E+02 2.66E+03 2.48E+01 2.68E+03 2.64E+01

BA 3.33E+03 3.17E+02 2.62E+03 3.12E-03 2.67E+03 3.46E+01

PSO 2.90E+03 2.61E+02 2.62E+03 7.09E-01 2.63E+03 5.18E+00

LSHADE 2.43E+03 9.48E+01 2.62E+03 1.88E-12 2.64E+03 6.32E+00
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of the variable β determines the shape of the Lévy probabil-
ity density function, especially in the tail area.

γ = μ

vj j1/β
, ð8Þ

where γ is the flight step, v, is the standard normal distribu-
tion, and μ is a normal distribution with the mean of 0 and
the variance of σ2.

3.2. Combined Mutation Strategy. As mentioned in the fore-
going, the DE algorithm can enhance the global search capa-
bility of SCA_PSO, while mutation of Gaussian, Cauchy,
and Lévy is algorithms that can make the algorithm perform
better in local search. A combined mutation strategy was
proposed in this study, which combined the different char-
acteristics of the three mutation strategies, making the
SCA_PSO find a more balanced manner in performing
explorative search and exploitative search. The whole algo-
rithm steps are as shown below:

Step 1. Search using the mentioned SCA.
Step 2. Mutate the SCA_PSO by the DE algorithm and

the new individual will be retained if its fitness value is better
than the original one.

Step 3. Update using the formula of SCA_PSO. The
update formula used is as follows:

v kð Þ =w∙v kð Þ + c1∙r2∙ pbest − xki
� �

+ c2∙r3∙ SCAGbestxk
i

� �
,

ð9Þ

xki = xki + v kð Þ, ð10Þ
where c1, c2=2. r2, and r3 are in the range of [0, 1].

Step 4. Use combined mutation of Gaussian, Cauchy,
and Lévy to mutate the current optimal individuals, find
the individuals with the smallest of the three results, and
update the fitness values and corresponding individuals.

X =min X m Levy, X m gaus, X m cauchygf , ð11Þ

Xmgaus
= Xt

i∙ 1 + k∙randnð Þ, ð12Þ

Xmcauchy
= Xt

i∙ 1 + k∙cauchyð Þ, ð13Þ

XmLevy
= Xt

i∙ 1 + k∙Levy 1ð Þð Þ, ð14Þ
where X_m_Lévy, X_m_gaus, and X_m_cauchy are the
values obtained by the Lévy, Gaussian, and Cauchy strate-
gies, respectively.

Table 3: Continued.

F25 F26 F27

Avg Std Avg Std Avg Std

ESCA_PSO 2.70E+03 0.00E+00 2.70E+03 1.27E-01 2.90E+03 0.00E+00

SCADE 2.70E+03 0.00E+00 2.70E+03 4.66E-01 3.20E+03 2.10E+02

SCA 2.73E+03 8.20E+00 2.70E+03 5.56E-01 3.57E+03 3.51E+02

SCA_PSO 2.70E+03 0.00E+00 2.77E+03 4.48E+01 2.90E+03 0.00E+00

CGSCA 2.70E+03 0.00E+00 2.70E+03 3.72E-01 2.90E+03 0.00E+00

GWO 2.71E+03 3.94E+00 2.74E+03 6.01E+01 3.32E+03 1.24E+02

MFO 2.72E+03 8.77E+00 2.70E+03 1.42E+00 3.66E+03 1.76E+02

BA 2.73E+03 1.44E+01 2.70E+03 1.35E-01 3.91E+03 4.20E+02

PSO 2.71E+03 5.98E+00 2.78E+03 4.07E+01 3.39E+03 2.97E+02

LSHADE 2.71E+03 3.23E+00 2.71E+03 3.04E+01 3.25E+03 9.56E+01

F28 F29 F30

Avg Std Avg Std Avg Std

ESCA_PSO 3.00E+03 0.00E+00 3.19E+03 8.63E+01 3.88E+03 6.83E+02

SCADE 4.96E+03 9.21E+02 1.91E+07 1.01E+07 4.90E+05 1.70E+05

SCA 4.84E+03 2.97E+02 1.37E+07 7.32E+06 2.39E+05 7.38E+04

SCA_PSO 3.00E+03 0.00E+00 1.26E+04 3.99E+04 1.53E+04 1.08E+04

CGSCA 3.00E+03 0.00E+00 3.10E+03 0.00E+00 3.20E+03 0.00E+00

GWO 3.84E+03 2.03E+02 6.26E+05 2.36E+06 4.88E+04 4.04E+04

MFO 3.98E+03 2.29E+02 3.06E+06 3.58E+06 5.65E+04 4.66E+04

BA 5.29E+03 6.59E+02 3.13E+07 3.38E+07 1.30E+04 1.23E+04

PSO 7.32E+03 8.69E+02 9.61E+04 1.83E+05 1.44E+04 7.29E+03

LSHADE 3.73E+03 7.27E+01 3.68E+03 4.12E+01 5.47E+03 1.26E+03
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Table 4: The p value of ESCA_PSO compared with other algorithms.

(a)

F ESCA_PSO SCADE SCA SCA_PSO CGSCA GWO

F1 N/A 1.73E-06 + 1.73E-06 + 2.80E-01 1.73E-06 + 2.88E-06 +

F2 N/A 1.73E-06 + 1.73E-06 + 1.73E-06 — 1.73E-06 + 1.73E-06 +

F3 N/A 1.73E-06 + 1.73E-06 + 1.92E-06 — 1.73E-06 + 1.73E-06 +

F4 N/A 1.73E-06 + 1.73E-06 + 8.77E-01 1.73E-06 + 1.92E-06 +

F5 N/A 1.78E-01 1.25E-02 — 6.27E-02 1.48E-02 — 1.59E-01

F6 N/A 3.52E-06 + 1.02E-05 + 4.53E-01 1.24E-05 + 1.73E-06 —

F7 N/A 1.73E-06 + 1.73E-06 + 1.73E-06 — 1.73E-06 + 1.73E-06 +

F8 N/A 1.73E-06 + 1.92E-06 + 1.53E-01 1.73E-06 + 1.73E-06 —

F9 N/A 1.73E-06 + 2.35E-06 + 5.30E-01 1.73E-06 + 1.73E-06 —

F10 N/A 1.73E-06 + 1.73E-06 + 9.84E-03 + 1.73E-06 + 1.73E-06 —

F11 N/A 1.73E-06 + 1.73E-06 + 6.88E-01 1.73E-06 + 1.73E-06 —

F12 N/A 2.37E-05 + 2.58E-03 + 8.94E-01 4.53E-04 + 3.18E-01

F13 N/A 1.73E-06 + 1.73E-06 + 4.99E-03 — 1.73E-06 + 2.43E-02 —

F14 N/A 1.73E-06 + 1.73E-06 + 2.70E-02 — 1.73E-06 + 5.22E-06 +

F15 N/A 1.73E-06 + 1.73E-06 + 5.44E-01 1.73E-06 + 4.86E-05 +

F16 N/A 3.88E-06 + 1.73E-06 + 1.96E -03 + 1.92E-06 + 2.88E-06 —

F17 N/A 1.73E-06 + 1.73E-06 + 1.48E-04 — 1.73E-06 + 7.71E-04 +

F18 N/A 1.73E-06 + 1.73E-06 + 2.35E-06 — 1.73E-06 + 2.07E-02 +

F19 N/A 1.73E-06 + 1.73E-06 + 7.97E-01 1.73E-06 + 1.74E-04 +

F20 N/A 1.73E-06 + 1.73E-06 + 1.92E-06 — 1.73E-06 + 2.88E-06 +

F21 N/A 1.73E-06 + 1.73E-06 + 7.19E-02 1.73E-06 + 1.15E-04 +

F22 N/A 6.42E-03 + 3.18E-01 4.11E-03 + 1.36E-01 7.69E-06 —

F23 N/A 1.00E+00 1.73E-06 + 1.00E+00 1.00E+00 1.73E-06 +

F24 N/A 1.56E-02 + 1.73E-06 + 1.00E+00 2.44E-04 + 1.73E-06 +

F25 N/A 1.00E+00 1.73E-06 + 1.00E+00 1.00E+00 3.79E-06 +

F26 N/A 1.73E-06 + 1.73E-06 + 1.64E-05 + 1.73E-06 + 4.68E-03 +

F27 N/A 5.96E-05 + 1.73E-06 + 1.00E+00 1.00E+00 1.73E-06 +

F28 N/A 1.23E-05 + 1.73E-06 + 1.00E+00 1.00E+00 1.73E-06 +

F29 N/A 1.73E-06 + 1.73E-06 + 5.11E-03 + 5.61E-06 — 1.73E-06 +

F30 N/A 1.73E-06 + 1.73E-06 + 6.75E-05 + 1.32E-04 — 1.73E-06 +

+/-/= / 27/0/3 28/1/1 6/8/10 22/3/5 20/8/2

Avg 2 10 9 3 7 5

(b)

F MFO BA PSO LSHADE

F1 3.18E-06 + 1.73E-06 — 2.99E-01 1.73E-06 —

F2 1.73E-06 + 1.73E-06 — 1.73E-06 + 1.73E-06 —

F3 1.73E-06 + 1.73E-06 — 1.73E-06 — 1.73E-06 —

F4 1.73E-06 + 1.57E-02 — 9.75E-01 1.73E-06 —

F5 1.73E-06 — 8.45E-01 1.53E-01 1.73E-06 —

F6 1.15E-04 — 3.06E-04 + 7.69E-06 — 1.73E-06 —

F7 1.73E-06 + 1.73E-06 — 1.73E-06 + 1.73E-06 —

F8 1.64E-05 — 2.83E-04 + 5.45E-02 1.73E-06 —

F9 2.21E-01 7.51E-05 + 2.80E-01 1.73E-06 —

F10 4.53E-01 4.68E-03 + 1.85E-01 1.73E-06 —

F11 1.92E-01 1.11E-01 9.26E-01 1.73E-06 —
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Pseudocode 2 and Figure 1 display the detailed steps and
flowchart of ESCA_PSO, respectively.

First of all, the current optimal individual SCA Gbest is
obtained by SCA. Then, the particle swarm population is ini-
tialized with the help of SCA Gbest and mutated with the
help of DE strategy. Next, the population is updated using
SCA_PSO. Finally, it is updated by Gaussian, Cauchy, and
Lévy flight strategies.

3.3. Complexity Analysis. The time complexity of the ESCA_
PSO is mainly related to the number of four factors, which
are algorithm iterations (T), PSO’s iterations (P), population
(N), and dimensions (D). And the whole time complexity is
analyzed as follows: O ðESCA PSOÞ =O ðinitializeÞ + T × ð
O ðcalculate the fitness of populationÞ +O ðupdate location
with SCAÞ + P × ðO ðcalculate the fitness of populationÞ +O
ðupdate locationwith PSOÞÞ +O ðperform combined
mutation strategyÞÞ. The time complexity of initialization is
OðN ×DÞ. Since there are N individuals, the fitness of the
initial populations is O ðNÞ. Updating location with SCA is
O ðNÞ. Updating location with PSO is O (N ×D). Perform-
ing the combined mutation strategy is O ðNÞ. All in all, it
is not difficult to conclude that the total time complexity of
ESCA_PSO is O ðESCA PSOÞ =O ðN ×DÞ + T × ðO ðNÞ +
O ðNÞ + P × ðO ðNÞ + O ðN ×DÞÞ + O ðNÞÞ = O ðN ×DÞ + T
× ð2O ðNÞ + P × ðO ðNÞ + O ðN ×DÞÞ + O ðNÞÞ.

4. Experimental Results

To confirm the effectiveness of ESCA_PSO, the proposed
ESCA_PSO is compared with other competitive metaheuris-

tic algorithms on 30 functions of CEC2014 in this part. And
then ESCA_PSO carries on the variation mechanism con-
trast experiment. Finally, ESCA_PSO is used for tuning
SVM’s parameters for medical diagnosis purposes.

4.1. Benchmark Functions. This experiment used 30 classical
functions to substantiate the proposed method and other
competitors. These functions include unimodal, multimodal,
composition, and hybrid functions. F1-F3 are unimodal
functions, F4-F16 are multimodal functions, and F17-F22
are hybrid functions. F23-F30 are composition functions,
which are selected from CEC2014. These 30 different bench-
mark functions can comprehensively estimate the perfor-
mance of the ESCA_PSO. The related descriptions are
demonstrated in Table 1, where range means the boundary
of the search space for the relevant functions. As we all
know, a unimodal function corresponds to a globally opti-
mal solution; so, it can be employed to benchmark develop-
ment capability. Conversely, the multimodal function
possesses a lot of LO solutions, which leads to the algorithm
falling into LO. Such functions can test the capability of the
method to refrain from stagnation and exploration ability.
Moreover, both the hybrid function and multimodal func-
tion only have one global optimum but multiple LO solu-
tions. The structures of composition functions are more
complex.

All the algorithms in the following experiments are
coded on MATLAB 2014b. And to be fair, the experimental
verification is carried out under the unified condition, i.e.,
the population size is set to 30, the maximum evaluation

Table 4: Continued.

F MFO BA PSO LSHADE

F12 1.73E-06 — 1.73E-06 — 4.20E-04 + 1.73E-06 —

F13 1.73E-06 + 6.56E-02 7.16E-04 — 1.80E-05 —

F14 1.73E-06 + 1.64E-05 + 1.48E-02 + 8.19E-05 +

F15 1.73E-06 + 1.92E-06 + 5.32E-03 — 1.73E-06 —

F16 4.29E-06 + 1.73E-06 + 5.30E-01 1.73E-06 —

F17 2.41E-03 + 2.88E-06 — 2.41E-03 — 2.13E-06 —

F18 3.59E-04 + 1.73E-06 — 1.85E-01 1.73E-06 —

F19 2.05E-04 + 6.87E-02 5.45E-02 1.73E-06 —

F20 1.73E-06 + 1.92E-06 — 1.92E-06 — 3.59E-04 —

F21 1.36E-04 + 2.84E-05 — 7.19E-01 1.73E-06 —

F22 4.72E-02 + 1.15E-04 + 2.21E-01 1.73E-06 —

F23 1.73E-06 + 1.73E-06 + 1.73E-06 + 4.32E-08 +

F24 1.73E-06 + 1.73E-06 + 1.73E-06 + 1.73E-06 +

F25 1.73E-06 + 1.73E-06 + 1.73E-06 + 1.73E-06 +

F26 1.73E-06 + 7.52E-02 1.24E-05 + 1.02E-01

F27 1.73E-06 + 1.73E-06 + 1.73E-06 + 1.73E-06 +

F28 1.73E-06 + 1.73E-06 + 1.73E-06 + 1.73E-06 +

F29 1.73E-06 + 1.73E-06 + 8.73E-03 + 1.73E-06 +

F30 1.73E-06 + 1.73E-06 + 1.73E-06 + 4.29E-06 +

+/-/= 23/4/3 15/10/5 12/6/12 8/21/1

Avg 8 6 4 1
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time is set to 300000, the dimension is set to 30, and the
number of runs is set to 30.

4.2. Comparison with Other Algorithms. In this experiment,
the ESCA_PSO was contrasted to SCA, GWO [51], MFO
[52], BA [53], and PSO [54] on the functions presented in
Table 1. To further validate the effect of the proposed
ESCA_PSO, two improved SCA variants including SCA_
PSO and SCADE [26] were involved for comparison and
compare with LSHADE [55] which is the champion algo-
rithm of CEC2014. The parameter configuration of algo-
rithms is shown in Table 2. The detailed comparison
results including the average value (Avg) of the best solution
and standard deviation (Std) of every approach in 30 inde-
pendent runs are displayed in Table 3.

We can see that the advantages of ESCA_PSO are not
very obvious in the unimodal functions and multimodal

functions. In these functions, ESCA_PSO is slightly better
than the original algorithm SCA and its variants CGSCA
and SCADE. But compared with high-quality algorithms
such as LSHADE, there is still a certain gap. However,
ESCA_PSO has a very good performance in the complex
structure of the composition functions. Compared with
other algorithms on F23-F30, it ranks first or second.

By the Friedman test, we can get the average ranking of
test algorithms, which is usually used to get the difference
between many test results. At the same time, to further ana-
lyze the experimental structure, Wilcoxon signed-rank test
was adopted for statistical work.

In Table 4, all experimental results were taken from
those two tests mentioned above. AVG in the table repre-
sents the average ranking of algorithms obtained by the
Friedman test, and “+/-/=” represents the performance of
the function compared with ESCA_PSO. Specifically, “+”
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Figure 2: Convergence curves of ESCA_PSO and other algorithms 9 selected benchmark functions.
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Table 5: Results of mutation mechanism comparison experiment.

F1 F2 F3

Avg Stdv Avg Stdv Avg Stdv

ESCA_PSO 1.0121E+07 4.1281E+06 7.2870E+07 6.7257E+06 9.0781E+03 1.6748E+03

ESCA_PSO1 1.0956E+07 6.3712E+06 7.5147E+07 7.5579E+06 9.4351E+03 2.5065E+03

ESCA_PSO2 8.8248E+06 4.3297E+06 7.5579E+07 6.4189E+06 8.9495E+03 2.0387E+03

ESCA_PSO3 8.9362E+06 3.2913E+06 7.6554E+07 5.5330E+06 8.2034E+03 2.8244E+03

F4 F5 F6

Avg Stdv Avg Stdv Avg Stdv

ESCA_PSO 4.7228E+02 4.7567E+01 5.2095E+02 7.3218E-02 6.2832E+02 3.6455E+00

ESCA_PSO1 4.8246E+02 4.3094E+01 5.2093E+02 5.9358E-02 6.2994E+02 3.6753E+00

ESCA_PSO2 4.8304E+02 3.1844E+01 5.2095E+02 4.0250E-02 6.2907E+02 2.8954E+00

ESCA_PSO3 4.6323E+02 3.5952E+01 5.2094E+02 6.0599E-02 6.2602E+02 3.6698E+00

F7 F8 F9

Avg Stdv Avg Stdv Avg Stdv

ESCA_PSO 7.0165E+02 6.6719E-02 9.7250E+02 1.7061E+01 1.1273E+03 2.1663E+01

ESCA_PSO1 7.0165E+02 5.8391E-02 9.7622E+02 2.0619E+01 1.1213E+03 2.3921E+01

ESCA_PSO2 7.0164E+02 4.8112E-02 9.7878E+02 1.5477E+01 1.1222E+03 2.4011E+01

ESCA_PSO3 7.0163E+02 6.2317E-02 9.5729E+02 1.6848E+01 1.1358E+03 3.5018E+01

F10 F11 F12

Avg Stdv Avg Stdv Avg Stdv

ESCA_PSO 4.9137E+03 7.2648E+02 5.6985E+03 5.0594E+02 1.2023E+03 3.2946E-01

ESCA_PSO1 4.9133E+03 6.5258E+02 5.6409E+03 7.1573E+02 1.2023E+03 2.7883E-01

ESCA_PSO2 4.9278E+03 6.4952E+02 5.6196E+03 5.2887E+02 1.2023E+03 2.8632E-01

ESCA_PSO3 3.9106E+03 7.0806E+02 5.7900E+03 6.4145E+02 1.2025E+03 1.9371E-01

F13 F14 F15

Avg Stdv Avg Stdv Avg Stdv

ESCA_PSO 1.3005E+03 8.0129E-02 1.4003E+03 5.5878E-02 1.5178E+03 1.8461E+00

ESCA_PSO1 1.3004E+03 6.5982E-02 1.4002E+03 3.9799E-02 1.5176E+03 1.4145E+00

ESCA_PSO2 1.3005E+03 1.3432E-01 1.4003E+03 5.0665E-02 1.5173E+03 1.5482E+00

ESCA_PSO3 1.3004E+03 9.2885E-02 1.4003E+03 1.0046E-01 1.5168E+03 1.2616E+00

F16 F17 F18

Avg Stdv Avg Stdv Avg Stdv

ESCA_PSO 1.6119E+03 3.7281E-01 3.5341E+05 1.5577E+05 1.9265E+06 5.4288E+05

ESCA_PSO1 1.6121E+03 2.7974E-01 4.7094E+05 5.3309E+05 1.9803E+06 5.1404E+05

ESCA_PSO2 1.6120E+03 3.9442E-01 4.2443E+05 3.0521E+05 2.1497E+06 4.0650E+05

ESCA_PSO3 1.6117E+03 3.5803E-01 4.4610E+05 3.0212E+05 1.7955E+06 4.8630E+05

F19 F20 F21

Avg Stdv Avg Stdv Avg Stdv

ESCA_PSO 1.9176E+03 2.6584E+00 4.6963E+03 2.1120E+03 1.5933E+05 1.2738E+05

ESCA_PSO1 1.9195E+03 1.1064E+01 4.8166E+03 2.4521E+03 1.6422E+05 1.1183E+05

ESCA_PSO2 1.9182E+03 2.6893E+00 4.2130E+03 1.8120E+03 1.7741E+05 1.5670E+05

ESCA_PSO3 1.9210E+03 1.6909E+01 2.5728E+03 3.9978E+02 1.2953E+05 9.6487E+04
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means ESCA_PSO is better than this algorithm, “-” indicates
that ESCA_PSO is inferior to this algorithm, and “=” means
that the performance is similar to ESCA_PSO. In Wilcoxon
signed-rank test, when the p value is less than 0.05, the per-
formance between the two algorithms is significant. It was
also used to evaluate the significance of ESCA_PSO versus
other approaches. It can see from the table that ESCA ranks
second on average, which is better than other algorithms
overall. Compared with SCA, SCADE, CGSCA, GWO, and
MFO, it is significantly better than 20 functions. However,
it is indeed weaker than the champion algorithm LSHADE
on multimodal functions and unimodal functions.

Figure 2 shows nine graphs of convergence we selected.
As shown in Figure 2, it can be seen that ESCA_PSO does
have a good convergence rate on these functions. It quickly
converges to a lower point. And ESCA_PSO has a significant
improvement over than original SCA. Of course, it is unde-
niable that some algorithms converge faster than ESCA_
PSO, but ESCA_PSO has higher quality solutions.

Despite the great potential of the proposed ESCA_PSO,
the approach of sacrificing a certain time complexity in
exchange for an increase in terms of accuracy is insufficient
side. Nevertheless, the algorithm is still competitive with
LSHADE in unimodal and multimodal functions.

4.3. Comparison of Mutation Mechanism. As mentioned
earlier, three mutation mechanisms were added to ESCA_
PSO. To further analyze ESCA_PSO, we conducted compar-
ative experiments on the mutation mechanism of ESCA in
this section.

To compare the mutation mechanism, we construct
three algorithms, namely, ESCA_PSO1, ESCA_PSO2, and

ESCA_PSO3. Compared with ESCA_PSO, ESCA_PSO1
only uses Gaussian mutation while others remain
unchanged. By analogy, ESCA_PSO2 only uses the Cauchy
mutation while ESCA_PSO3 only uses the Lévy mutation.
The population dimension and the total number of itera-
tions of this experiment are the same as those in the previous
experiment settings.

The results obtained from the experiments are shown in
Table 5, and there is not much difference between these four
algorithms, which can be concluded by comparing the whole
data. This is because most of the four algorithms are the
same, and only the mutation mechanism has changed. From
the numerical value obtained from the experiment, ESCA_
PSO has not achieved the best results in functions many
times. But relatively, ESCA_PSO is rarely ranked last. This
is also because ESCA_PSO integrates three mutation mech-
anisms, which makes it applicable to more functions.

Figure 3 shows several convergence graphs in this exper-
iment. From the figure, we can see that in F2, F17, and F19,
the convergence curves of the four algorithms are relatively
similar, and there is no big difference in general. In F27
and F28, the performance of ESCA_PSO3 is not as good as
the other three algorithms. In F29 and F30, ESCA_PSO2 is
quite different from the other three algorithms. However,
ESCA_PSO can keep a good level in these functions. This
shows that the combination of three different mutation
mechanisms can help the algorithm adapt to more functions.

However, ESCA_PSO that we proposed is not perfect, and
there are certain limitations. In the benchmark functions
experiment, it can be seen that there is still a gap between
the performance of this algorithm and champion algorithms
in unimodal functions and multimodal functions.

Table 5: Continued.

F22 F23 F24

Avg Stdv Avg Stdv Avg Stdv

ESCA_PSO 3.0075E+03 2.5470E+02 2.5000E+03 0.0000E+00 2.6000E+03 0.0000E+00

ESCA_PSO1 3.0277E+03 1.8557E+02 2.5000E+03 0.0000E+00 2.6000E+03 0.0000E+00

ESCA_PSO2 2.9865E+03 2.5463E+02 2.5000E+03 0.0000E+00 2.6000E+03 0.0000E+00

ESCA_PSO3 2.8237E+03 2.0355E+02 2.5942E+03 4.7914E+01 2.6000E+03 3.1173E-04

F25 F26 F27

Avg Stdv Avg Stdv Avg Stdv

ESCA_PSO 2.7000E+03 0.0000E+00 2.7004E+03 7.7168E-02 2.9000E+03 0.0000E+00

ESCA_PSO1 2.7000E+03 0.0000E+00 2.7004E+03 9.2230E-02 2.9000E+03 0.0000E+00

ESCA_PSO2 2.7000E+03 0.0000E+00 2.7137E+03 3.4412E+01 2.9000E+03 0.0000E+00

ESCA_PSO3 2.7000E+03 0.0000E+00 2.7004E+03 7.1707E-02 3.4906E+03 3.4856E+02

F28 F29 F30

Avg Stdv Avg Stdv Avg Stdv

ESCA_PSO 3.0000E+03 0.0000E+00 3.1619E+03 5.6888E+01 3.7103E+03 6.0049E+02

ESCA_PSO1 3.0000E+03 0.0000E+00 3.4574E+03 4.0471E+02 5.0126E+03 1.8702E+03

ESCA_PSO2 3.0000E+03 0.0000E+00 7.4310E+04 2.6321E+05 1.1615E+04 8.8958E+03

ESCA_PSO3 3.9181E+03 8.8744E+02 3.1047E+03 4.4337E+00 3.2472E+03 4.9782E+01
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4.4. ESCA_PSO For Optimization of SVM. Like many other
machine learning methods [56], SVM has many advantages
such as “simple structure,” “overcoming dimension disas-
ter,” and “small sample,” which can overcome the weak-
nesses of conventional neural networks such as poor
learning and generalization ability [57]. Since its introduc-
tion, SVM has found its application in many practical prob-
lems. Practice shows that the penalty factor C and kernel
function variable g have the key influence on the recognition
accuracy of the SVM model when solving the recognition
problem based on the radial basis kernel function. When
the penalty factor C is small, the recognition rate of training
and test samples is low, and the SVM is under learning.
When C is too large, the accuracy of the training sample is
higher, the test sample recognition rate is lower, and the
SVM is overlearning. The smaller the kernel function
parameter g is, the higher the training sample recognition
rate is and the lower the accuracy of the test sample is. When
g is larger, the accuracy of training and test samples becomes
lower, and SVM is under learning. Traditional methods such

as trial and error method and network search method can-
not meet the requirements of accuracy in practical applica-
tion. Currently, with the development and maturity of
MAs, good results have been achieved in improving the per-
formance of the SVM model. For example, Li et al. [58] pro-
posed moth-flame optimization (MFO) to tune the best
parameters of SVM and applied it to the diagnosis of tuber-
culous pleural effusion. Li et al. [59] proposed a chaotic
enhanced gravitational search algorithm (GSA) for optimiz-
ing the parameters of SVM. Das et al. [60] proposed to use
the teaching-learning-based optimization (TLBO) for
parameter optimization of SVM, and the good performance
was validated by a financial case. Tang et al. [61] proposed a
Lévy flight-based shuffled frog-leaping algorithm for deter-
mining the best parameters of SVM. Ahmadi et al. [62]
developed the imperialist competition algorithm (ICA) to
determine the best parameters of SVM for stock market tim-
ing. Li et al. [22] proposed SCA to tune the best parameters
of SVM, and the good results were verified on several bench-
mark datasets. Rojas-Dominguez et al. [63] proposed to use
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Figure 3: Convergence curves of ESCA_PSO and other algorithms 9 selected benchmark functions.
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several metaheuristics to search for the best parameters of
SVM, and the results showed that the estimation of distribu-
tion algorithms can achieve the best results. Tharwat et al.
[64] proposed a chaotic antlion optimizer for tuning the best
parameters, and the effectiveness was validated on an array
of well-known datasets. Bablani et al. [65] proposed to use
the bat algorithm (BA) to simultaneously determine the
optimal parameters of SVM and the best subset of features
and applied the model for dealing with the electroencepha-
lography (EEG) data.

In this study, we applied ESCA_PSO to search for the
best parameters of SVM, and the resultant model was called
ESCA_PSO-SVM as shown in Figure 4. ESCA_PSO-SVM

was applied to predict two different medical problems
including the Bupa liver and the Cleveland heart.

The Bupa liver diabetes dataset has a total of 345 samples
and 7 features. Table 6 demonstrates the detailed results got
by ESCA_PSO-SVM via 10-fold crossvalidation. As shown
in Table 6, ESCA_PSO-SVM has got an average accuracy
(ACC) of 73.04%, an average sensitivity of 59.18%, an aver-
age specificity of 83.81%, and an average Mathews correla-
tion coefficient (MCC) of 0.4404.

From Figure 5, it is clear that ESCA_PSO-SVM has more
excellent performance than SCA-SVM in such four indexes.
Moreover, compared with the prediction accuracy, the
ESCA_PSO-SVM has the best precision, while the KNN

Optimal parameter using
ESCA_PSO

Train SVM based on four
folds of traning set

Evaluate the accuracy of
the SVM model on the rest

one test data No

Yes

5 fold cross-validation
Opitmal parameters

Does K has a
value equal to 5?

Does K has a
value equal to 10?

Predicted based on the test
set using to optimal SVM

model

Get the optimal SVM model Start

10 fold cross-validation

Average the prediction results
on ten independent tests

End

Load the dataset

Normalization of the input
data

Train SVM based on the nine
folds of traning sets

Training set10 Test set10

Test set1 Traniing set1

Figure 4: Flowchart of ESCA_PSO-SVM.

Table 6: Results obtained by ESCA_PSO-SVM on the Bupa liver problem.

Fold ACC (%) Sensitivity (%) Specificity (%) MCC

No. 1 74.29 61.54 81.82 0.4414

No. 2 67.65 36.36 82.61 0.2092

No. 3 80.00 71.43 85.71 0.5794

No. 4 82.35 90.91 78.26 0.6517

No. 5 82.35 64.29 95.00 0.6404

No. 6 71.43 54.55 79.17 0.3371

No. 7 64.71 55.56 75.00 0.3099

No. 8 62.86 38.89 88.24 0.3102

No. 9 77.14 65.00 93.33 0.5893

No. 10 67.65 53.33 78.95 0.3354

Avg. 73.04 59.18 83.81 0.4404

Max 82.35 90.91 95.00 0.6517

Min 62.86 36.36 75.00 0.2092
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model has the lowest precision. Based on the sensitivity metric,
ESCA_PSO-SVM ranked second, while BP obtained the worst
values. In terms of the obtained specificity, ESCA_PSO-SVM
was the best, followed by SVM, SCA-SVM, BP, KNN, and
CART. In terms of the MCC, ESCA_PSO-SVM provided the
best value, followed by SVM, SCA-SVM, CART, BP, and
KNN. It suggests that ESCA_PSO-SVM is more advantageous
and stable in solving the Bupa liver problem.

The Cleveland heart data was got from the UCI reposi-
tory, and it includes 303 samples and 76 features. Table 7
shows the detailed results of ESCA_PSO-SVM through 10-

fold crossvalidation on this dataset. From Table 7, ESCA_
PSO-SVM has got an average ACC of 82.81%, a sensitivity
of 76.88%, a specificity of 86.38%, and an MCC of 0.6486.

In Figure 6, ESCA_PSO-SVM is superior to SCA-SVM
in terms of four evaluation indexes. Concerning the classifi-
cation accuracy, it can be seen clearly that the ESCA_PSO-
SVM has got the best ACC, whereas BP has the lowest pre-
cision. In terms of the sensitivity metric, the value of SVM is
the same as that of ESCA_PSO-SVM which takes the first
place. As for the specificity metric, although SCA-SVM
ranked first place, it was only slightly superior to ESCA_
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Figure 5: Comparison between the ESCA_PSO-SVM and other methods on the Bupa liver problem.

Table 7: Results obtained by ESCA_PSO-SVM on the Cleveland heart problem.

Fold ACC (%) Sensitivity (%) Specificity (%) MCC

No. 1 76.67 72.22 83.33 0.5443

No. 2 87.10 78.57 94.12 0.7427

No. 3 83.33 76.92 88.24 0.6591

No. 4 77.42 76.92 77.78 0.5424

No. 5 80.00 69.23 88.24 0.5909

No. 6 76.67 78.57 75.00 0.5345

No. 7 83.33 87.50 78.57 0.6652

No. 8 83.33 50.00 100.00 0.6325

No. 9 93.55 90.00 95.24 0.8524

No. 10 86.67 88.89 83.33 0.7222

Avg. 82.81 76.88 86.38 0.6486

Max 93.55 90.00 100.00 0.8524

Min 76.67 50.00 75.00 0.5345
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PSO-SVM. According to the MCC metric, ESCA_PSO pro-
vided the best value, followed successively by SCA-SVM,
SVM, KNN, CART, and BP. These all proved the robustness
and stableness of the ESCA_PSO-SVM on the Cleveland
heart problem. Shortly, many problems are waiting to be
optimized for which ESCA_PSO can be applied, such as
disease module identification [66], molecular signatures
identification for cancer diagnosis [67], drug-disease associ-
ations prediction [68], drug discovery [69], and pharma-
coinformatic data mining [70].

5. Conclusions and Future Directions

To make up for the deficiency of SCA_PSO, this paper pro-
posed ESCA_PSO, an enhanced version of SCA_PSO. The
chance of prematurely falling into convergence was effec-
tively reduced by introducing DE and joint mutation mech-
anisms. To verify its performance, it was compared with
seven advanced algorithms on 30 benchmark function sets.
The experimental results showed that the performance of
the proposed algorithm was better than that of the tradi-
tional optimization algorithms and had certain competitive-
ness with LSHADE. Inspired by the “No Free Lunch” theory,
this paper further explored the application of ESCA_PSO in
medical diagnosis and successfully applied it to hyperpara-
meter optimization of support vector machine.

The results showed that the support vector machine
model combined with the proposed algorithm outperformed
the other five existing models and achieved an average accu-
racy of 82.81%. In conclusion, the proposed algorithm can
be regarded as a reliable technique for solving practical
problems.

For future work, there are still many problems worthy of
study. First of all, we will continue to improve the algorithm,
by means such as trying to introduce other metaheuristic
algorithms or optimizing the time complexity while ensuring
the effect. In addition, we will try to apply ESCA_PSO to
other fields such as image segmentation, clustering optimi-
zation, and discrete optimization.
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