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Coinfection of Ebola virus and malaria is widespread, particularly in impoverished areas where malaria is already ubiquitous.
Epidemics of Ebola virus disease arise on a sporadic basis in African nations with a high malaria burden. An observational
study discovered that patients in Sierra Leone’s Ebola treatment centers were routinely infected with malaria parasites,
increasing the risk of death. In this paper, we study Ebola-malaria coinfections under the generalized Mittag-Leffler kernel
fractional derivative. The Banach fixed point theorem and the Krasnoselskii type are used to analyse the model’s existence and
uniqueness. We discuss the model stability using the Hyers-Ulam functional analysis. The numerical scheme for the Ebola-
malaria coinfections using Lagrange interpolation is presented. The numerical trajectories show that the prevalence of Ebola-
malaria coinfections ranged from low to moderate depending on memory. This means that controlling the disease requires
adequate knowledge of the past history of the dynamics of both malaria and Ebola. The graphical dynamics of the detection
rate indicate that a variation in the detection rate only affects the following compartments: individuals that are latently infected
with the Ebola, Ebola virus afflicted people who went unnoticed, individuals who have been infected with the Ebola virus and
have been diagnosed with the disease, and persons undergoing Ebola virus therapy.

1. Introduction

Malaria is a dangerous and occasionally deadly disease that
can cause altered body posture, irregular eye movements,
paralysis of eye movements, and coma. The World Health
Organization estimates that millions of people worldwide
have contracted malaria and thousands have died as a result
of it, the majority of whom are youngsters in Africa. Com-
muters returning from places of the world where malaria
transmission occurs, such as sub-Saharan Africa, make up
the great majority of cases. Malaria is a potentially fatal dis-
ease, yet it is frequently preventable. According to estimates,
malaria costs sub-Saharan Africa billion of dollars every year
[1, 2]. Ebola virus disease outbreaks occur on a rare basis in

African countries where malaria is already a major problem.
The majority of Ebola virus disease outbreaks have been
minor in the past, with case counts typically under 100
people [3].

Epidemiological modeling of infectious diseases using
integer-order differential equations to explore and investi-
gate epidemic transmission dynamics has been in existence
for many years. The advancement of fractional calculus has
revealed important information about disease transmission
patterns or dynamical behaviors. In the study of biological
and engineering systems, fractional order differential equa-
tions have proved themselves as powerful and effective
mathematical modeling tools. This is because most often
differential operators that are found in these equations or
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models are associated with memory dynamics, which can be
seen in biological and engineering systems [4]. The Mittag-
Leffler kernel derivative has recently been utilised to mimic
a variety of real-world occurrences, for example [5, 6], using
the three fractional derivatives, the authors of [7] analysed
the dynamics of the Q fever epidemic. From their research,
they deduced that, unlike the integer order, the trajectories
of some fractional orders converge to the same endemic
equilibrium point. In conclusion, it was found that the
Atangana-Baleanu fractional differential operator captures
more susceptibilities while allowing for a smaller number
of infections. Existence-uniqueness, stability, and simulated
solutions to the HIV/AIDS infection model were analysed
using the Mittag-Leffler kernel by the authors of [8]. Okyere
et al. [9] studied an SIR model using the Caputo derivative.
Using the same operator, the work in [10] studied the
dynamics of COVID-19 and presented the usefulness of
memory in the transmission of COVID-19. Erturk et al.
[11] presented a study to describe motion of beam on nano-
wire. As the order of the fraction increases toward unity,
their findings show that the fractional responses become
increasingly similar to the classical ones. The fractional
Euler-Lagrange equation also provides a flexible model with
more information than the classical description, which
allows for a much more accurate assessment of the system’s
hidden features. Jajarmi et al. [12], applied fractional-order
to study capacitor microphone. Results show that, in con-
trast to the previous mathematical formalism, the freedom
to choose the kernel allows for the discovery of new proper-
ties of the capacitor microphone under investigation.
Baleanu et al. [13] studied the relative importance of mem-
ory on cholera outbreak. The work in [14] presented some
applications of a regularized Ψ-Hilfer fractional derivative.

The 2014 Ebola virus epidemic in three sub-Saharan
African countries, namely Guinea, Liberia, and Sierra Leone,
was considered to be significant, with approximately 28,616
suspected and confirmed cases and over 11,310 deaths in
these three majorally affected countries in sub-Saharan
Africa. To examine the spread of Ebola virus disease trans-
mission in Sub-Saharan African countries, Berge et al. [15]
developed a vulnerable infected-recovered-death model,
with natural mortality in susceptible-infected-recovered
(SIR) compartments, it was assumed that recovered individ-
uals lost immunity and became susceptible again. Chowell
and Nishiura [16] studied the transmission dynamics and
control of Ebola virus disease. Omeloye and Adewale [17]
presented a mathematical analysis on Ebola-malaria trans-
mission dynamics, demonstrating that if the detection rate
of infected undiscovered persons is high enough, isolation
can lead to Ebola eradication in the population. Further-
more, Omeloye and Adewale [18] created an optimal control
in the Ebola-malaria coinfection model. They studied the
disease-free equilibrium of each model. Their co-infections
were shown to be locally and globally asymptotically stable
whenever the basic reproduction number is less than unity
or endemic otherwise. Thus, prior mathematical investiga-
tion on Ebola-malaria coinfections has not taken into
account the fractional derivative. As a result, our research
add up to the dynamic analysis of Ebola, malaria, and

Ebola-malaria coinfections. First and foremost, we guaran-
teed solutions of the existence and uniqueness by the use
of the Krasnoselskii type and Banach fixed point theorem.
And also, Hyers-Ulam stability guaranteed the model stabil-
ity. Motivated by the work in [18] the current work contrib-
utes the following:

(i) A new fractional mathematical model for the co-
dynamics of Ebola and malaria is considered and
studied using the Atangana-Baleanu derivative [19]

(ii) The existence and uniqueness of the solution of the
proposed model employing the Banach fixed point
theorem and the Krasnoselskii type are shown

(iii) Using the generalized Mittag-Leffler kernel, we
exhibited the rich dynamics of this disease when
memory of past history of the disease is taken into
consideration through simulations

(iv) We highlight the impact of detection rate and treat-
ment rate on the dynamics of coinfection of Ebola
and malaria when the fractional order is 0.99, unlike
the integer order of 1

The remainder of this paper is organized as follows:
some critical concepts, basic definitions, and preliminary
results are all briefly introduced in Section 2. In section 3
we restate the model formulation of the Ebola-malaria
coinfection model and briefly describe all the parameters as
in [18], and then impose the Mittag-Leffler kernel fractional
derivative on the model. Section 4 is devoted to the mathe-
matical analysis of the existence-uniqueness of Ebola-malaria
coinfection model. The stability results of the Ebola-malaria
coinfections model are presented and discussed in Section 5.
The numerical scheme and simulations are discussed in
Section 6 and Section 7, respectively. The paper ends with a
conclusion in Section 8.

2. Preliminaries

Now, we recall some critical ideas, lemmas, and definitions
to study the system (11).

Definition 2.1 (see [20, 21]). The ABC-fractional differential
operator on Θ ∈H1ða, bÞ, for ω ∈ ð0, 1Þ is

ABCD
ω
σΘ σð Þ = ∇ ωð Þ

1 − ω

ðσ
0
Θ′ sð ÞEω

−ω σ − sð Þω
1 − ω

� �
ds, ð1Þ

where ∇ðωÞ is the normalization constant that satisfies the
property ∇ð1Þ = ∇ð0Þ = 1: And Eω is the Mittag-Leffler func-
tion, which can be defined as

Eω yð Þ = 〠
∞

k=0

yk

Γ ωk + 1ð Þ : ð2Þ

Definition 2.2 (see [8]). For Θ ∈H1ða, bÞ and for ω ∈ ½0, 1�,
the ABC-fractional integral is given by;
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ABCI
ω
σΘ σð Þ = 1 − ω

∇ ωð ÞΘ σð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
Θ sð Þ σ − sð Þω−1ds,

ð3Þ

assuming that the integral on the right converges.

Lemma 2.1 (see [4]). FromtheABC-fractional derivative and its
integral of the functionΘ, hold for the Newton-Leibniz formula:

ABCI
ω
σ

ABCD
ω
σΘ σð Þ

� �
=Θ σð Þ −Θ ωð Þ: ð4Þ

Lemma 2.2 (see [8]). Suppose that yðσÞ ∈ Lp½0, η�, then the solu-
tion of fractional differential equation.

ABCD
ωΘ σð Þ
σ = y σð Þ, σ ∈ 0, η½ �,

Θ 0ð Þ =Θ0,

(
ð5Þ

is given by

Θ σð Þ =Θ0 +
1 − ω

∇ ωð ÞΘ σð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
Θ sð Þ σ − sð Þω−1ds:

ð6Þ

Now,we letB = Cð½0, 1�ÞbeaBanach spacewith the following
norm

Θk k = max
σ∈ 0,η½ �

Θj j,∀Θ ∈ Bf g: ð7Þ

Lemma 2.3 (see [22]). From the Krassnoselskii’s fixed point theo-
rem ifwe assume thatM ⊂ B, be a closed convex non-empty subset
of B and ∃ and two operators Ω1 and Ω2, then we will have the
following:

(i) Ω1Θ +Ω2Θ ∈ B, ∀Θ ∈ B

(ii) Ω1 is contraction and Ω2 is continuous and compact.
Then there exist at least one solution Θ ∈ B such that

Ω1Θ +Ω2Θ =Θ: ð8Þ

3. Model Formulation

In this section, we formulate and explain the entire epidemio-
logical compartments related to the human population and
vector population at time t. The susceptible individuals is
denoted by SHðtÞ, LEðtÞ is individuals that are latently infected
with the Ebola virus, IUðtÞ is Ebola virus afflicted people who
went unnoticed, IDðtÞ is indicated as individuals who have
been infected with the Ebola virus and have been diagnosed
with the disease, ITðtÞ is persons undergoing Ebola virus ther-
apy, JðtÞ denotes isolated Ebola individuals, malaria-exposed
population is denoted as EMðtÞ, IMðtÞ denotes malaria infected
individuals, RMðtÞ represents people who have recovered from
malaria, EEMðtÞ represents individuals who are infected with
the Ebola virus and at the risk of contracting malaria, and

IEMðtÞ denotes persons infected with Ebola and Malaria. The
vector population is landmarked as follows: SVðtÞ represents
susceptible to mosquitoes, EVðtÞ denotes exposed to mosqui-
toes, and IVðtÞ denotes infected with mosquitoes. NHðtÞ is
the total human population and NV is the total vector popula-
tion. Considering the interrelationship with the compartments
as referenced in [18] the following nonlinear ordinary differen-
tial equations represents the model formulation:

dSH
dt

= πH − λESH − λMSH − λEMSH − μSH + ϕ1RM + αθJ ,

dLE
dt

= ε1λESH − KE + σ1 + μð ÞLE + ϕ2IT + 1 − αð ÞθJ − 1 − ρð Þϕ3IEM ,
dIU
dt

= 1 − ε1ð ÞλESH + ω1KELE − γUE + μ + δUEð ÞIU ,
dID
dt

= 1 − ω1ð ÞKELE − τ1 + μ + δED + σ2ð ÞID + γUEIU + τ4EEM ,

dIT
dt

= τ1ID − ϕ2 + μð ÞIT ,
dJ
dt

= σ1LE + σ2ID − μ + δj
� �

J − θJ ,

dEM

dt
= ε2λMSH − KM + μð ÞEM − τ2EM + ρϕ3IEM ,

dIM
dt

= 1 − ε2ð ÞλMSH + KMEM − τ3 + r + δIM + μð ÞIM ,
dRM

dt
= τ2EM + τ3IM + rIM − ϕ1 + μð ÞRM ,

dEEM

dt
= ε3λEMSH + KEM + δIEM + μð ÞEEM − τ4EEM ,

dIEM
dt

= 1 − ε3ð ÞλEMSH + KEMEEM − ϕ3 + δIEM + μð ÞIEM ,
dSV
dt

= πV − λVSV − μVSV ,

dEV

dt
= λVSV − σV + μVð ÞEV ,

dIV
dt

= σVEV − μVIV ,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð9Þ

where λE, λEM , λM, and λV is defined as follows: λE = βEðIU
+ ηDID + ηj J/NHÞ, λEM = βEMðEEM + ηEMIEM/NHÞ, λV =
βVbðIM + η1EEM + η2IEM/NHÞ, and λM = βMðbIV /NVÞ:

The total population is given as;

NH tð Þ = SH tð Þ + LE tð Þ + IU tð Þ + ID tð Þ + IT tð Þ + J tð Þ
+ EM tð Þ + IM tð Þ + RM tð Þ + EEM tð Þ + IEM tð Þ, ð10Þ

and NVðtÞ = SVðtÞ + EVðtÞ + IVðtÞ:
The associated parameters considered in model (9) along

with detailed descriptions are given as πH and πV are the
recruitment rate of human and vectors, respectively, λM is the
force of infection for malaria transmission, λE is the force of
infection for the Ebola virus, λEM is the force of infection in
IEM, μ is the human death rate, μV is the vector (mosquitoes)
death rate, τ1 is the treatment rate for Ebola, τ2 is the malaria
infected rate, τ3 denotes malaria treatment rate, τ4 is the
exposed rate, and ε1 and ε2 are the Ebola and malaria low
immunity rate, respectively. ε3 is the Ebola-malaria low immu-
nity rate, γUE is the detection rate of unknown Ebola virus, δEM

3Computational and Mathematical Methods in Medicine



is the malaria induced death rate for EM, δIM is the malaria
induced death rate for IM, σ1 and σ2 are the isolation rate for
LH and ID, respectively. KE, KM, and KEM are the progression
rate for malaria, Ebola, and Ebola-malaria, respectively, δUE
and δDE are the Ebola induced death rate for IU .and ID, respec-
tively, δj, δEM, and δIEM are the Ebola induced death rate for J,
EEM, and IEM, respectively, σV is the progression rate vectors,
and ϕ1 is the rate of loss of immunity. βE and βEM are the effec-
tive contact rate for Ebola virus and Ebola-malaria, r is the
recovery rate of malaria, λM and λV are the force of infection
from vector-human and human-mosquito, respectively, ϕ3 is
the active rate of Ebola-malaria after treatment, βM is the trans-
mission rate from mosquito to human, βV is the transmission
rate from human to mosquito, ϕ2 is the progression rate from
IT to the latent stage, b is the number of vector bites per unit
time, ω1 is the rate at which latent infected moves to Ebola
undetected class, ρ is the rate at which treated Ebola-malaria
individuals move to EM, ηD is the modification parameter of
ID in relation to LE. ηT is the modification parameter of IT , ηJ
is the modification parameter of J, η1 and η2 are the modifica-
tion parameters of EEM and IEM, respectively, ηEM is the modi-
fication parameter of IEM, and θ is the rate at which J
individuals are discharged from the treatment centers.

3.1. Fractional Model. To capture the memory in the predic-
tions of the Ebola-malaria coinfection model and also to check
that both sides of the fractional equations have the exact
dimensions, the coefficient 1/α1−σ , comprised with the auxil-
iary parameter α [23, 24] is imposed on model (9). Hence, we
suggest the following fractional-order model for the Ebola-
malaria coinfectionmodel under the ABC-fractional derivative:

1
α1−σ

ABC

Dσ
0+SH σð Þ = πH − λESH − λMSH − λEMSH − μSH + ϕ1RM + αθJ ,

1
α1−σ

ABC

Dσ
0+LE σð Þ = ε1λESH − KE + σ1 + μð ÞLE + ϕ2IT + 1 − αð ÞθJ − 1 − ρð Þϕ3IEM ,

1
α1−σ

ABC

Dσ
0+IU σð Þ = 1 − ε1ð ÞλESH + ω1KELE − γUE + μ + δUEð ÞIU ,

1
α1−σ

ABC

Dσ
0+ID σð Þ = 1 − ω1ð ÞKELE − τ1 + μ + δED + σ2ð ÞID + γUEIU + τ4EEM ,

1
α1−σ

ABC

Dσ
0+IT σð Þ = τ1ID − ϕ2 + μð ÞIT ,

1
α1−σ

ABC

Dσ
0+ J σð Þ = σ1LE + σ2ID − μ + δj

� �
J − θJ ,

1
α1−σ

ABC

Dσ
0+EM σð Þ = ε2λMSH − KM + μð ÞEM − τ2EM + ρϕ3IEM ,

1
α1−σ

ABC

Dσ
0+IM σð Þ = 1 − ε2ð ÞλMSH + KMEM − τ3 + r + δIM + μð ÞIM ,

1
α1−σ

ABC

Dσ
0+RM σð Þ = τ2EM + τ3IM + rIM − ϕ1 + μð ÞRM ,

1
α1−σ

ABC

Dσ
0+EEM σð Þ = ε3λEMSH + KEM + δIEM + μð ÞEEM − τ4EEM ,

1
α1−σ

ABC

Dσ
0+IEM σð Þ = 1 − ε3ð ÞλEMSH + KEMEEM − ϕ3 + δIEM + μð ÞIEM ,

1
α1−σ

ABC

Dσ
0+SV σð Þ = πV − λVSV − μVSV ,

1
α1−σ

ABC

Dσ
0+EV σð Þ = λVSV − σV + μVð ÞEV ,

1
α1−σ

ABC

Dσ
0+IV σð Þ = σVEV − μVIV ,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð11Þ

where 0 < σ ≤ 1, with the following initial conditions: SHð0Þ =
SH0

≥ 0, LEð0Þ = LE0
≥ 0, IUð0Þ = IU0

≥ 0, IDð0Þ = ID0
≥ 0,

ITð0Þ = IT0
≥ 0,Jð0Þ = J0 ≥ 0, EMð0Þ = EM0

≥ 0, RMð0Þ = RM0
≥ 0, EEMð0Þ = EEM0

≥ 0, IEMð0Þ = IEM0
≥ 0 SVð0Þ = SV0

≥ 0,
EVð0Þ = EV0

≥ 0, IVð0Þ = IV0
≥ 0, and IMð0Þ = IM0

≥ 0:

4. Existence and Uniqueness

It is important to determine whether or not such a dynami-
cal problem exists before delving into any type of epidemio-
logical simulations. Fortunately, the fixed point theory
provides an ironclad guarantee for this evaluation’s out-
come. We attempt to apply the same idea in a perspective
of the Banach and Krassnoselskii’s fixed point theory to
the stated model (11) to study existence and uniqueness
results. In relation to the aforementioned requirement, we
reformulate the considered model (11) as follows:

ABCD
σ
0+SH σð Þ =ℵ1 Δ∗∗ð Þ, ABCDσ

0+LE σð Þ =ℵ2 Δ∗∗ð Þ, ABCDσ
0+ IU σð Þ =ℵ3 Δ∗∗ð Þ,

ABCD
σ
0+ID σð Þ =ℵ4 Δ∗∗ð Þ, ABCDσ

0+IT σð Þ =ℵ5 Δ∗∗ð Þ, ABCDσ
0+ J σð Þ =ℵ6 Δ∗∗ð Þ,

ABCD
σ
0+EM σð Þ =ℵ7 Δ∗∗ð Þ, ABCDσ

0+ IM σð Þ =ℵ8 Δ∗∗ð Þ, ABCDσ
0+RM σð Þ =ℵ9 Δ∗∗ð Þ,

ABCD
σ
0+EEM σð Þ =ℵ10 Δ∗∗ð Þ, ABCDσ

0+ IEM σð Þ =ℵ11 Δ∗∗ð Þ, ABCDσ
0+SV σð Þ =ℵ12 Δ∗∗ð Þ,

ABCD
σ
0+EV σð Þ =ℵ13 Δ∗∗ð Þ, ABCDσ

0+ IV σð Þ =ℵ14 Δ∗∗ð Þ,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð12Þ

where Δ∗∗ = ðσ, SH , LE, IU , ID, IT , J , EM , IM , RM , EEM , IEM ,
SV , EV , IVÞ and

ℵ1 Δ∗∗ð Þ = πH − λESH − λMSH − λEMSH − μSH + ϕ1RM + αθJ ,
ℵ2 Δ∗∗ð Þ = ε1λESH− KE+σ1+μð ÞLE + ϕ2IT + 1 − αð ÞθJ − 1 − ρð Þϕ3IEM ,
ℵ3 Δ∗∗ð Þ = 1 − ε1ð ÞλESH+ω1KE

LE − γUE + μ + δUEð ÞIU ,
ℵ4 Δ∗∗ð Þ = 1 − ω1ð ÞKELE − τ1 + μ + δED + σ2ð ÞID + γUEIU + τ4EEM ,
ℵ5 Δ∗∗ð Þ = τ1ID − ϕ2 + μð ÞIT ,
ℵ6 Δ∗∗ð Þ = σ1LE+σ2

ID − μ + δj
� �

J − θJ ,
ℵ7 Δ∗∗ð Þ = ε2λMSH − KM + μð ÞEM − τ2EM + ρϕ3IEM ,
ℵ8 Δ∗∗ð Þ = 1 − ε2ð ÞλMSH+KM

EM − τ3 + r + δIM + μð ÞIM ,
ℵ9 Δ∗∗ð Þ = τ2EM + τ3IM + rIM − ϕ1 + μð ÞRM ,
ℵ10 Δ∗∗ð Þ = ε3λEMSH + KEM + δIEM + μð ÞEEM − τ4EEM ,
ℵ11 Δ∗∗ð Þ = 1 − ε3ð ÞλEMSH+KEM

EEM − ϕ3 + δIEM + μð ÞIEM ,
ℵ12 Δ∗∗ð Þ = πV − λVSV − μVSV ,
ℵ13 Δ∗∗ð Þ = λVSV − σV + μVð ÞEV ,
ℵ14 Δ∗∗ð Þ = σVEV − μVIV :

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð13Þ

For simplicity we write the model (11) in the form;

ABCD
ω
σW σð Þ =Ψ σ,W σð Þð Þ, σ ∈ 0, ηð �,

W 0ð Þ =W0,

(
ð14Þ
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where

W = SH , LE, IU , ID, IT , J , EM , IM , RM , EEM , IEM , SV , EV , IVð ÞT ,
W 0ð Þ = T1, T2ð ÞT ,
Ψ σ,W σð Þð Þ =ℵi Δ

∗∗ð ÞT ,
i = 1, 2, 3,⋯, 14,

8>>>>><
>>>>>:

ð15Þ

where ð:ÞT presents the transpose of the vectors, T1 =
ðSHð0Þ, LEð0Þ, IUð0Þ, IDð0Þ, ITð0Þ, Jð0Þ, EMð0ÞÞ, and T2 =
ðIMð0Þ, RMð0Þ, EEMð0Þ, IEMð0Þ, SVð0Þ, EVð0Þ, IVð0ÞÞT :
From Lemma 2.2, the system (14) is equal to the fol-
lowing fractional integral equation;

W σð Þ =W0 +
1 − ω

∇ ωð ÞΨ σ,W σð Þð Þ

+ ω

∇ ωð ÞΓ ωð Þ
ðσ
0
Ψ s,W sð Þð Þ σ − sð Þω−1ds:

ð16Þ

Let us say B = Cð½0, η�Þ is the Banach space, suppos-
ing that the following assumptions hold;

(F1) There exist a nonnegative constant Y, Z, and a ∈ ½0
, 1Þ such that

Ψ σ,W σð Þð Þ ≤ Y Wj ja + Z: ð17Þ

(F2) There exist a nonnegative constant Lμ > 0 for all
W ,W∗ ∈ B then

Ψ σ,W σð Þð Þ −Ψ σ,W∗ σð Þð Þj j ≤ Lμ W −W∗j j½ �: ð18Þ

Also, let us define operator Ap : B⟶ B such that

ApW σð Þ =Ω1W σð Þ +Ω2W σð Þ, ð19Þ

basically, we let

Ω1W σð Þ =W0 +
1 − ω

∇ ωð ÞΨ σ,W σð Þð Þ,

Ω2W σð Þ = ω

∇ ωð ÞΓ ωð Þ
ðσ
0
Ψ s,W sð Þð Þ σ − sð Þω−1ds:

8>>><
>>>:

ð20Þ

From this knowledge, equation (16) can be written as;

ApW σð Þ =W0 +
1 − ωð Þ
∇ ωð Þ Ψ σ,W σð Þð Þ

+ ω

∇ ωð ÞΓ ωð Þ
ðσ
0
Ψ s,W sð Þð Þ σ − sð Þω−1ds:

ð21Þ

Theorem 4.1. Suppose that (F1) and (F2) hold, such that, ð
ð1 − ωÞ/∇ðωÞÞLμ < 1, then the Ebola-malaria co-infection
model (14) has at least one solution.

Proof. We divide the proof into two steps:
Step 1. We prove that operator Ω1 is contraction. Then,

let W∗ ∈Π, where Π = fW ∈ B : kWk ≤ ρ, ρ > 0g is a close
convex set, thus

Ω1 Wð Þ −Ω1 W∗ð Þj j = 1 − ωð Þ
∇ ωð Þ max

ω∈ 0,η½ �
Ψ σ,W σð Þð Þ −Ψ σ,W∗ σð Þð Þj j,

≤
1 − ωð Þ
∇ ωð Þ Lμ W −W∗k k:

ð22Þ

Hence Ω1 is contraction.
Step 2. We prove that Ω2 is compact and also continu-

ous, for all W ∈Π, then Ω2 will be continuous as W is con-
tinuous; thus,

Ω2 Wð Þk k = max
ω∈ 0,η½ �

ω

∇ ωð ÞΓ ωð Þ
ðσ
0
Ψ s,W sð Þð Þ σ − sð Þω−1

����
����ds,

≤
ω

∇ ωð ÞΓ ωð Þ
ðη
0

η − sð Þω−1�� �� Ψ s,W sð Þð Þj jds:

≤
ηω

∇ ωð ÞΓ ωð Þ Y Wj ja + Z½ �:

ð23Þ

Hence Ω2 is boundedness. For equicontinuous, let σ1
and σ2 ∈ ½0, η�, such that

Ω2Wð Þ σ1ð Þ − Ω2Wð Þ σ2ð Þj j = ω

∇ ωð ÞΓ ωð Þ
����

����
ðσ1
0
Ψ s,W sð Þð Þ σ1 − sð Þω−1ds

−
ðσ2
0
Ψ s,W sð Þð Þ σ2 − sð Þω−1��ds ≤ Y Wj ja + Z½ �

∇ ωð ÞΓ ωð Þ σω
1 − σω2½ �:

ð24Þ

As σ1 ⟶ σ2, then jðΩ2WÞðσ1Þ − ðΩ2WÞðσ2Þj⟶ 0
which make operator Ω2 an equicontinuous and compact
by the Arzela-Ascoli theorem. Therefore the existence for
the Ebola-malaria co-infection model (11) is proved.

Theorem 4.2. Suppose that ∃ a nonnegative integer Λ > 0
such that

Λ = 1 − ωð Þ
∇ ωð Þ Lμ +

ηω

∇ ωð ÞΓ ωð Þ Lμ
� �

< 1, ð25Þ

then operator Ap has a unique fixed point.

5Computational and Mathematical Methods in Medicine



Proof. Let W ,W∗ ∈ B, then we say

ApW −ApW
∗		 		 ≤ Ω1W −Ω1W

∗k k + Ω2W −Ω2W
∗k k,

≤
1 − ωð Þ
∇ ωð Þ

���� max
ω∈ 0,η½ �

Ψ σ,W σð Þð Þ −Ψ σ,W∗ σð Þð Þj j

+ ω

∇ ωð ÞΓ ωð Þ max
ω∈ 0,η½ �

ðσ
0
Ψ s,W sð Þð Þ σ − sð Þω−1ds

����
−
ðσ
0
Ψ s,W∗ sð Þð Þ σ − sð Þω−1

����ds,
≤

1 − ωð Þ
∇ ωð Þ Lμ +

ηω

∇ ωð ÞΓ ωð Þ Lμ
� �

W −W∗k k,

=Λ W −W∗k k:
ð26Þ

Hence, by the Banach contraction principle, Ap has a
unique fixed point. Consequently, the Ebola-malaria co-
infection model (11) has unique solution.

5. Hyers-Ulam Stability

In the context of differential equations, stability is crucial.
The Hyers-Ulam (HU) type of stability has emerged as one
of the most intriguing types of stability in recent years. Here,
we use HU type stability to examine a theoretical model of
Ebola and malaria transmission.

Definition 5.1. The Ebola-malaria coinfection model (11) is
HU stable if for δ > 0 and letting W ∈ B be any solution of
below inequality

ABCD
ω
σW σð Þ −Ψ σ,W σð Þð Þ ≤ δ,∀σ ∈ 0, η½ � ; ð27Þ

and with a unique solution W∗ of problem (14) with a pos-
itive constant λq > 0, such that,

W −W∗k k ≤ λqδ,∀σ ∈ 0, η½ �: ð28Þ

Definition 5.2. Given a function ϕ ∈ Cð½0, η�, RÞ, such that
ϕð0Þ = 0 for any solution W of (27) and W∗ be a unique
solution of (14), then

W −W∗k k ≤ ϕ δð Þ, ð29Þ

then the Ebola-malaria co-infection model (14) is general-
ized HU stable.

Remark 5.1. Suppose χðσÞ ∈ Cð½0, η�, RÞ, we say W ∈ B sat-
isfies inequality (27) suppose that,

(i) jχðσÞj ≤ δ, for all σ ∈ ½0, η�
(ii) ABCD

ω
σWðσÞ =Ψðσ,WðσÞÞ + χðσÞ, ∀σ ∈ ½0, η�:

Now, we consider the resulting perturbation equation of
system (14) as follows;

ABCD
ω
σW σð Þ =Ψ σ,W σð Þð Þ + χ σð Þ,

W 0ð Þ =W0:

(
ð30Þ

The below Lemma is needed to help us get our results.

Lemma 5.1. From equation (30), we say the following result
hold. Thus,

W σð Þ − ApΨ σ,W σð Þð Þ�� �� ≤ 1 − ωð Þ
∇ ωð Þ + ηω

∇ ωð ÞΓ ωð Þ
� �

δ: ð31Þ

Proof. Consider Lemma 2.2 relatively, solution for equation
(14) is given as;

W σð Þ =W0 + ABCI
ω
σΨ σ,W σð Þð Þ + ABCI

ω
σχ σð Þ: ð32Þ

Now, with the help of equation (21), we deduce that

W σð Þ − ApΨ σ,W σð Þð Þ�� �� ≤ 1 − ωð Þ
∇ ωð Þ χ σð Þj j

�

+ ηω

∇ ωð ÞΓ ωð Þ
ðσ
0
σ − sð Þ1−ω χ σð Þj jds

�

≤
1 − ωð Þ
∇ ωð Þ + ηω

∇ ωð ÞΓ ωð Þ
� �

δ:

ð33Þ

Theorem 5.2. Suppose that the Ebola-malaria co-infection
model (14) is Ulam-Hyers stable, if there exist Λ = ½ðð1 − ωÞ
/∇ðωÞÞLμ + ðηω/∇ðωÞΓðωÞÞLμ� < 1:

Proof. With the help from the Lemma 5.1, let W ∈ B be any
solution and W∗ ∈ B be a unique solution for considered
problem (14), then

W σð Þ −W∗ σð Þj j = W σð Þ −ApW
∗ σð Þ�� ��

≤ W σð Þ −ApW σð Þ�� �� + ApW σð Þ − ApW
∗ σð Þ�� ��

≤
1 − ωð Þ
∇ ωð Þ + ηω

∇ ωð ÞΓ ωð Þ
� �

δ

+ 1 − ωð Þ
∇ ωð Þ Lμ +

ηω

∇ ωð ÞΓ ωð Þ Lμ
� �

W −W∗k k:

ð34Þ

Thus,

W σð Þ −W∗ σð Þk k ≤ 1 − ωð Þ/∇ ωð Þð Þ + ηω/∇ ωð ÞΓ ωð Þð Þ½ �
1 − 1 − ωð Þ/∇ ωð Þð ÞLμ + ηω/∇ ωð ÞΓ ωð Þð ÞLμ


 � δ:
ð35Þ

Hence, we conclude that, the Ebola-malaria co-infection
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model (14) is HU stable. Consequently, the Ebola-malaria
co-infection model (14) is HU generalized stable.

Definition 5.3. The problem (14) is Hyers-Ulam-Rassias
(HUR) stable given that the function ξðσÞ ∈ Cð½0, 1�, RÞ,
δ > 0 and lettingW ∈ B be any solution of the below inequality

ABCD
σ
ωW σð Þ −Ψ σ,W σð Þð Þ ≤ ξ σð Þδ,∀σ ∈ 0, η½ � ; ð36Þ

and also ∃ unique solutionW∗ of problem (14) with a positive
constant λq > 0 then,

W −W∗k k ≤ λqξ σð Þδ,∀σ ∈ 0, η½ �: ð37Þ

Definition 5.4. Given a function ν ∈ Cð½0, η�, RÞ, with λq,ν and
δ > 0, for allW of equation (36) andW∗ be a unique solution
of (14), then

W −W∗k k ≤ λq,νν σð Þ,∀σ ∈ 0, η½ �, ð38Þ

then system (14) is HUR generalized stable.

Remark 5.2. Suppose μðσÞ ∈ Cð½0, 1�, RÞ, we say W ∈ B sat-
isfies inequality (36), suppose that,

(i) jμðσÞj ≤ δνðσÞ,∀σ ∈ ½0, η�:
(ii) ABC

ω Dσ
ωWðσÞ =Ψðσ,WðσÞÞ + μðσÞ, ∀σ ∈ ½0, η�:

Now, we consider the resulting perturbation equation of
system (14) as follows:

ABCD
ω
σW σð Þ =Ψ σ,W σð Þð Þ + μ σð Þ,

W 0ð Þ =W0:

(
ð39Þ

Lemma 5.3. From equation (39), we say the following result
hold. Thus,

W σð Þ −ApΨ σ,W σð Þð Þ�� �� ≤ 1 − ωð Þ
∇ ωð Þ + ηω

∇ ωð ÞΓ ωð Þ
� �

μ σð Þδ: ð40Þ

Proof. Consider Lemma 2.2 relatively, solution for equation
(39) is given as;

W σð Þ =W0 + ABCI
ω
σΨ σ,W σð Þð Þ + ABCI

ω
σμ σð Þ: ð41Þ

Now, with the help of (21), we deduce that

W σð Þ −ApΨ σ,W σð Þð Þ�� ��
≤

1 − ωð Þ
∇ ωð Þ ν σð Þj j + ηω

∇ ωð ÞΓ ωð Þ
ðσ
0
σ − sð Þ1−ω μ σð Þj jds

� �

≤
1 − ωð Þ
∇ ωð Þ + ηω

∇ ωð ÞΓ ωð Þ
� �

μ σð Þδ:

ð42Þ

Theorem 5.4. Suppose that the Ebola-malaria co-infection
(11) is HUR stable if ∃

Λ = 1 − ωð Þ
∇ ωð Þ Lμ +

ηω

∇ ωð ÞΓ ωð Þ Lμ
� �

< 1: ð43Þ

Proof. With the help from the Lemma 5.3, let W ∈ B be any
solution and W∗ ∈ B be a unique solution for considered
problem (14), then

W σð Þ −W∗ σð Þj j = W σð Þ −ApW
∗ σð Þ�� ��

≤ W σð Þ −ApW σð Þ�� �� + ApW σð Þ − ApW
∗ σð Þ�� ��

≤
1 − ωð Þ
∇ ωð Þ + ηω

∇ ωð ÞΓ ωð Þ
� �

ν σð Þδ

+ 1 − ωð Þ
∇ ωð Þ Lμ +

ηω

∇ ωð ÞΓ ωð Þ Lμ
� �

W −W∗k k:

ð44Þ

Thus,

W σð Þ −W∗ σð Þk k ≤ 1 − ωð Þ/∇ ωð Þð Þ + ηω/∇ ωð ÞΓ ωð Þð Þ½ �
1 − 1 − ωð Þ/∇ ωð Þð ÞLμ + ηω/∇ ωð ÞΓ ωð Þð ÞLμ


 � ν σð Þδ:

ð45Þ

Hence, we conclude that, the Ebola-malaria coinfection
(11) is HUR stable. Consequently, the Ebola-malaria
coinfection model (11) is generalized HUR stable.

6. Numerical Scheme

Here we provide the numerical schemes for the two-step
Lagrange interpolation used in our considered ABC-
fractional operator model of the Ebola-malaria coinfection.
By using the initial condition and the operator ABCI

ω
0 , we

transform the Ebola-malaria co-infection (14) into a system
of fractional integral equations, as shown below.

SH σð Þ − SH 0ð Þ = ABCI
ω
0ℵ1 σ, SH σð Þð Þ,

LE σð Þ − LE 0ð Þ = ABCI
ω
0ℵ2 σ, LE σð Þð Þ,

IU σð Þ − IU 0ð Þ = ABCI
ω
0ℵ3 σ, IU σð Þð Þ,

ID σð Þ − ID 0ð Þ = ABCI
ω

0ℵ4 σ, ID σð Þð Þ,
IT σð Þ − IT 0ð Þ = ABCI

ω
0ℵ5 σ, IT σð Þð Þ,

J σð Þ − J 0ð Þ = ABCI
ω
0ℵ6 σ, J σð Þð Þ,

EM σð Þ − EM 0ð Þ = ABCI
ω
0ℵ7 σ, EM σð Þð Þ,

IM σð Þ − IM 0ð Þ = ABCI
ω
0ℵ8 σ, IM σð Þð Þ,

RM σð Þ − RM 0ð Þ = ABCI
ω
0ℵ9 σ, RM σð Þð Þ,

EEM σð Þ − EEM 0ð Þ = ABCI
ω
0ℵ10 σ, EEM σð Þð Þ,

IEM σð Þ − IEM 0ð Þ = ABCI
ω
0ℵ11 σ, IEM σð Þð Þ,

SV σð Þ − SV 0ð Þ = ABCI
ω
0ℵ12 σ, SV σð Þð Þ,

EV σð Þ − EV 0ð Þ = ABCI
ω

0ℵ13 σ, EV σð Þð Þ,
IV σð Þ − IV 0ð Þ = ABCI

ω
0ℵ14 σ, IV σð Þð Þ,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð46Þ
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which we can easily get the following:

SH σð Þ = SH 0ð Þ + 1 − ω

∇ ωð Þℵ1 σ, SH σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ1 s, SH sð Þð Þ σ − sð Þω−1ds,

LE σð Þ = LE 0ð Þ + 1 − ω

∇ ωð Þℵ2 σ, LE σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ2 s, LE sð Þð Þ σ − sð Þω−1ds,

IU σð Þ = IU 0ð Þ + 1 − ω

∇ ωð Þℵ3 σ, IU σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ3 s, IU sð Þð Þ σ − sð Þω−1ds,

ID σð Þ = ID 0ð Þ + 1 − ω

∇ ωð Þℵ4 σ, ID σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ4 s, ID sð Þð Þ σ − sð Þω−1ds,

IT σð Þ = IT 0ð Þ + 1 − ω

∇ ωð Þℵ5 σ, IT σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ5 s, IT sð Þð Þ σ − sð Þω−1ds,

J σð Þ = J 0ð Þ + 1 − ω

∇ ωð Þℵ6 σ, J σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ6 s, J sð Þð Þ σ − sð Þω−1ds,

EM σð Þ = EM 0ð Þ + 1 − ω

∇ ωð Þℵ7 σ, EM σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ7 s, EM sð Þð Þ σ − sð Þω−1ds,

IM σð Þ = IM 0ð Þ + 1 − ω

∇ ωð Þℵ8 σ, IM σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ8 s, IM sð Þð Þ σ − sð Þω−1ds,

RM σð Þ = RM 0ð Þ + 1 − ω

∇ ωð Þℵ9 σ, RM σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ9 s, RM sð Þð Þ σ − sð Þω−1ds,

EEM σð Þ = EEM 0ð Þ + 1 − ω

∇ ωð Þℵ10 σ, EEM σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ11 s, EEM sð Þð Þ σ − sð Þω−1ds,

IEM σð Þ = IEM 0ð Þ + 1 − ω

∇ ωð Þℵ11 σ, IEM σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ11 s, IEM sð Þð Þ σ − sð Þω−1ds,

SV σð Þ = SV 0ð Þ + 1 − ω

∇ ωð Þℵ12 σ, SV σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ12 s, SV sð Þð Þ σ − sð Þω−1ds,

EV σð Þ = EV 0ð Þ + 1 − ω

∇ ωð Þℵ13 σ, EV σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ13 s, EV sð Þð Þ σ − sð Þω−1ds,

IV σð Þ = IV 0ð Þ + 1 − ω

∇ ωð Þℵ14 σ, IV σð Þð Þ + ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ14 s, IV sð Þð Þ σ − sð Þω−1ds:

ð47Þ

Consider the ABC derivative under the Cauchy problem,
and the ABC integral of Lemma 2.2 can be replicated using
the fundamental theory of calculus.

Θ σð Þ =Θ0 +
1 − ω

∇ ωð Þℵ σ,Θ σð Þð Þ

+ ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ σ,Θ σð Þð Þ σ − sð Þω−1ds:

ð48Þ

Taking the point σðz∗+1Þ = ðz∗ + 1Þh and σz∗ = z∗h, z∗ = 0
, 1, 2,⋯, with h being the time step, we can simply deduce

Θ σz∗+1ð Þ =Θ0 +
1 − ω

∇ ωð Þℵ σ,Θ σð Þð Þ

+ ω

∇ ωð ÞΓ ωð Þ
ðσ
0
ℵ s,Θ sð Þð Þ σ − sð Þω−1ds,

=Θ0 +
1 − ω

∇ ωð Þℵ σz∗ ,Θ σz∗ð Þð Þ

+ ω

∇ ωð ÞΓ ωð Þ
ðσz∗+1
0

ℵ θ,Θ θð Þð Þ σz∗+1 − θð Þω−1dθ,

=Θ0 +
1 − ω

∇ ωð Þℵ σz∗ ,Θ σz∗ð Þð Þ

+ ω

∇ ωð ÞΓ ωð Þ 〠
z∗

r∗=0

ðσr∗+1
σr∗

ℵ θ,Θ θð Þð Þ σz∗+1 − θð Þω−1dθ:

ð49Þ

Having the interval of ½σz∗ , σðz∗+1Þ�, the two term Lagrange
polynomial is given as follows:

γr∗ θð Þ = θ − σr∗−1
σr∗ − σr∗−1

ℵ σr∗
,Θ σr∗

� �� �
−

θ − σr∗
σr∗

− σr∗−1
ℵ σr∗−1,Θ σr∗−1

� �� �
,

=
ℵ σr∗

,Θ σr∗
� �� �

h
θ − σr∗−1
� �

−
ℵ σr∗−1,Θ σr∗−1

� �� �
h

θ − σr∗

� �
,

≃
ℵ σr∗

,Θr∗

� �
h

θ − σr∗−1
� �

−
ℵ σr∗−1,Θr∗−1
� �

h
θ − σr∗
� �

:

ð50Þ

Taking the approximation solution of (50) into (49);

Θ σz∗+1ð Þ =Θ0 +
1 − ω

∇ ωð Þℵ σz∗ ,Θ σz∗ð Þð Þ + ω

∇ ωð ÞΓ ωð Þ

× 〠
z∗

r∗=0

ℵ σr∗
,Θr∗

� �
h

ðσr∗+1
σr∗

θ − σr∗−1
� �

σz∗+1 − σð Þω−1dθ
"

−
ℵ σr∗−1,Θr∗−1
� �

h

ðσr∗+1
σr∗

θ − σr∗
� �

σz∗+1 − σð Þω−1dθ
#
:

ð51Þ

Solving the integral equations in the (51), let us take:

Yω,r∗ ,1 =
ðσr∗+1
σr∗

θ − σr∗−1
� �

σz∗+1 − σð Þω−1dθ,

Yω,r∗ ,2 =
ðσr∗+1
σr∗

θ − σr∗
� �

σz∗+1 − σð Þω−1dθ:
ð52Þ

Now, we can deduce from (52) as follows by applying inte-
gration by substitution:

Yω,r∗ ,1 = hω+1
z∗ + 1 − r∗ð Þσ z∗ − r∗ + 2 + σð Þ − z∗ − r∗ð Þσ z∗ − r∗ + 2 + 2σð Þ

ω ω + 1ð Þ ,

Yω,r∗ ,2 = hω+1
n + 1 − r∗ð Þσ+1 − z∗ − r∗ð Þσ z∗ − r∗ + 1 + σð Þ

ω ω + 1ð Þ :

ð53Þ

Here, knowing Yω,r∗ ,1 and Yω,r∗ ,2, we simply substituted
into (51) which then gives us the following numerical scheme:

Θ σz∗+1ð Þ =Θ0 +
1 − ω

∇ ωð Þℵ σz∗ ,Θ σz∗ð Þð Þ + ω

∇ ωð Þ

× 〠
z∗

r∗=0

hωℵ σr∗ ,Θr∗

� �
Γ ω + 2ð Þ z∗ + 1 − r∗ð Þω z∗ − r∗ + 2 + ωð Þð

"

− z∗ − r∗ð Þω z∗ − r∗ + 2 + 2ωð ÞÞ
#

−
ω

∇ ωð Þ 〠
z∗

r∗=0

hωℵ σr∗−1,Θr∗−1
� �
Γ ω + 2ð Þ

"

� z∗ + 1 − r∗ð Þω+1 − z∗ − r∗ð Þω z∗ − r∗ + 1 + ωð Þ
� �#

:

ð54Þ
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Hence, we suggest the following fractional-order model
for the Ebola-malaria coinfection model under the ABC-
fractional derivative:

SHz∗+1
= SH 0ð Þ + 1 − ω

∇ ωð Þℵ1 σz∗ , SH σz∗ð Þð Þ + ω

∇ ωð Þ

× 〠
z∗

r∗=0

hωℵ1 σr∗
, SHr∗

� �
Γ ω + 2ð Þ z∗ + 1 − r∗ð Þω z∗ − r∗ + 2 + ωð Þð

2
4

− z∗ − r∗ð Þω z∗ − r∗ + 2 + 2ωð ÞÞ
#

−
ω

∇ ωð Þ 〠
z∗

r∗=0

hωℵ1 σr∗−1, SHr∗−1

� �
Γ ω + 2ð Þ

2
4

� z∗ + 1 − r∗ð Þω+1 − z∗ − r∗ð Þω z∗ − r∗ + 1 + ωð Þ
� �#

,

LEz∗+1
= LE 0ð Þ + 1 − ω

∇ ωð Þℵ2 σz∗ , LE σz∗ð Þð Þ + ω

∇ ωð Þ

× 〠
z∗

r∗=0

hωℵ2 σr∗
, LEr∗

� �
Γ ω + 2ð Þ z∗ + 1 − r∗ð Þω z∗ − r∗ + 2 + ωð Þð

2
4

− z∗ − r∗ð Þω z∗ − r∗ + 2 + 2ωð ÞÞ
#

−
ω

∇ ωð Þ 〠
z∗

r∗=0

hωℵ2 σr∗−1, LEr∗−1

� �
Γ ω + 2ð Þ

2
4

� z∗ + 1 − r∗ð Þω+1 − z∗ − r∗ð Þω z∗ − r∗ + 1 + ωð Þ
� �#

,

IUz∗+1
= IU 0ð Þ + 1 − ω

∇ ωð Þℵ3 σz∗ , IU σz∗ð Þð Þ + ω

∇ ωð Þ

× 〠
z∗

r∗=0

hωℵ3 σr∗
, IUr∗

� �
Γ ω + 2ð Þ z∗ + 1 − r∗ð Þω z∗ − k + 2 + ωð Þð

2
4

− z∗ − r∗ð Þω z∗ − r∗ + 2 + 2ωð ÞÞ
#

−
ω

∇ ωð Þ 〠
z∗

r∗=0

hωℵ3 σr∗−1, IUr∗−1

� �
Γ ω + 2ð Þ

2
4

� z∗ + 1 − r∗ð Þω+1 − z∗ − r∗ð Þω z∗ − r∗ + 1 + ωð Þ
� �#

,

IDz∗+1
= ID 0ð Þ + 1 − ω

∇ ωð Þℵ4 σz∗ , ID σz∗ð Þð Þ + ω

∇ ωð Þ

× 〠
z∗

r∗=0

hωℵ4 σr∗
, IDr∗

� �
Γ ω + 2ð Þ z∗ + 1 − r∗ð Þω z∗ − r∗ + 2 + ωð Þð

2
4

− z∗ − r∗ð Þω z∗ − r∗ + 2 + 2ωð ÞÞ
#

−
ω

∇ ωð Þ 〠
z∗

r∗=0

hωℵ4 σr∗−1, IDr∗−1

� �
Γ ω + 2ð Þ

2
4

� z∗ + 1 − r∗ð Þω+1 − z∗ − r∗ð Þω z∗ − r∗ + 1 + ωð Þ
� �#

,

ITz∗+1
= IT 0ð Þ + 1 − ω

∇ ωð Þℵ5 σz∗ , IT σz∗ð Þð Þ + ω

∇ ωð Þ

× 〠
z∗

r∗=0

hωℵ5 σr∗ , ITr∗

� �
Γ ω + 2ð Þ z∗ + 1 − r∗ð Þω z∗ − r∗ + 2 + ωð Þð

2
4

− z∗ − r∗ð Þω z∗ − r∗ + 2 + 2ωð ÞÞ
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Figure 1: Continued.
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Figure 1: Fractional dynamics of different classes at different fractional order σ.
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Figure 2: Fractional dynamics of different classes at different fractional order σ.
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Figure 3: Fractional dynamics of different classes at different fractional order σ.
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7. Numerical Results and Discussion

We illustrate the analytical results of this study by carrying
out numerical simulations of the models using parameter

values in Table 1 with initial values SHð0Þ = 1000, LEð0Þ =
270, IUð0Þ = 210, IDð0Þ = 300, IDð0Þ = 300, ITð0Þ = 320,
Jð0Þ = 200, EMð0Þ = 150, IMð0Þ = 800, RMð0Þ = 500, EEMð0Þ
= 800, IEMð0Þ = 200,SVð0Þ = 650, EVð0Þ = 420, and IVð0Þ =
350: For the given sets of parameters in Table 1, we show
the approximate solutions obtained using the considered iter-
ative approaches against different fractional orders for each
compartment, as seen in Figures 1–3. The illustrative graphs
in Figures 1(a), 1(c), 1(d), 1(f), 2(b), 2(d), 2(e), 2(f), and 3(b)
show no crossover effect but Figures 1(b), 1(e), 2(a), 2(c),
and 3(a) show a crossover effect when the fractional order is
changed. Figure 4 shows the fractional dynamics when one
varies the malaria treatment rate with a fractional order of σ
= 0:90. It shows that an increasing treatment rate reduces
the number of infected individuals with malaria but does not
affect the number of infected individuals with Ebola. Figure
5 shows the dynamics of the disease when one increases the
rate of treatment of individuals infected with Ebola. Figure 6
shows the fractional dynamics when one varies the Ebola
detection rate with a fractional order of 0.9. In a nutshell, we
notice that the variation in the treatment rate for malaria does
not affect susceptible individuals. SH , individuals that are
latently infected with the Ebola virus LEðtÞ, Ebola virus
afflicted people who went unnoticed IU , individuals who have
been infected with the Ebola virus and have been diagnosed
with the disease ID, persons undergoing Ebola virus therapy
IT , isolated Ebola individuals J, malaria-exposed population
EM , individuals who are infected with the Ebola virus and at
the risk of contracting malaria EEM , persons infected with
Ebola and malaria IEM , and the vector population NV = SV
+ EV + IV : Similarly, when one varies the treatment rate for
Ebola, we notice that the following compartment is not
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Figure 4: Fractional dynamics when one varies malaria treatment rate with fractional order σ = 0:90.
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affected; thus, susceptible individuals SH , Ebola virus afflicted
people who went unnoticed IU , malaria-exposed population
EM , individuals who are infected with the Ebola virus and at
the risk of contracting malaria EEM , individuals infected with
Ebola and malaria IEM , individuals affected with malaria only
IM , recovered individuals from malaria RM and the vector
population NV = SV + EV + IV : The graphical dynamics of

the variation in the detection rate indicate that the variation
in the detection rate only affects the following compartments:
individuals that are latently infected with the Ebola virus LEðtÞ
, Ebola virus afflicted people who went unnoticed IU , individ-
uals who have been infected with the Ebola virus and have
been diagnosed with the disease ID, and people undergoing
Ebola virus therapy IT :
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Figure 5: Fractional dynamics when one varies Ebola treatment rate with fractional order σ = 0:90.
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8. Conclusion

This paper considers Ebola-malaria coinfection under the
Mittag-Leffler kernel fractional derivative. We have deter-
mined epidemiological, computational, and theoretical
inferences to understand better how to prevent the Ebola,
malaria, and Ebola-malaria coinfections simultaneously in

the human population. In a prior mathematical investigation
into Ebola-malaria coinfections, the fractional derivative was
not taken into account. As a result, our research adds up to
the dynamic analysis of Ebola, malaria, and Ebola-malaria
coinfections. First and foremost, we guaranteed solutions’
existence and uniqueness by using the Krasnoselskii’s type
and the Banach fixed point theorem. HU stability ensured
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Figure 6: Fractional dynamics when one varies Ebola detection rate with fractional order σ = 0:90.
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the model’s stability. The simulation has been given with the
help of the Lagrange interpolation to solve the considered
problem analytically. Our results reveal that the prevalence
of the Ebola, malaria and Ebola-malaria coinfections varied
from low to moderate depending on the fractional operators.
In addition, we observed from our solutions that there was
no significant difference in the Ebola-malaria coinfections
of the immune response. Moreover, Ebola-malaria coinfec-
tion-related mortality varied from moderate to high depend-
ing on the fractional operators. Hence, we conclude that the
global nature of ABC-fractional order dynamics excellently
explains the coinfection model characteristics. Thus, the
concept in this paper has crucial implications for biological
models and their problems, and it is helpful for Ebola-
malaria coinfection analysis and control strategy. In future
work, different fractional order derivatives and their theoret-
ical and numerical stability can be investigated with other
control measures.
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