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Background. Breast cancer is a big threat to the women across the world with substantial morbidity and mortality. The pressing
matter of our study is to establish a prognostic gene model for breast cancer based on mRNAsi for predicting patient’s prognostic
survival.Methods. From The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we downloaded the
expression profiles of genes in breast cancer. On the basis of one-class logistic regression (OCLR) machine learning algorithm,
mRNAsi of samples was calculated. Kaplan-Meier (K-M) and Kruskal-Wallis (K-W) tests were utilized for the assessment of
the connection between mRNAsi and clinicopathological variables of the samples. As for the analysis on the correlation
between mRNAsi and immune infiltration, ESTIMATE combined with Spearman test was employed. The weighted gene
coexpression network analysis (WGCNA) network was established by utilizing the differentially expressed genes in breast
cancer, and the target module with the most significant correlation with mRNAsi was screened. Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to figure out the biological functions of the
target module. As for the construction of the prognostic model, univariate, least absolute shrinkage and selection operator
(LASSO) and multivariate Cox regression analyses were performed on genes in the module. The single sample gene set
enrichment analysis (ssGSEA) and tumor mutational burden were employed for the analysis on immune infiltration and gene
mutations in the high- and low-risk groups. As for the analysis on whether this model had the prognostic value, the
nomogram and calibration curves of risk scores and clinical characteristics were drawn. Results. Nine mRNAsi-related genes
(CFB, MAL2, PSME2, MRPL13, HMGB3, DCTPP1, SHCBP1, SLC35A2, and EVA1B) comprised the prognostic model.
According to the results of ssGSEA and gene mutation analysis, differences were shown in immune cell infiltration and gene
mutation frequency between the high- and low-risk groups. Conclusion. Nine mRNAsi-related genes screened in our research
can be considered as the biomarkers to predict breast cancer patients’ prognoses, and this model has a potential relationship
with individual somatic gene mutations and immune regulation. This study can offer new insight into the development of
diagnostic and clinical treatment strategies for breast cancer.

1. Introduction

Breast cancer is a common threat to the women with
increased annual incidences, and it has surpassed lung can-
cer ranking 1st on the global cancer-statistics list in 2020
[1]. Usually, the factors to assess the conditions of breast
cancer patients lie in tumor stage, histological grade, and
molecular subtype. However, when it comes to the predic-
tion of patients’ prognoses, they just do little help regarding
the accuracy [2]. Prediction based solely on pathological fea-

tures is likely to cause inaccurate diagnosis of patient’s prog-
nosis. For one thing, low low-risk patients are likely to
undergo unnecessary or excessive treatment. For another,
the improper treatment tends to put high-risk patients as
risk of cancer recurrence or metastasis [3]. For example,
He et al. [4] explored SNP-related genes as novel prognostic
markers for breast cancer, whose predictive performance for
either disease-free survival or prognostic risk of patients is
difficult to be realized by other clinicopathological character-
istics. As a result, to explore novel biomarkers capable of
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predicting breast cancer patient’s prognosis is of great signif-
icance for treating patients with more precise therapeutic
strategies.

The complexity and diversity in tumor microenviron-
ment are beyond our imagination. Some cells are responsible
for tumor initiation, metastasis, and recurrence in tumor
microenvironment, but others are not. For a few cells with
stemness features and invasiveness, they can trigger the
development of tumor and invade human immune system,
inducing innate resistance to external killing [5, 6]. These
cells are named as cancer stem cells (CSCs), which have
the features of continuous proliferation, self-renewal, and
multidirectional differentiation [4]. Breast cancer stem cells
can induce various primary tumors, facilitating the develop-
ment and metastasis of tumors, resulting in a poor prognos-
tic response in breast cancer patients [7]. Notably, multiple
CSC-associated breast cancer molecular markers have been
identified, such as CD44, CD24, ALDH1, PROCR, and
MUC1 [8, 9]. Among them, CD44, CD24, and ALDH1 are
capable of predicting the prognoses of triple-negative breast
cancer patients, which can be predictive markers for cancer
recurrence, distant metastasis, disease-free survival, and
overall survival [10, 11]. Revealing breast cancer prognostic
markers from the perspective of CSCs may be an important
entry point.

Given the important regulation of CSC properties for
tumor progression, existing studies have established a new
method to describe CSCs through machine learning algo-
rithms capable of quantifying the differentiation phenotype
during cancer progression and the development characteris-
tics of stem cell populations in tumor tissues [12]. For the
identification of various stem cells and tumor cells, the
one-class logistic regression (OCLR) machine learning algo-
rithm is a great choice utilized to extract the expression pro-
files of these cells [13]. The algorithm has been applied to the

genome-wide expression data of enormous TCGA samples
and successfully quantified the differentiation degree of var-
ious cancers of the breast cancer, lung cancer, glioma, and so
on, as well as the stemness features and tumorigenicity of
paired healthy tissues. Finally, a new stemness feature
mRNAsi was proposed [13]. mRNAsi is a cancer stem cell
index describing the similarity degree between tumor and
stem cells, which can be considered a quantification of can-
cer stem cells [13]. The values of mRNAsi range from 0 to 1,
and it has a close connection with the tumor dedifferentia-
tion level and biological processes of CSCs [14, 15]. mRNAsi
has been verified as an indicator of survival, classification,
and disease progression in cancer patients [15–17]. Above-
mentioned studies have paved the way for us to dive deeper
into the mechanisms of breast cancer stem cells and the
mining of prognostic molecular markers. The epigenetically
regulated mRNA expression-based stemness index (EREG-
mRNAsi) is obtained by training the expression level of
genes associated with the epigenetically regulated stem cells.
The index ranges from 0 to 1. The closer the index value is to
1, the lower the degree of cell differentiation and the stronger
the stemness features, reflecting the degree of dedifferentia-
tion of cancer cells [18, 19].

Our study initially determined the mRNAsi of TCGA-
BRCA dataset samples, predicted tumor purity, and abun-
dance of stromal cells and immune cells within the tumor
and analyzed the correlation of mRNAsi with immune infil-
tration. The target gene module associated with mRNAsi
was screened by weighted gene coexpression network
(WGCNA). Next, a bioinformatics analysis on the target
module revealed 9 mRNAsi-related genes that were capable
of predicting breast cancer patient’s prognosis, and a
prognosis-assessing model was hence established. Subse-
quently, the study revealed the complex role of prognostic
signature genes with somatic gene mutations and immune
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Figure 1: Association between mRNAsi of TCGA-BRCA and clinical features and tumor immune microenvironment. (a) Differences in
mRNAsi between TCGA-BRCA tissues and healthy samples. (b) K-M survival curve for mRNAsi. (c) K-M survival curve of EREG-
mRNAsi. Tumor growth sizes in TCGA-BRCA tissue samples (d) and difference of mRNAsi expression in different clinical stages (e). (f–
i) Correlation analysis between mRNAsi and stromal score (f), immune score (g), ESTIMATE score (h), and tumor purity (i) assessed by
ESTIMATE algorithm.
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Figure 2: Continued.
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cell infiltration, providing a reference for the expansion of the
prediction field of prognostic models. To sum up, the risk
assessment model constructed in our study was able to effec-
tively predict the prognosis of patients with breast cancer.
Besides, the connection between 9 mRNAsi-related genes
and somatic gene mutations as well as immune regulation
was revealed in our study. These mRNAsi-related genes can
be applied as biomarkers with great value in clinical practice
like predicting prognoses of breast cancer patients.

2. Materials and Methods

2.1. Breast Cancer Sample Data Collection. From TCGA
database (https://portal.gdc.cancer.gov/), breast cancer
RNA expression data, gene mutation data, and correspond-
ing clinical data were obtained as training sets, involving
1109 breast cancer samples and 113 healthy breast samples.
From the EGB (http://asia.ensembl.org/index.html), the
GTF annotation file was acquired. From the GEO library
(https://www.ncbi.nlm.nih.gov/geo/), the breast cancer sam-
ple expression profile GSE42568 (https://www.ncbi.nlm.nih
.gov/geo/query/acc.cgi? acc = GSE42568) was downloaded
as the validation set. The mRNAsi of samples was calculated
by OCLR [13] for the comparison of the mRNAsi differences
between the normal and tumor groups.

2.2. Correlation between Stemness Index of mRNAsi and
Clinicopathological Variables and Immune Infiltration.

Overall survival was compared between different mRNAsi
samples by Kaplan-Meier (K-M) analysis according to the
optimal threshold. The R package ggpubr (https://cran.r-
project.org/web/packages/ggpubr/index.html) was employed
for comparing mRNAsi in the context of clinical character-
istics. The Kruskal-Wallis (K-W) test was employed for
assessing the connection between mRNAsi and clinical char-
acteristics. Based on the gene expression profiles of breast
cancer samples, ESTIMATE was utilized to generate
immune, stromal, and ESTIMATE scores, as well as tumor
purity. The correlation analysis on mRNAsi and these scores
and tumor purity were achieved by Spearman’s test, and p
values were calculated.

2.3. WGCNA. FPKM data from TCGA-BRCA were identi-
fied for differentially expressed genes (DEGs) utilizing the
R package limma [20] (jlog 2FCj > 1, FDR < 0:05). On the
basis of these DEGs, the R package WGCNA was utilized
for the analysis of the Gene modules [21], and the specific
processes were as follows: genes with missing values were
removed using the goodSamplesGenes function, tumor sam-
ples were clustered, outliers were removed, and 100 was set
as a cut line. The coexpression network was constructed by
setting 6 as the optimal soft threshold. Then, by transform-
ing the adjacency matrix into a TOM matrix, the genetic
connectivity of the network was detected. Next, the average
linkage hierarchical clustering was performed on the basis
of the differences in TOM. By employing a dynamic shearing
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Figure 2: Construction of weighted gene coexpression network of TCGA-BRCA samples. (a) Volcano plot showed the distribution of DEGs
in breast cancer tumor tissue relative to normal breast tissue; red indicated upregulated genes, green indicated downregulated genes, and
black indicated genes excluded by DEG screening criteria. (b) Scale-free topological model fit index screening. (c) Average connectivity
of soft threshold of adjacency matrix. (d) Identification of breast cancer coexpressed gene modules; different colors represent different
gene modules. (e) Heat map of correlation between gene modules and mRNAsi score or EREG-mRNAsi. (f) Scatter plot of blue gene
modules; each circle represents a gene.
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approach, the gene tree was then divided into different mod-
ules. And the minimum number of genes in each module
was set to 50, and MEDissThres was set at 0.25 to cluster
and merge similar modules.

2.4. Gene Function Annotation of Gene Module. In each gene
module, there was a primary component, namely, module
eigengenes (MEs) which could represent all genes within
the module. To mine the gene modules associated with
mRNAsi of tumor samples, the ME of each module was calcu-
lated separately with the mRNAsi of the samples for correla-
tion coefficient, and the gene modules highly associated with
mRNAsi were retained as the target modules. The R package
clusterProfiler [22], enrichplot (https://bioconductor.org/
packages/release/bioc/html/enrichplot.html), and ggplot2
(https://ggplot2-book.org/) were utilized for the annotation
and visualization of KEGG and GO pathways.

2.5. Construction and Validation of the Prognostic Model.
The R package survival (https://cran.r-project.org/web/
packages/survival/index.html) was used to perform univari-
ate Cox regression analysis on genes in the target module
to identify genes that have a close connection with patient’s
overall survival rate (p < 0:01). The R package glmnet [23]

and survival were utilized for the conduction of LASSO anal-
ysis, which was combined with multivariate Cox analysis to
further screen genes and risk coefficients remarkably linked
to prognosis, thus to construct a risk model. Data from
TCGA-BRCA was classified as high- and low-risk groups
taking the median risk score as a demarcation. Differences
in mRNAsi between the two groups were analyzed employ-
ing the R package ggpubr, and K-M curves and ROC curves
were plotted employing the R package survival. At last, the
risk score, survival state plots, and gene expression heat
map of the two risk groups was plotted.

2.6. Analysis of the Correlation between Prognostic Models
and Tumor Immunity and Gene Mutations. The R package
GSEABase with 29 immune-related features [24] was
employed for the conduction of ssGSEA analysis of genes
in the prognostic risk assessment model. By utilizing the R
package heat map, the antitumor immune-enrichment
results of the high- and low-risk groups were visualized. In
gene mutation analysis, R package maftools [25] was utilized
for analyzing the tumor mutational burden, and R package
GenVisR [26] was utilized for analyzing the differences in
gene mutation types and mutation numbers of the samples.
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Figure 3: Blue module gene function annotation. (a) GO analysis of genes in the blue module. (b) KEGG pathway enrichment analysis of
genes in the blue module; the color of the bubble represents the p value, and the size of the bubble represents the number of genes involved
in the pathway.
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Figure 4: Establishment of the mRNAsi-based prognostic model. (a) LASSO coefficient distribution of 14 prognosis-related genes. (b)
Partial likelihood deviation calculated from LASSO regression cross-validation plotted as a function of log (λ). (c) Multivariate Cox
analysis of 9 mRNAsi-related genes. (d) Heat map of gene expression for patients in high- and low-risk groups. (e) Risk score plot for
patients in high- and low-risk groups. (f) Survival state diagram of patients in high- and low-risk groups. (g) Differential analysis of
mRNAsi in patients in high- and low-risk groups. (h) K-M survival curves for patients in the high- and low-risk groups. (i) ROC curve
of TCGA-BRCA sample to assess the predictive performance of the risk signature for 1-, 3-, and 5-year overall survival in the training
set. (j) ROC curve of the GEO database GSE42568 dataset sample, used to assess the predictive performance of the 1-, 3-, and 5-year
overall survival risk signature in the validation set.
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2.7. Prognostic Model Validity Assessment. In this study, uni-
variate and multivariate Cox regression analyses of risk
score, age, gender, pathological stage, and other clinical
characteristic parameters were conducted utilizing the R
package survival in TCGA-BRCA or GSE42568 datasets.
The R packages rms, regplot, tibble, and survival were used
to draw nomograms according to the risk score and 6 clini-
copathological factors. Calibration curve was drawn to pre-
dict the consistency between nomogram-predicted 1-, 3-,
and 5-year survival and actual survival of patients.

3. Results

3.1. Breast Cancer mRNAsi Is Closely Bound Up with the
Clinical Characteristics of Patients and Immune
Regulation of Cancer Tissues. mRNAsi can reflect the sim-
ilarity between tumor cells and stem cells. In this study,
differential analysis of breast cancer samples with mRNAsi
data and corresponding healthy breast samples demon-
strated that mRNAsi was substantially upregulated in breast
cancer tissues (Figure 1(a)). Samples were classified into

M
ut

at
io

ns
 p

er
 M

B

150

100

50

0

Sample (n = 467)% Mutant
30 20 10 0

NCOR1

RYR2

MAP2K4

MAP3K1

MUC4

MUC2

MUC16

GATA 3

CDH1

TP53

PIK3CA

TTN

NEB

SYNE1

MUC5B

OBSCN

RYR3

HMCN1

FLG

PTEN

KMT2C

Translation effect

Synonymous

Non synonymous

Mutation type

Nonsense mutation

Frame shift Ins

Frame shift Del

In frame Ins

In frame Del

Nonstop mutation

Translation start site

Splice site

Missense mutation

5′ flank

3′ UTR

3′ flank

5′ UTR

RNA

Intron

IGR

Silent

Targeted region

M
ut

at
io

ns
 p

er
 M

B

100

50

0

(d)

Figure 5: Immune infiltration and gene mutation revelation in samples with different risk scores. (a) ssGSEA was used to infer the level of
immune-infiltrating cells in the gene set of breast cancer samples from the high-risk and low-risk groups. (b) TMB differences between
patients from the high-risk and low-risk groups. (c) Distribution of significantly mutated genes in breast cancer samples with mutations
in the high-risk group. (d) Distribution of significantly mutated genes in breast cancer samples with mutations in the low-risk group,
with different colors on the right side as different mutation types.
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Figure 6: Continued.
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Figure 6: Continued.
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high- and low-risk groups according to the optimal threshold
of mRNAsi. Survival analysis illustrated that a higher
mRNAsi index in patients led to a poorer prognostic survival
rate with a contrast to that of patients with a lower mRNAsi
index (Figure 1(b)). Patients with higher EREG-mRNAsi had
poorer overall survival compared with patients with lower
EREG-mRNAsi (Figure 1(c)). Correlation analysis between
mRNAsi and clinicopathological characteristic variables of
breast cancer showed that mRNAsi expression did not signif-
icantly change with tumor growth (Figure 1(d)) but was sig-
nificantly increased with the progression of pathological
stage (Figure 1(e)). Given the potential role of mRNAsi in
the antitumor immune process, this study speculated that
mRNAsi added much diversity to the tumor immune micro-
environment. Therefore, the construction of correlation
between the ESTIMATE assessment results of TCGA-
BRCA tissues with the mRNAsi of the samples told us that
mRNAsi was negatively correlated with the stromal score,
immune score, and ESTIMATE score of tumor tissues. But
a positive correlation was found in mRNAsi with tumor
purity (Figures 1(f)–1(i)). The finding revealed a close con-

nection between breast cancer mRNAsi and the clinical char-
acteristics of patients and the immune regulation of cancer
tissues. This index was worthy of inclusion in subsequent
studies to reveal its biological function.

3.2. Identification of mRNAsi-Related Modules. In view of the
significant difference in mRNAsi between normal and tumor
tissues, we first screened DEGs from the mRNA level to elu-
cidate differences in mRNAsi, which were visualized in a
volcano plot (Figure 2(a)). To dig out key mRNAsi-related
genes, WGCNA was conducted for the construction of a
coexpression network of mRNAs for TCGA-BRCA. The
index of the scale-free topology was taken to reach 0.90
(Figures 2(b) and 2(c)). By using a dynamic tree pruning
algorithm (module size = 50), genes with similar expression
patterns were introduced into the same module to form a
hierarchical clustering tree with modules. According to the
weighted correlation and the set criteria, hierarchical cluster-
ing analysis was performed, and clustering results were seg-
mented (Figure 2(d)). Six gene modules were finally
identified, and correlation analysis of MEs with mRNAsi
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Figure 6: Construction and evaluation of nomogram. (a) Univariate Cox regression analysis of risk score and clinicopathological
characteristics. (b) Multivariate Cox regression analysis of risk score and clinicopathological characteristics. (c) Nomogram constructed
from risk score and clinicopathological characteristics to predict 1-, 3-, and 5-year survival rates of patients in the training cohort. (d)
Calibration curve depicted the agreement between nomogram predicted 1-, 3-, and 5-year survival rates of patients and actual survival rates.
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and EREG-mRNAsi in each module revealed that the blue
module presented the highest correlation with cell stemness
index mRNAsi (r = 0:74, p = 1e − 190) (Figure 2(e)). As
shown in Figure 2(f), among the blue module genes, the
closer module membership value is to 1 indicates that the
gene is more strongly correlated with this module. The
higher value of gene significance for mRNAsi indicates that
mRNAsi is more correlated with the gene in the module.
As a result, we adopted the blue module with 385 genes as
the target module for subsequent studies.

3.3. Gene Function Annotation of Target Module. To investi-
gate how mRNAsi-related genes and pathways functioned
biologically, GO functional annotation and KEGG pathway
enrichment analyses were performed on 385 genes from
the target blue module. GO functional annotation results
indicated that these genes were primarily bound up with
functions including chromosome segregation, organelle fis-
sion, and nuclear division (Figure 3(a)). KEGG pathway
enrichment analysis suggested that the involvement of these
genes was found in cell cycle, human T cell leukemia virus 1
infection, and oocyte meiosis (Figure 3(b)). GO and KEGG
results showed that genes of the blue module were mainly
enriched in signaling pathways associated with cell cycle, T
cell leukemia virus, and oocyte division, which are closely
related to cancer development.

3.4. Establishment of the mRNAsi-Based Prognostic Model.
Firstly, the prognostic effect of the genes in the blue module
was assessed by the univariate Cox regression analysis. Then,
9 candidate feature genes were screened by the LASSO Cox
regression analysis under the optimal value of λ
(Figures 4(a) and 4(b)). The risk assessment model was
finally constructed based on 9 genes, through multivariate
Cox regression analysis (Figure 4(c)). Risk score = −0:0725∗
CFB + 0:1894∗MAL2 − 0:4245∗PSME2 + 0:0826∗MRPL13
+ 0:0736∗HMGB3 + 0:3917∗DCTPP1 + 0:0628∗SHCBP1 +
0:1012∗SLC35A2 − 0:0566∗EVA1B.

TCGA-BRCA samples were divided into high- and low-
risk groups by setting the median risk score as the cutoff
value, and the heat map showed the expression levels of 9
mRNAsi-related genes (Figure 4(d)). The distribution of risk
score and survival time among samples in TCGA dataset
showed that as risk score increased, the mortalities from
cancer also mounted and the survival time decreased
(Figures 4(e) and 4(f)). Differential analysis of mRNAsi
demonstrated that patients in the high-risk group had mark-
edly higher mRNAsi than those in the low-risk group
(p = 6:732e − 27) (Figure 4(g)). Survival analysis demon-
strated that high-risk group patients had a remarkably lower
overall survival rate than low-risk group patients (p < 0:001)
(Figure 4(h)). ROC curves demonstrated that the AUC
values of the risk assessment model for predicting 1-year, 3-
year, and 5-year survival of TCGA dataset samples were
0.71, 0.68, and 0.70, respectively (Figure 4(i)). The AUC values
of the model for predicting 1-year, 3-year, and 5-year survival
of GSE42568 dataset samples were 0.9, 0.67, and 0.74, respec-
tively (Figure 4(j)). It was shown that the risk score for con-
structing a risk assessment model based on the 9 mRNAsi-

related genes obtained from TCGA-BRCA dataset had predic-
tive potential for breast cancer patients.

3.5. Immunological Infiltration and Gene Mutation
Revelation in High- and Low-Risk Groups. We inferred the
immune cell infiltration level in the breast cancer gene set
by ssGSEA, and the expression level of immune gene set in
the low-risk group was higher compared with the high-risk
group (Figure 5(a)). Simultaneous tumor mutation burden
(TMB) analysis showed that TMB values demonstrated
higher in high-risk patients (p = 9:3e − 06) (Figure 5(b)).
Subsequently, further mutation gene analysis demonstrated
that the high-risk group samples had a much higher gene
mutation frequency than the low-risk group samples
(Figures 5(c) and 5(d)). There are differences in genetic var-
iants between high- and low-risk groups, contributing to the
difference in patient prognosis or immune cell infiltration.

3.6. Construction and Evaluation of the Nomogram. Univar-
iate Cox analysis of risk score and other pathological features
in TCGA dataset showed that age, pathological stage, distant
tumor metastasis (M), lymph nodes metastasis (N), and risk
score were all bound up closely with the prognosis of breast
cancer patients, with a HR of 1.714 (p < 0:001) for risk score
(Figure 6(a)). Multivariate analysis demonstrated that the
HR of risk score was 1.592 (p < 0:001) (Figure 6(b)), indicat-
ing that risk score could be used as a prognostic factor inde-
pendent of clinical characteristics. The nomogram plotted in
combination with risk score, T, N, M stage, sex, age, and
stage was used to predict the overall survival rate at 1, 3,
and 5 years in patients with breast cancer (Figure 6(c)), cor-
responding to a better fit of the calibration curve
(Figure 6(d)), demonstrating that this nomogram had a
favorable predictive ability.

4. Discussion

CSCs have gained much attention in the cancer-related
research. The intensive findings about CSCs have enriched
our understandings of cancer development, thus propelling
us to explore novel effective therapeutic strategies for com-
bating cancer [10, 27]. mRNAsi can reflect stemness in can-
cer patients. With the help of computational biology and
bioinformatics, mRNAsi can be used efficiently for mining
genes related to tumor stemness [12, 13]. Since then, there
have been a number of studies applying mRNAsi to cancer
prognosis. For example, it has been shown that mRNAsi
expression in hepatocellular carcinoma increases with tumor
pathological grade, and mRNAsi established from gene
expression data has a deep connection with poor overall sur-
vival of hepatocellular carcinoma patients [28]. In glioblas-
toma, the mRNAsi index of cancer tissue can be used to
distinguish glioblastoma subtypes, and there is a marked dif-
ference in the prognostic overall survival rate of patients
with each subtype [29]. The above reports all provide an
important reference for the construction of predictive prog-
nostic model for breast cancer based on mRNAsi.

Our study first established a correlation between TCGA-
BRCA tissue assessment results and sample mRNAsi, and
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differentially expressed mRNAs were then obtained. Based
on WGCNA mining the target modules closely related to
mRNAsi, GO functional annotation and KEGG analyses of
the genes in this module showed that they were mainly asso-
ciated with functions such as chromosome segregation,
organelle fission, and mitosis and were involved in cell cycle,
human T cell leukemia virus 1 infection, and oocyte division
pathways. It has been found in breast cancer, colon cancer,
and ovarian cancer that the cell cycle mainly regulates spe-
cific transcription dependent on cell cycle genes in cancer
[30–32]. Human T cell leukemia virus (HTLV-1) is a retro-
virus isolated from human T cell tumors and induces cancer
development through multiple mechanisms [33]. Oocyte
division is also strongly associated with ovarian carcinogen-
esis [34]. Therefore, the above pathways are closely related to
cancer. Nine feature genes were then selected by Cox regres-
sion analysis, and a prognostic model for breast cancer con-
sisting of nine mRNAsi-related genes was constructed. The
model involved CFB, MAL2, PSME2, MRPL13, HMGB3,
DCTPP1, SHCBP1, SLC35A2, and EVA1B, of which CFB,
PSME2, and EVA1B were used as cancer prognostic protec-
tive factors, and the remaining genes were used as prognos-
tic risk factors. CFB is stably upregulated in various cancer
tissues, and in studies of adenocarcinoma, this gene has been
shown to alleviate cancer progression by activating cellular
immune responses, consistent with the trend of this study
in predicting progression of breast cancer [35]. PSME2 has
been less studied in cancer, and reports indicate that this
gene is a typical poor prognostic marker in renal cell carci-
noma and promotes malignant tumor progression by inhi-
biting autophagy [36]. High expression of EVA1B is bound
up closely with high infiltration levels of T cells, macro-
phages, and neutrophils in cancer tissues, and high expres-
sion of this gene implies poor prognosis in glioma patients
[37]. This contrasts with our finding, perhaps PSME2 and
EVA1B possess cancer specific, and whether the regulation
of these two genes also involves autophagy and tumor
immune regulation in this study remains to be further
explored. The remaining genes exist as risk factors for cancer
prognosis, and most of the genes have confirmed this in
existing studies. For example, MAL2 and MRPL13 can
inhibit tumor antigen presentation to drive breast cancer
immune escape, and upregulation of two genes in breast
cancer has been demonstrated to drive malignant progres-
sion of cancer [38, 39]. Similarly, HMGB3 is also a prototyp-
ical marker of breast cancer progression but worsens cancer
progression primarily by promoting formation of breast
layers of breast cancer cells [40, 41]. DCTPP1 is an oncogene
regulated by the oncogenic factor miR-378a-3p, and this
gene facilitates breast cancer cell proliferation through the
interference of DNA repair signaling pathway [42, 43]. The
phenomenon of overexpression of SHCBP1 in breast cancer
has been studied, and cellular experiments have demon-
strated that this gene directly regulates breast cancer cell
proliferation and promotes the cell cycle [44]. SLC35A2 is
associated with hypoxia-inducible factors, heat shock pro-
teins, transcription factors, and DNA damage-associated sig-
naling and is involved in the regulation of neutrophil and
macrophage polarization in breast cancer [45]. In summary,

the majority of the genes associated with mRNAsi of breast
cancer in this study are closely related to cancer develop-
ment or immune regulation of breast cancer, and it is rea-
sonable to use this constructed prognostic model for
clinical prognostic guidance.

In addition to uncovering the corresponding key genes,
the results of ssGSEA analysis based on 9 mRNAsi genes
in this study demonstrated that the difference regarding sur-
vival rate from the high-risk and low-risk group may origi-
nated from differences in immunoinfiltrating cells (e.g.,
Th2, CD8+ T cells, and NK cells). Th2 cells can secrete inter-
leukins to participate in the body’s humoral response and
assist in the activation of human B cells and participate in
antitumor immune responses. Downregulated infiltration
of this cell in high-risk group predicts an immunosuppres-
sive response, consistent with the results of this study. Sim-
ilarly, this study revealed that CD8+ T cells downregulated
in the TME act as the cells of choice for targeting cancer,
activating cytotoxic T lymphocytes in the tumor immune
circulation and mediating antitumor immune responses
[46]. In clinical studies, NK cells often synergize with CD8
+ T cells in antitumor immune processes, and both have
similar cytotoxic mechanisms [47, 48]. This study revealed
that the downregulation of multiple immune cell infiltration
levels in the high-risk group was an indicator of an immuno-
suppressive microenvironment in this group, which might
be the reason of the unsatisfactory prognosis discovered in
high-risk group patients.

In summary, this study revealed the association between
mRNAsi and clinical variables in breast cancer samples by
K-M curve plotting and K-W test analysis. The gene mod-
ules associated with mRNAsi in breast cancer samples were
constructed by WGCNA, which was used as a basis to screen
and construct a 9-gene risk assessment model. The assessing
performance this model on breast cancer patient’s prognosis
was also validated by WGCNA. ssGSEA analysis revealed
the potential association of this risk model with individual
somatic mutations and immune cell infiltration, which
opens up new possibility for the development of diagnostic
and clinical therapeutic strategies for treating breast cancer.
However, this study is a bioinformatics analysis for model
construction which is lack of clinical trials. Therefore, in
future studies, we will collect more clinical sample data
and incorporate some clinical information to increase the
reliability of the model when constructing the model. At
the same time, we did not use wet experiments to verify
the constructed model, so we will perform relevant cellular
experiments and molecular experiments to verify the model
in subsequent experiments.
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