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Glioblastoma (GBM) is one of the most commonly pivotal malignant caners. Numerous reports have revealed the crucial roles of
immune infiltration in the initiation and progression of GBM. In this study, we first identified differentially expressed genes
(DEGs) in the progression of GBM using CGGA databases. Totally, 156 upregulated DEGs and 251 downregulated DEGs were
revealed. By constructing a protein-protein interaction network, KIF2C was identified as a hub gene in GBM. Further analysis
revealed an evidently positive association existing in KIF2C expression and the advanced stages of gliomas. Higher expression
of KIF2C was in WHO grade IV samples relative to that in grade III and grade II samples. In addition, our results showed that
KIF2C was higher in IDH1 wild-type samples than IDH1 mutant glioma samples, in 1p/19q noncodel samples than 1p/19q
code glioma samples, and in recurrent samples than primary glioma samples. Moreover, our results showed that higher
expression of KIF2C correlated with shorter survival time in both primary and recurrent gliomas and could act as a potential
biomarker for the prognosis of GBM. Further analysis demonstrated that higher expression of KIF2C was related to higher
levels of endothelial cell, T cell CD8+ naïve, common lymphoid progenitor, T cell CD4+ Th2, T cell CD4+ Th2, macrophage,
macrophage M1, T cell CD4+ memory, and T cell CD4+ effector memory, but was related to lower levels of NK cell, B cell
plasma, T cell CD4+ Th1, T cell regulatory (Tregs), neutrophil, and T cell NK. We thought this study could provide potential
biomarkers for the prediction of prognosis and immune infiltration of gliomas.

1. Introduction

Glioblastoma (GBM) derived from neuroepithelium is the
widely occurring main malignant neoplasm in the central
nervous system (CNS) of adults [1]. More than half of the
primary brain neoplasms were GBM [2]. The incidence of
GBM increases with age [3]. As per CNS classification stan-
dard of the World Health Organization (WHO), GBM
belonged to a grade IV neoplasm with astrocytic differentia-
tion and presented high invasiveness, high heterogeneity,
and poor prognosis in human CNS [4]. GBM showed no
signs of progression in the early stages and was identified
as advanced glioma from the onset [4]. Only 3%-5% of

patients can survive 5 years after treatment [5]. Lacking indi-
cators for initial diagnosis and corresponding treatments are
important reasons of GBM patients’ deaths.

Over the past decades, several factors were revealed to
affect the tumorigenesis and progression of gliomas [6–9].
For instance, phosphorylating MST4 of ATG4B modulates
the activity of autophagy, tumorigenesis, and radioresistance
of GBM [6]. Inhibiting telomere protein TRF1 affects the
tumorigenesis and development in GBM mouse models
and patient-derived xenografts [7]. m6A demethylase
ALKBH5 preserves the tumorigenesis of GBM stem-like
cells via maintaining the expression of FOXM1 and the pro-
gram of cell proliferation [8]. Activating WNT5A could
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drive the differentiation and invasive growth of GBM stem
cells [9]. However, these previous reports merely focused
on a minority of genes in gliomas.

KIF2C, a member of the MT depolymerase family, was
reported to take part in mitosis, such as spindle assembly,

chromosome condensation, and kinetochore-MT attach-
ment [10]. Several recent studies showed this gene had a cru-
cial role in cancers [10–13]. For example, KIF2C was
involved in the regulation of the dynamic and repair of
DNA double-strand break in carcinoma cells [14]. KIF2C
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Figure 1: Identification of progression-related DEGs in glioma. The DEGs between low-grade and high-grade glioma samples were
identified using (a) mRNA-seq-693 database, (b) mRNA-seq-325 database, and (c) mRNA-array-301 database. (d) Common upregulated
and (e) common downregulated genes were identified by Venn diagram.
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Figure 2: Continued.
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Figure 2: Bioinformatics analysis of DEGs. (a, b) The GO analysis of upregulated and downregulated genes in gliomas. (c, d) The KEGG
analysis of upregulated and downregulated genes in gliomas.
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played as an oncogene in non-small-cell lung carcinoma and
exhibited a negative regulation with miR-325-3p [11]. The
expression of KIF2C is linked to poor prognostic status of
esophageal squamous cell cancer diagnosed in males [15].
However, the roles of KIF2C in GBM remained to be
unclear.

In this study, we validated the general DEGs by integrat-
ing three CGGA GBM datasets and TCGA cohort and in-
depth assessed the functions and pathways of them utilizing
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis. To choose high degree of hub
genes, we constructed a PPI (protein-protein interaction)
network with the Retrieval of Interacting Genes (STRING)

database. Our findings would give an insight to uncovering
a probable biomarker for glioma prognosis.

2. Materials and Methods

2.1. Microarray Data. The present study analyzed three
independent databases downloaded from CGGA database
(http://www.cgga.org.cn/). Meanwhile, the gene expression
data of KIF2C were acquired from TCGA website (https://
portal.gdc.cancer.gov/).

2.2. Screening the DEGs. To dig out the DEGs with p value <
0.05 and ∣log fold change ðFCÞ ∣ >1 in the GSE63678 and
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Figure 3: Construction of PPI network in gliomas. (a) Hub network 1 with 52 genes was constructed. (b) Hub network 2 with 18 genes was
constructed.
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GSE17025 datasets, we carried out the limma R package
[16]. To further uncover the DEGs in TCGA GBM RNA-
sequencing data, we utilized the DESeq2 R package. We
acquired the DEGs amid the three datasets with a Venn
diagram.

2.3. GO and KEGG Enrichment Analyses of the DEGs. The
Database for Annotation, Visualization, and Integrated Dis-
covery (DAVID) 16 (version 6.8) offers a whole set of func-
tional annotation tools for researchers to have a better
understanding of the biological significance implicated in a
large number of genes [17]. clusterProfiler R package was
applied to explore GO functional annotation and KEGG of
the DEGs.

2.4. Construction of PPI Network and Identification of
Pivotal Modules. The PPI network was established utilizing
STRING (version 10.0) database. Cytoscape (version 3.6.1)
is a sort of bioinformatics software applied for the visualiza-
tion of molecular interplay networks. We employed the plu-
gin molecular complex detection (MCODE) to search the
tightly linked areas in the network. Cytoscape was taken to
visualize the PPI network, and MCODE was exploited to
identify the most evident modules. The standard for selec-
tion was degree cutoff = 2, node score cutoff = 0:2, max
depth = 100, and k score = 2.

2.5. Predicting the Significance of Prognosis. We screened
genes with the potential prognosis and observed the criteria

with a high degree (the number of direct connections
between one node and other nodes) among the top 20 hub
genes by analysis of TCGA RNA sequencing data of patients.
The survminer R package was employed to explore the cut-
point value relevant to the most obvious relationship of
patients’ status (e.g., survival probability).

To define appropriate items for constructing a nomo-
graph, we conducted univariate and multivariate Cox regres-
sion analysis. The forest is applied to display the p value, HR,
and 95% CI of every variable utilizing the “forestplot” R
package. In the light of the data of multivariate Cox propor-
tional hazard analysis, we generated a nomograph to forecast
X-year overall recurrence ratio. The nomograph supplies a
graphical depiction towards these factors, aiming at calculat-
ing the recurrence risk of individual patient based on the
points related to every risk factor via “rms” R package.

2.6. Statistical Analysis. Survival analysis was performed
using the Kaplan-Meier method and the log-rank test. R ver-
sion 4.0.2 and GraphPad 5.0 were used to perform statistical
analysis. Differences between groups were evaluated by the
Student t-test. p < 0:05 indicates statistical significance.

3. Results

3.1. Identification of Progression-Related DEGs in Glioma.
The present study analyzed three impendent datasets in
CGGA databases to discover the DEGs between low-grade
and high-grade glioma samples. The genes with p < 0:05
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Figure 4: The forest map analysis of the correlation between hub DEG expression and survival time in patients with glioma. (a) Forest map
showed 8 hub genes in hub network 1 were related to the poor prognosis of gliomas, including PBK, KIF2C, CENPE, KIF14, MND1,
FAM83D, NEIL3, and CDKN3. (b) Forest map showed 5 hub genes in hub network 2 were related to the poor prognosis of gliomas,
including F5, IGFBP5, TNC, SCG3, and IGFBP3.
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and log ½FC� > 1 were thought to be DEGs. Finally, 593
DEGs with upregulation and 1021 DEGs with downregulation
were found in mRNA-seq-693 database (Figure 1(a)), 910
DEGs with upregulation and 1386 DEGs with downregulation
were found in mRNA-seq-325 database (Figure 1(b)), and 496
DEGs with upregulation and 539 DEGs with downregulation
were found in mRNA-array-301 database (Figure 1(c)).
Finally, a total of 95 common upregulated (Figure 1(d)) and
312 common downregulated genes (Figure 1(e)) were identi-
fied in high-grade compared to low-grade glioma samples.
These genes were presented by a heat map.

Figure 1 presents the general DEGs screened by Venn
diagram amid three abovementioned datasets. 407 DEGs
including 156 genes with increasing expression and 251
genes with decreasing expression were unearthed.

3.2. Bioinformatics Analysis of DEGs. To explore possible
function of these DEGs, we performed GO and KEGG
pathway analysis. Figure 2 depicts that genes with upregu-
lation were primarily enriched in synaptic transmission,
potassium ion transmembrane transport modulation, syn-
apse assembly positive modulation, somatostatin signaling
pathway, response to nutrient, and progesterone metabolic
process (Figure 2(a)). Genes with downregulation were
chiefly enriched in extracellular matrix organization and dis-
assembly, angiogenesis, collagen catabolic process, mitotic
cell cycle, cell division, collagen fibril organization, skeletal
system development, chromosome segregation, blood coagu-
lation, response to hypoxia, mitotic nuclear division, and
neutrophil chemotaxis (Figure 2(b)).

Figure 3 demonstrates that the DEGs with increasing
expression pivotally participated in neuroactive ligand-
receptor interplay, GABAergic synapse, nicotine and mor-
phine addiction, cAMP signaling pathway, N-glycan bio-

synthesis, cardiac muscle contraction, hypertrophic
cardiomyopathy (HCM) and dilated cardiomyopathy, and
fatty acid biosynthesis (Figure 2(c)). The DEGs with
reduced expression were primarily enriched in PI3K-Akt,
TNF and p53 signaling pathways, protein digestion and
absorption, proteoglycans in carcinoma, small cell lung
carcinoma, tryptophan metabolism, and bladder carcinoma
(Figure 2(d)).

3.3. To Construct PPI Network and Identify the Hub Genes.
We employed STRING database to assess the interplay amid
the DEGs. The extraction and visualization of these DEGs
were completed by Cytoscape software. The PPI network
composed of 284 nodes and 3697 edges is presented in
Figure 3(a) after removal of isolated nodes (Supplementary
Figure 1).

The MCODE plugin identifies an important connection
module. Two hub PPI networks were identified. Hub net-
work 1 included 52 genes (DLGAP5, PBK, KIF2C, CEP55,
TACC3, CENPA, HJURP, CENPF, CENPE, KIF18A,
KIF14, MND1, SMC4, KIF20A, NCAPH, NCAPG, BIRC5,
ASPM, CDCA8, NDC80, AURKB, CDKN3, AURKA,
TPX2, CENPU, CENPK, NUF2, BUB1, FAM83D, NEK2,
KIF4A, E2F7, FAM64A, E2F8, CDCA2, TOP2A, TK1,
TYMS, HMMR, NEIL3, PTTG1, KIAA0101, SKA1, TTK,
CDC6, RRM2, UBE2C, DEPDC1, CCNB1, CKAP2L, MELK,
and KIF23) (Figure 3(a)), and hub network 2 included 18
genes (SERPINA1, FAM20A, FN1, TIMP1, F5, IGFBP5,
SPP1, TNC, SCG3, CHGB, LGALS1, PRSS23, CYR61,
LAMB1, IGFBP3, LAMC1, FSTL1, and CP) (Figure 3(b)).

The dysregulation of hub DEGs was correlated to the
survival time in patients with glioma.

Then, a forest map was produced to analyze the correla-
tion between hub DEGs and OS analysis. After calculating
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Figure 5: The dysregulation of hub DEGs in hub network was correlated with the survival time in patients with glioma. Higher expression
level of (a) PBK, (b) KIF2C, (c) CENPE, (d) KIF14, (e) MND1, (f) FAM83D, (g) NEIL3, (h) CDKN3, (i) F5, (j) IGFBP5, (k) TNC, (l) SCG3,
and (m) IGFBP3 exhibited a significant association with shorter OS time in glioma patients.
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Figure 6: Evaluation of the correlation of KIF2C expression and clinicopathologic characteristics. (a) KIF2C was differently expressed in
multiple histology of gliomas. (b) KIF2C expression had an obviously positive correlation with the advanced grade gliomas. (c) Higher
expression of KIF2C was in WHO grade IV samples relative to that in grade III and grade II samples and in WHO grade III samples
compared to that in grade II samples. (d) KIF2C was higher in IDH1 wild-type samples than IDH1 mutant glioma samples. (e) KIF2C
was higher in 1p/19q noncodel samples than 1p/19q code glioma samples. (f) KIF2C was higher in recurrent samples than primary
glioma samples (Figure 8(f)).
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Figure 7: Continued.
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the hazard ratio and confidence interval, we observed that 8
hub genes in hub network 1 were related to the poor progno-
sis of gliomas, including PBK, KIF2C, CENPE, KIF14,
MND1, FAM83D, NEIL3, and CDKN3 (Figure 4(a)). In
addition, 5 hub genes in hub network 2 were related to the
poor prognosis of gliomas, including F5, IGFBP5, TNC,
SCG3, and IGFBP3 (Figure 4(b)).

On the basis of CGGA data, we have drawn Kaplan-
Meier plots and the data demonstrated the impacts of these
top hub genes on survival probability. Figure 5 reveals that
the higher expression level of PBK (Figure 5(a)), KIF2C
(Figure 5(b)), CENPE (Figure 5(c)), KIF14 (Figure 5(d)),
MND1 (Figure 5(e)), FAM83D (Figure 5(f)), NEIL3
(Figure 5(g)), and CDKN3 (Figure 5(h)) in hub network 1
exhibited a significant association with shorter OS time in
glioma patients. Higher expression level of IGFBP5
(Figure 5(i)), TNC (Figure 5(j)), and IGFBP3 (Figure 5(k))
was shown in hub network 2, and the lower expression level
of F5 (Figure 5(l)) and SCG3 (Figure 5(m)) was dramatically
related to shorter OS time in glioma patients.

3.4. Evaluation of the Correlation of KIF2C Expression and
Clinicopathologic Characteristics. Among these hub genes,
KIF2C showed the most significant correlation to prognosis,
which had been reported to be a key role in cell cycle regu-
lation. We chose KIF2C here to validate the links existing
in the expression and its clinicopathological values in CGGA
cohort. The data showed different degrees of KIF2C expres-
sion in multiple histology of gliomas (Figure 6(a)). We
found an evidently positive association existing in KIF2C
expression and the advanced stages of gliomas. Further anal-
ysis also confirmed that KIF2C expression had an obvious
positive correlation with the advanced grades of gliomas
(Figure 6(b)). Higher expression of KIF2C was in WHO
grade IV samples relative to that in grade III and grade II
samples (Figure 6(c)), and higher expression of KIF2C was

in WHO grade III samples compared to that in grade II sam-
ples (Figure 6(c)). In addition, our results showed that
KIF2C was higher in IDH1 wild-type samples than IDH1
mutant glioma samples (Figure 6(d)), and KIF2C was higher
in 1p/19q noncodel samples than 1p/19q code glioma sam-
ples (Figure 6(e)). Finally, KIF2C was higher in recurrent
samples than primary glioma samples (Figure 6(f)).

3.5. Higher Expression of KIF2C Was Correlated with Shorter
Survival Time in Glioma. Survival curve of the gene was also
generated to evaluate the correlation between KIF2C expres-
sion and survival time in primary and recurrent gliomas
using CGGA data (Figure 7). Our results showed that higher
expression of KIF2C correlated with shorter survival time in
both primary and recurrent gliomas (Figures 7(a) and 7(b)).
In grade II glioma patients, we observed that higher expres-
sion of KIF2C was correlated with shorter survival time in
primary (Figure 7(c)), but not with recurrent gliomas
(Figure 7(d)). In grade III glioma patients, we observed that
higher expression of KIF2C presented a correlation with
shorter survival time in both primary and recurrent gliomas
(Figures 7(e) and 7(f)). However, no significant correlation
between KIF2C expression and survival time was in grade
IV gliomas (Figures 7(g) and 7(h)).

3.6. Construction of Nomogram for KIF2C in Gliomas. In
order to validate the assumption that KIF2C was an inde-
pendent factor for prognosis of gliomas patients, we con-
ducted univariate and multivariate Cox regression analysis.
The result showed that KIF2C expression, age, grade, and
radiation therapy were evident factors that were related to
glioma prognosis (Figure 8(a)). In addition, multi-Cox
regression analysis data indicated that only KIF2C expres-
sion and age displayed an association with glioma patient
prognosis (Figure 8(b)).
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Figure 7: Higher expression of KIF2C was correlated with shorter survival time in glioma. (a, b) Higher expression of KIF2C correlated to
shorter survival time in both primary and recurrent gliomas. (c, d) The correlation between KIF2C expression and survival time in primary
and recurrent grade II gliomas. (e, f) The correlation between KIF2C expression and survival time in primary and recurrent grade III
gliomas. (g, h) The correlation between KIF2C expression and survival time in primary and recurrent grade IV gliomas.
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Figure 8: Continued.
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We in-depth established a monograph containing the
prognostic factors, such as KIF2C expression, age, and radi-
ation therapy, to supply a quantitative base to forecast the
possibility of one-year, three-year, and five-year OS in gli-
oma patients for clinicians (Figure 8(c)). What is more,
our data indicated that a nomogram could better evaluate
one-year, three-year, and five-year OS compared to
Kaplan-Meier (Figure 8(d)). Next, the AUC for OS predic-
tion was calculated. The AUC of the ROC curve reached
0.771 at 1 year, 0.837 at 3 years, and 0.808 at 5 years
(Figure 8(e)).

3.7. KIF2C Dysregulation Was Associated with Immune
Infiltration in Gliomas. In the present study, we analyzed
the correlation between KIF2C expression and immune
infiltration in gliomas using the Xcell dataset. As presented
in Figure 9, we revealed that KIF2C high expression was
related to higher levels of endothelial cell, T cell CD8+ naïve,
common lymphoid progenitor, T cell CD4+ Th2, T cell
CD4+ Th2, macrophage, macrophage M1, T cell CD4+
memory, and T cell CD4+ effector memory (Figures 9(a)
and 9(b)). However, we found that KIF2C high expression
was related to lower levels of NK cell, B cell plasma, T cell
CD4+ Th1, T cell regulatory (Tregs), neutrophil, and T cell
NK (Figures 9(a) and 9(b)).

4. Discussion

GBM is a widespread and precarious malignant brain neo-
plasm, of which symptoms include abdominal distension,

pelvic pain, difficulty in eating, and frequent urination
[18]. As a type of highly invasive tumors, GBM accounts
for the most among main malignant neoplasms in the brain,
ranging from 77% to 80%. Amid GBM patients, the one-year
survival rate is approximately 50%, while the three-year sur-
vival rate is only 10% [3]. Hence, there is an urgent need to
identify new favorable clinical test indicators for GBM diag-
nosis and prognosis. Early diagnosis (I/II) of GBM is very
difficult since most symptoms of GBM are nonspecific. In
the past few years, with the advancement of technologies
including sequencing and high-throughput DNA microar-
ray analysis, large volumes of data are available online. It is
urgent and meaningful for us to screen new effective bio-
markers for glioblastoma through a wider range of data.

The present study analyzed three independent datasets
in CGGA databases to define the DEGs between low-grade
and high-grade glioma samples. Finally, 407 DEGs associ-
ated with glioma development were uncovered. Among
them, 156 genes were increased and 251 genes were reduced.
Bioinformatics analysis showed that genes with upregulation
primarily participated in synaptic transmission and cAMP
signaling pathway. Of note, our analysis revealed that upreg-
ulated genes were related to multiple key signaling in carci-
noma progression, such as angiogenesis, mitotic cell cycle,
and PI3K-Akt, TNF, and p53 signaling pathways.

The PI3K (PI3 kinase) family displays an intricate role in
biological process, such as metabolism [19, 20]. In most
HGG brain neoplasms (including GBM), the PI3K pathway
is motivated and its activation participated in the neoplasm
transition from low grade to high grade [21]. p53 functions
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Figure 8: Construction of nomogram for KIF2C in gliomas. (a, b) Univariate and multivariate Cox regression analysis showed KIF2C
expression was related to prognosis in gliomas. (c) Nomogram to predict the correlation between KIF2C expression and overall survival
in gliomas. (d) Calibration curve for the overall survival nomogram model. (e) The AUC for OS prediction was calculated.
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Figure 9: Continued.
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importantly in cell cycle regulation, DNA repair, apoptosis,
senescence, angiogenesis, and metabolism, forming a greatly
complicated signaling network [22]. The changes in the
tumor inhibitor gene p53 are the most common in primary

GBM and secondary GBM, attaining 25-30% and 60-70%,
separately [23].

In order to identify the hub genes involved in glioma
progression, we constructed PPI network analysis, and two
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Figure 9: KIF2C dysregulation was associated with immune infiltration in gliomas. (a, b) The correlation between KIF2C expression and
immune infiltration in gliomas was analyzed using the Xcell dataset.
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hub PPI networks were identified. Hub network 1 included
52 genes, and hub network 2 included 18 genes. Also, we
observed 13 hub genes were related to the poor prognosis
of gliomas, including PBK, KIF2C, CENPE, KIF14, MND1,
FAM83D, NEIL3, CDKN3, F5, IGFBP5, TNC, SCG3, and
IGFBP3. Of note, the functional importance of several
DEGs had been demonstrated in gliomas in previous reports.
For example, PBK, a serine/threonine kinase, belonged to the
family of mitogen-activated protein kinase kinase (MAPKK),
which participated in modulating cell proliferation, metasta-
sis, and autophagy [24]. In gliomas, Dong et al. found that
PDZ-binding kinase (PBK) was highly expressed in GBM
and also exhibited a negative association with survival status
in comparison with brain normal samples [25]. Therefore, it
is a potential factor for GBM prognosis and a prospective tar-
get for GBM treatment. KIF14, as the mitotic kinesin super-
family protein, is required for cytokinesis and chromosome
segregation [26]. Increased expression of KIF14 is associated
with a great quantity of human carcinomas. Inhibiting KIF14
would hinder the cell growth of neoplasms and induce apo-
ptosis in human GBM [27]. Endonuclease VIII-like 3 (Neil3)
is one part of the five DNA glycosylases in mammals and was
used for recognition and removal of oxidized bases and
initiation of the base excision repair (BER) pathway [28].
Previous studies have shown that NEIL3 overexpression
exhibited an association with genomic changes and low sur-
vival in some types of human carcinomas, such as glioma
[29]. rs12645561 in NEIL3 were associated with developing
GBM in the Han Chinese population [30]. IGFBP5 rather
than IGFBP3 overexpression displayed a correlation with
the histologic grade of human diffuse glioma [31]. IGFBP5
mediated an increase of cell invasion but an inhibition of cell
proliferation via the EMT and Akt signaling pathway in pleo-
morphic cells of GBM [32]. IGFBP-3 is thought to be a pow-
erful predictor of survival in newly diagnosed GBM patients
[33]. Impediment of neoplasm growth after depleting
IGFBP3 is regarded as a promising strategy for glioma treat-
ment [34]. Overexpressing IGFBP-3 led to the promotion of
cell proliferation, colony formation, and G1/S phase transfor-
mation in U87MG and U251MG cells [35].

KIF2C was chosen for subsequent studies amid the
selected hub genes. A previous study showed KIF2C is a
marker for prognosis in human gliomas [36]. In this study,
we found KIF2C expression level presented a great positive
correlation with the advanced stages of gliomas. Our results
showed that higher expression levels of KIF2C were corre-
lated with shorter overall and disease-free survival time in
OS. Furthermore, TCGA database analysis revealed that
the model applied for predicting OS and DFS was efficient.
The model-based nomogram shows a deep impression of
performance and clinical use.

Emerging studies had demonstrated tumor-infiltrating
lymphocytes (TILs) could affect the immune response and
tumor initiation and progression. TILs had also been found
to be enriched in GBM. Very interestingly, several genes
had been reported to modulate the immune infiltrating.
For example, LRRK2 correlates with macrophage infiltration
in GBM [37]. Meanwhile, CD163 was also associated with
immune infiltration in glioblastoma multiforme [38]. More-

over, a recent study showed TUBA1C expression was posi-
tively related to infiltration levels of multiple immune cells,
such as CD8 T+ cells and neutrophils [39]. However, the
correlation between KIF2C and immune infiltration
remained to be unclear. Our analysis for the first time dem-
onstrated that higher expression of KIF2C was related to
higher levels of endothelial cell, T cell CD8+ naïve, common
lymphoid progenitor, T cell CD4+ Th2, T cell CD4+ Th2,
macrophage, macrophage M1, T cell CD4+ memory, and T
cell CD4+ effector memory, but was related to lower levels
of NK cell, B cell plasma, T cell CD4+ Th1, T cell regulatory
(Tregs), neutrophil, and T cell NK, indicating that KIF2C
may serve as a predictive marker for immune therapy
response in GBM.

Several limitations should be noted. First, the functional
roles of KIF2C were not confirmed using experimental
methods. Gain- or loss-of-function assays should be per-
formed in the future study. Second, despite the fact that two
independent datasets were used to explore the clinical signifi-
cance of KIF2C in GBM, further validation using clinical sam-
ples is still needed. Finally, the association between KIF2C
expression and immune infiltration was determined using bio-
informatics analysis, thus lacking more confirmation.

Collectively, our current study identified 407 progression-
related DEGs in gliomas. Bioinformatics analysis showed that
these DEGs were related to cAMP signaling, mitotic cell cycle,
and PI3K-Akt and p53 signaling pathways. Among these
DEGs, 13 hub genes were demonstrated to be associated with
the poor prognosis of gliomas, including PBK, KIF2C,
CENPE, KIF14, MND1, FAM83D, NEIL3, CDKN3, F5,
IGFBP5, TNC, SCG3, and IGFBP3. It is found that the DEGs,
especially KIF2C, may provide diagnostic and prognostic
value for GBM. In the future study, further research is
required to unclose the underlying mechanisms and develop
novel therapeutic strategies for GBM.

Data Availability

The present study analyzed three independent databases
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