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In this article, we have developed a deterministic Susceptible-Latent-Infectious-Recovered (SLIR) model for diphtheria outbreaks.
Here, we have studied a case of the diphtheria outbreak in the Rohingya refugee camp in Bangladesh to trace the disease dynamics
and find out the peak value of the infection. Both analytical and numerical investigations have been performed on the model to
find several remarkable behaviors like the positive and bounded solution, basic reproductive ratio, and equilibria such as disease
extinction equilibrium and disease persistence equilibrium which are characterized depending on the basic reproductive ratio and
global stability of the model using Lyapunov function for both equilibria. Parameter estimation has been performed to determine
the values of the parameter from the daily case data using numerical technique and determined the value of the basic reproductive
number for the outbreak as R0 = 5:86.

1. Introduction

Diphtheria is a rapidly spreading disease which is gener-
ated by Corynebacterium diphtheriae. Diphtheria transmits
in the populations, usually through respiratory droplets,
like coughing or sneezing [1, 2]. When the bacteria release
the poison or toxin into the body, then the actual disease
appears. Fever and throat bruises are the initial symptoms
of diphtheria. Besides, a thick grey layer induces the
“croup,” which can block the airway and cause a barking
cough. Anyone can be infected by diphtheria, but 5-7-
aged children who did not receive the appropriate vaccine
are usually infected [3–6]. During 1990-1995, above cases
140,000 and 4000 mortalities have been recorded world-
wide through the Regional Office of World Health Organi-
zation (WHO) for Europe [7–9]. Nowadays, diphtheria is
a rare outbreak in the developed world. However, in
2017, several diphtheria outbreaks occurred in Yemen
and refugee camps in Bangladesh [10, 11]. In the Rohin-
gya refugee camp in Cox’s Bazar, Bangladesh, a massive-
scale diphtheria pestilence was reported. Until December

26, 2017, there were an aggregate number of 2,526 cases
and 27 mortalities [12]. There are diphtheria antitoxins
in diphtheria treatments to stop poisons from the bacteria
and antitoxins to kill the bacteria. The best way to repel
diphtheria is through vaccinations [3, 4, 13]. The three
shots of the diphtheria-tetanus-pertussis (DTP) vaccine
were applied in massive levels to children to control the
diphtheria outbreak. To break the transmission chains of
the diphtheria outbreak in the Rohingya refugee camp in
Bangladesh, emergency vaccination has been applied to
children since December 12, 2017, and at the end of
2017, above 90% overall coverage [12].

Many researchers have studied epidemic or pandemic
disease using mathematical techniques such as Wu and Zhao
[14] who have mathematically analyzed an age-structured
epidemic model of HIV/AIDS with HAART and spatial dif-
fusion. In a discrete-time SIVS model with saturation inci-
dence rate, Parsamanesh and Erfanian [15] investigated the
stability and bifurcations. To examine the impact of an envi-
ronmental toxin on the spread of infectious illnesses in the
population, Saha and Samanta [16] used a toxin-dependent
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dynamical model. In a discrete time epidemic model includ-
ing vaccination and vital dynamics, Parsamanesh et al. [17]
investigated the stability and bifurcations. Kabir et al. [18]
have analyzed the effect of border enforcement measures
and socioeconomic cost in export-importation epidemic
dynamics using game theory. In a random environment,
Samanta and Bera [19] looked at a dynamical model of
Chlamydia illness with changing total population size, bilin-
ear incidence rate, and pulse vaccination approach. Parsa-
manesh and Erfanian [20] looked at the global dynamics of
a model with a standard incidence rate and immunization
approach. Shahrear et al. [21] have predicted and mathemat-
ically analyzed the COVID-19 outbreak in Bangladeshi sce-
nario, and Maugeri et al. [22] have analyzed the
transmission of the COVID-19 pandemic in Saudi Arabia
and Indonesia. By eliciting behavioural reactions in the com-
munity, Saha et al. [23] explored an epidemic model of the
COVID-19 outbreak. Liu and Zhang [24] have analyzed
global stability for a tuberculosis model. Gao and Huang
[25] have investigated a tuberculosis model with optimal
control.

Some of the researchers have also analyzed the diphthe-
ria epidemic, such as Vitek and Wharton [26] who have
studied the potential of the reemergence of diphtheria and
other vaccine-preventable infections. Zakikhany and Efstra-
tiou [27] analyzed the current problems and new challenges
of diphtheria in Europe. Torrea et al. [28] have studied the
diphtheria outbreak with the SIRM model. Ilahi and Widi-
ana [29] have developed an SEIR model for the diphtheria
outbreak and analyze vaccination’s effectiveness against the
outbreak. Matsuyama et al. [30] have analyzed the sensitivity
and ambiguity based on the basic reproductive ratio R0 of
the diphtheria epidemic in the Rohingya refugee camp in
Bangladesh.

Due to the vulnerability of diphtheria epidemics in a
confined area, we propose a controlled Susceptible-Latent-
Infectious-Recovered (SLIR) model, which is an extension
of the simple Susceptible-Infectious-Recovered (SIR) model
by adjoining a compartment (L) that tracks the latent people
in the cohort. Analytical analysis of the proposed model is
performed to prove the existence, uniqueness, positivity,
and bounds of the solution. Equilibria of the system and
the basic reproductive ratio are also evaluated, and the global
stability of the model is proven depending on the basic
reproductive ratio. To illustrate the disease dynamics,
parameter values are estimated from the daily case data of
the outbreak in the Rohingya refugee camp in Bangladesh
and found to be the equilibria of the system.

2. Mathematical Model

In this section, a mathematical model [31] is developed for
the expanse of diphtheria into the populations, which is
shown diagrammatically in Figure 1. The entire population
at time t is indicated by NðtÞ that is partitioned into four
groups: susceptible ðSðtÞÞ, latent (asymptotic) stage ðLðtÞÞ,
individual affected by diphtheria in the acutely infected stage
ðIðtÞÞ, and recovered individuals affected by diphtheria ðRð
tÞÞ; here, we suppose that the recovered people are not fur-

ther contagious. Here, λ is a constant that signifies all
recruitment that enters the susceptible class, and μ is the
natural mortality rate that leaves all classes. The infectious
state has an extra mortality rate due to diseases by α, and δ
is that rate in which latent infection in people becomes an
acute infection. Thus, the people move to state I from state
L at a rate of δL. Infectious people are successfully treated
with a fixed rate γ, listing to the recovered state. Susceptible
people acquire diphtheria infection among active diphtheria
at rate βSI, where β signifies the infection transmission coef-
ficient. Moreover,lsignifies a fraction of susceptible people
that earn diphtheria infection and migrate to the latent diph-
theria stateðLÞ, at ratelβSI, and the residual portion,ð1 − lÞ,
departs to the active diphtheria stateðIÞ. Here, the individ-
uals of the latent class are assumed not to transmit infection.

Assembling all the aforenamed suppositions, the model
concerning the transmission dynamics of diphtheria is pre-
sented by the subsequent system of differential equations:

dS tð Þ
dt

= λ − βS tð ÞI tð Þ − μS tð Þ,
dL tð Þ
dt

= lβS tð ÞI tð Þ − μ + δð ÞL tð Þ,
dI tð Þ
dt

= 1 − lð ÞβS tð ÞI tð Þ + δL tð Þ − μ + γ + αð ÞI tð Þ,
dR tð Þ
dt

= γI tð Þ − μR tð Þ,
N tð Þ = S tð Þ + L tð Þ + I tð Þ + R tð Þ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð1Þ

with following subsidiary conditions:

S 0ð Þ = S0 > 0, ð2Þ

L 0ð Þ = L0 ≥ 0, ð3Þ

I 0ð Þ = I0 ≥ 0, ð4Þ
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Figure 1: Diagram interaction of each compartment.

2 Computational and Mathematical Methods in Medicine



R 0ð Þ = R0 ≥ 0: ð5Þ

3. Some Basic Characteristic of the Model

To retain the model’s biological efficacy, we want to show
the existence, positivity, and boundedness of the solutions
to the differential equations for all time.

Theorem 1 (existence of unique solution). Suppose that S0,
L0, I0, R0 ∈ℝ. Then, there exists continuous differentiable

functions fS; ;L, I, R : ½0, t0Þ⟶ℝg for positive time ðt0 > 0
Þ such that the 4-tuple ðS, L, I, RÞ covers (1) and ðS, L, I, RÞð
0Þ = ðS0, L0, I0, R0Þ.

Proof of Theorem 1. By Picard-Lindelöf theorem, it is nar-
rated that the initial value problem y′ðtÞ = gðyðtÞÞ, yðt0Þ =
y0 has a unique solution yðtÞ for locally Lipschitz and con-
tinuous function g in time t ∈ ½t0 − ϵ, t0 + ϵ�, where ϵ > 0.
As the system (1) is autonomous, it is enough to prove that
the function g : ℝ4 ⟶ℝ4 is locally Lipschitz in y. Here, g is

Table 1: Description and value of the parameters of the diphtheria model.

Parameter Description Value Source

λ The recruitment of susceptible class 200 persons day−1 Estimated

μ Natural mortality rate 0:002 day−1 Estimated

α Disease induced mortality rate 0:0054 day−1 Estimated

β Disease transmission rate 0:000097 persons−1 day−1 Fitted

l The fraction of S tð Þ which moves to L tð Þ 0.95 Estimated

γ Recovered rate 0:156 day−1 Fitted

δ The rate which leaves Lðt) for I tð Þ 0:143 day−1 Estimated
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Figure 2: The diphtheria model (1) simulation in log scale.
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defined as

g yð Þ =

λ − βSI − μS

lβSI − μ + δð ÞL
1 − lð ÞβSI + δL − μ + γ + αð ÞI

γI − μR

0
BBBBB@

1
CCCCCA: ð6Þ

The Jacobian matrix of g is obtained as

∇g yð Þ =

−βI − μ 0 −βS 0
lβI − μ + δð Þ lβS 0

1 − lð ÞβI δ 1 − lð ÞβS − μ + γ + αð Þ 0
0 0 γ −μ

0
BBBBB@

1
CCCCCA:

ð7Þ

This Jacobian is linear in ℝ4. Thus, ∇gðyÞ satisfies the
continuity and differentiability for an interval I ∈ℝ4.
According to the mean value theorem,

g y1ð Þ − g y2ð Þj j
y1 − y2j j ≤ ∇g y∗ð Þj j, ð8Þ

where y∗ ∈ I1. By assuming j∇gðy∗Þj =M, we obtain jgðy1Þ
− gðy2Þj ≤Mjy1 − y2j for y1, y2 ∈ I1 and thus, gðyÞ is
bounded locally for each y ∈ℝ4. Therefore, for all compact
subset of ℝ4, the derivative of g is continuous and bounded
and thus, g is locally Lipschitz. Hence, according to the
Picard-Lindelöf theorem, the initial value problem y′ðtÞ =
gðyðtÞÞ, yð0Þ = y0 for t0 > 0 has a unique solution yðtÞ.

Theorem 2. The proposed model (1) is invariant in the non-
negative orthant ℝ4

+.

Proof. Let Y = ðS, L, I, RÞT ; then, model (1) will take the form

dY tð Þ
dt

= LY + C, ð9Þ

where

L =

− βI tð Þ + μð Þ 0 0 0
lβI tð Þ − μ + δð Þ 0 0

1 − lð ÞβI tð Þ δ − μ + γ + αð Þ 0
0 0 γ −μ

0
BBBBB@

1
CCCCCA,

ð10Þ
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Figure 3: The fitted diphtheria model (1).
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and

C =

λ

0
0
0

0
BBBBB@

1
CCCCCA: ð11Þ

Here, C ≥ 0 and in matrix L, all off-diagonal elements are
greater than or equal zero. Hence, L is a Metzler matrix and
the system (1) is positive invariant in ℝ4

+ [32].

Theorem 3. For t > 0, any solution ðS, L, I, RÞ of the model
(1) with condition (2) is positive.

Proof. The R.H.S. of the model (1) is differentiable; therefore,
connecting it with Cauchy problem covenants that there
exists a unique maximal solution. The solution of the first
equation of system (1) can be figured out alternatively as

dS tð Þ
dt

+ βI tð Þ + μð ÞS tð Þ = λ: ð12Þ

The solution of Equation (12) is

S tð Þ = S0e
− μt+

Ð t

0
βI xð Þdx

� �n o

+ e
− μt+

Ð t

0
βI xð Þdx

� �n o
×
ðt
0
λe

μy+
Ð t

0
βI uð Þdu

n o
dy,

ð13Þ

for all t > 0. Hence, the R.H.S. of Equation (13) is greater
than or equal to zero, i.e., SðtÞ > 0 for all t > 0. In the same
way, the solution of the second, third, and fourth equations
of model (1) is of the form

L tð Þ = L0e
− μ+δð Þtf g + e − μ+δð Þtf g ×

ðt
0
lβS yð ÞI yð Þ e μ+δð Þyf gdy,

I tð Þ = I0e
− μ+γ+αð Þt−

Ð t

0
1−lð ÞβS xð Þdx

� �n o

+ e
− μ+γ+αð Þt−

Ð t

0
1−lð ÞβS xð Þdx

� �n o
×
ðt
0
δL yð Þ e μ+γ+αð Þy−

Ð t

0
1−lð ÞβS uð Þdu

n o
dy,

R tð Þ = R0 e
−μtf g + e −μtf g ×

ðt
0
γI yð Þ e μyf gdy, ð14Þ
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Figure 4: Population dynamics interaction between SðtÞ, LðtÞ, and IðtÞ of diphtheria model (1) when R0 = 5:86 > 1 for different initial
conditions.
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respectively. Those solutions show that all LðtÞ, IðtÞ, and R
ðtÞ are greater than or equal zero ∀t > 0.

Theorem 4 (boundedness). Suppose the model (1) satisfies
S0 > 0, L0 > 0, I0 > 0, and R0 > 0 and has a unique solution
on ½0, t0� for some t0 > 0 by Theorem 1; then, the state func-
tions SðtÞ, LðtÞ, IðtÞ, and RðtÞ will be bounded and be positive
∀t ∈ ½0, t0�.

Proof. Initially, suppose that the values of SðtÞ, LðtÞ, IðtÞ, and
RðtÞ are positive. From Theorem 1, for t > 0, there exists a
solution on ½0, t�. Now, denote the largest time by T ∗ at
which all the populations are positive, or

T ∗ = sup t > 0 : S sð Þ, L sð Þ, I sð Þ, R sð Þ > 0, ∀s ∈ 0, t½ �f g:
ð15Þ

Since all initial conditions are nonnegative and the solu-
tions are continuous, hence, the solutions must be positive
on an interval which is denoted as T ∗ > 0. Therefore, we cal-
culate each term on ½0,T ∗�: instantly, the lower bounds on
L, I, and R can be placed.

dL tð Þ
dt

= lβS tð ÞI tð Þ − μ + δð ÞL tð Þ ≥ − μ + δð ÞL tð Þ, ð16Þ

as the reduction expressions are linear; this achieves

dL tð Þ
L tð Þ ≥ − μ + δð Þdt, ð17Þ

or

ln L tð Þð Þ + ln C ≥ − μ + δð Þt, ð18Þ

or

L tð Þ ≥ Ce− μ+δð Þt: ð19Þ

Applying initial condition, we get

L 0ð Þ ≥ C,

⇒L tð Þ ≥ L 0ð Þe− μ+δð Þt > 0,
ð20Þ

for t ∈ ½0,T ∗�:
Again,

dI tð Þ
dt

= 1 − lð ÞβS tð ÞI tð Þ + δL tð Þ − μ + γ + αð ÞI tð Þ ≥ − μ + γ + αð ÞI tð Þ,
ð21Þ
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Figure 5: System’s phase portrait of diphtheria model (1) in 2D and 3D when R0 = 5:86 > 1 for different initial conditions.

6 Computational and Mathematical Methods in Medicine



as the reduction expressions are linear; this achieves

I tð Þ ≥ I 0ð Þe− μ+γ+αð Þt > 0,
∀t ∈ 0,T ∗½ �:

ð22Þ

Further,

dR tð Þ
dt

= γI tð Þ − μR tð Þ ≥ −μR tð Þ, ð23Þ

i.e.,

R tð Þ ≥ R 0ð Þe−μt > 0,
∀t ∈ 0,T ∗½ �:

ð24Þ

Similarly, by placing the upper bound on dS/dt, we get

dS tð Þ
dt

= λ − βS tð ÞI tð Þ − μS tð Þ ≤ λ, ð25Þ

i.e.,

S tð Þ ≤ S 0ð Þ + λt ≤ C 1 + tð Þ, ð26Þ

where C is an arbitrary constant which is depending on the

upper bound of Sð0Þ and λ. Now, by adding the equations
forL, I,andRand placing the bounds on this sum and by the
positivity of these functions, for the upper bound ofSðtÞ,
we get

d
dt

L + I + Rð Þ = βS tð ÞI tð Þ − μL tð Þ − μ + αð ÞI tð Þ − μR tð Þ
≤ βC 1 + tð ÞI tð Þ + μL tð Þ + μ + αð ÞI tð Þ + μR tð Þ
≤ C1 1 + tð Þ L + I + Rð Þ,

ð27Þ

where C1 ≥max fβC, μ, ðμ + αÞg, i.e.,

L + I + Rð Þ tð Þ ≤ C2e
t2 , ð28Þ

where the constant C2 > 0 for t ∈ ½0,T ∗� that only depends
on Lð0Þ, Ið0Þ, Rð0Þ, and C1. For the positivity of LðtÞ, IðtÞ,
and RðtÞ are positive, an upper bound can be placed on both
L, I, and R by

C2e
t2 ≥ L + I + Rð Þ tð Þ ≥ L tð Þ,

C2e
t2 ≥ L + I + Rð Þ tð Þ ≥ I tð Þ,

C2e
t2 ≥ L + I + Rð Þ tð Þ ≥ R tð Þ:

ð29Þ
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Figure 6: Population dynamics interaction between SðtÞ, LðtÞ, and IðtÞ of diphtheria model (1) when R0 = 0:302 < 1 for different initial
conditions.
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Now, SðtÞ can be bounded from below using

dS
dt

= λ − βSI − μS ≥ −βSI − μS ≥ −μS − βC2e
t2S, ≥ −C3 1 + et

2
� �

S,

ð30Þ

where C3 ≥max fβC2, μg,⇒ðdS/dtÞ + C3ð1 + et
2ÞS ≥ 0, i.e.,

S tð Þ ≥ S 0ð Þe−C3
Ð t

0
1+eκ2dκ
� �

> 0: ð31Þ

Therefore, S, L, I, and R remain rigorously positive ∀t ∈
½0,T ∗�. Hence, there exists a t >T ∗ for the continuity, at
which the state variables SðtÞ, LðtÞ, IðtÞ, and RðtÞ are still
positive, which contradicts with the definition of T ∗ and
specifies that SðtÞ, LðtÞ, IðtÞ, and RðtÞ are rigorously positive
on the whole interval ½0, t�. Moreover, all functions remain
bounded with this interval; thus, the existing interval can
be further extended. Actually, the bounds on S, L, I, and R
obtained earlier exist on each compact time interval. For
the extension of the time interval to ½0, t�∀t > 0 at which
the solution endures and of the above discussion, the solu-
tions continue both positive and bounded on ½0, t�.

4. Equilibria of the System

In this section, we trace the presence of steady states for the
dynamical system of nonlinear ODEs (1), describing the
Diphtheria disease dynamics. These steady states can be
obtained by placing the R.H.S. of (1) to zero; we obtain

λ − βSI − μS = 0, ð32Þ

lβSI − μ + δð ÞL = 0, ð33Þ
1 − lð ÞβSI + δL − μ + γ + αð ÞI = 0, ð34Þ

γI − μR = 0: ð35Þ
Moreover, by solving the above equations, we have

found two biologically meaningful equilibrium points. We

can classify these two points to be while the infection is
either terminated from populations, i.e.,L = I = R = 0, or
insists in the populationsðL ≠ 0, I ≠ 0, R ≠ 0Þastgrows large.

We start to determine the equilibria from the nonlinear
intercommunicated terms into Equations (33), (34), and
(35) that give

I 1 − lð Þ μ + δð ÞβS + δlβS − μ + δð Þ μ + γ + αð Þð Þ = 0: ð36Þ

Thus, either I = 0 or S = ðμ + δÞ ðμ + γ + αÞ/ðð1 − lÞμ + δ
Þβ. Using I = 0 in Equations (33), (34), and (35), we get
the disease extinction equilibrium point as

E0 = S0, L0, I0, R0� �
= λ

μ
, 0, 0, 0

� �
: ð37Þ

By setting S = ðμ + δÞðμ + γ + αÞ/ðð1 − lÞμ + δÞβ into
Equations (32) and (35) yields the infectious persistence
equilibrium that exists at the point

E∗ = S, L, I, Rð Þ = μ + δð Þ μ + γ + αð Þ
1 − lð Þμ + δð Þβ , lλ

μ + δð Þ
�

−
lμ μ + γ + αð Þ
β δ + 1 − lð Þμð Þ ,

λ δ + 1 − lð Þμð Þ
μ + δð Þ μ + γ + αð Þ −

μ

β
, γλ δ + 1 − lð Þμð Þ
μ μ + δð Þ μ + γ + αð Þ −

γ

β

�
:

ð38Þ

In the biological sense, E0 is defined as a disease extinc-
tion equilibrium point in which an infection survives for a
short time and then is naturally dispelled from the popula-
tions. The infection is not insisted. The other case, in which
the system incline towards E∗, denoted that the populations
are impotent to remove the disease spontaneously. If it
closes up this remaining fact, then after a particular period,
the diphtheria disease model fails its pertinency as it gets
broader to keep up the populations.

5. Basic Reproductive Ratio

The basic reproductive ratio is also called basic reproductive
rate or basic reproduction number and is denoted by R0. It
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Figure 7: System’s phase of diphtheria model (1) in 3D when R0 = 0:302 < 1 for different initial conditions.
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is a significant threshold value generated in epidemiology to
mathematically identify the doubt of an infectious disease.
This quantity represents the average number of infected per-
sons generated by one infected person introduced into an
entirely uninfected susceptible population. We use the
next-generation method [33, 34] to obtain the basic repro-
ductive ratio R0.

Using the next-generation matrix method on the model
(1), we get

F =
0 lβS0

0 1 − lð ÞβS0

 !
,

V =
μ + δ 0
−δ μ + γ + α

 !
:

ð39Þ

Therefore, we have,

FV −1 =

lδβS0

μ + γ + αð Þ μ + δð Þ
lβS0

μ + γ + αð Þ
1 − lð ÞδβS0

μ + γ + αð Þ μ + δð Þ
1 − lð ÞβS0

μ + γ + αð Þ μ + δð Þ

0
BBB@

1
CCCA:

ð40Þ

Thus, the spectral radius of the matrixFV −1and the
basic reproductive ratioR0are obtained [35].

R0 =
β δ + μ − lμð ÞS0
α + γ + μð Þ δ + μð Þ : ð41Þ

Putting S0 = λ/μ, we obtain,

R0 =
λβ δ + 1 − lð Þμð Þ

μ α + γ + μð Þ δ + μð Þ : ð42Þ

This expression of R0 represents the basic reproductive
ratio for the model (1).

Remark 5. The infectious equilibrium point with the expres-
sion of basic reproduction number R0

S∗, L∗, I∗, R∗ð Þ = λ

μR0
, lλ R0 − 1ð Þ

μ + δð ÞR0
, μ
β

R0 − 1ð Þ, γ
β

R0 − 1ð Þ
� 	

:

ð43Þ

6. Global Stability Analysis

6.1. Global Stability at Infectious Extinction Equilibrium. For
disease extinction equilibrium E0 = ðS0, L0, I0, R0Þ = ðλ/μ, 0,
0, 0Þ, we assume the following Lyapunov function:

U tð Þ = S0
S tð Þ
S0

− 1 − ln S tð Þ
S0

� �
 �
+ δ

1 − lð Þμ + δ
L tð Þ + μ + δ

1 − lð Þμ + δ
I tð Þ:

ð44Þ

By differentiation, we get

dU
dt

= 1 − S0

S

� �
S′ + δ

1 − lð Þμ + δ
L′ + μ + δ

1 − lð Þμ + δ
I ′: ð45Þ

Substituting the values of S′, L′, and I ′ in the above
equation, we have

dU
dt

= 1 − S0

S

� �
λ − βSI − μS½ � + δ

1 − lð Þμ + δ
lβSI − μ + δð ÞL½ �

+ μ + δ

1 − lð Þμ + δ
1 − lð ÞβSI + δL − μ + γ + αð ÞI½ � = λ − μSð Þ 1 − S0

S

� �

+ βS0I −
μ + δð Þ μ + γ + αð Þ
μ 1 − lð Þ + δ

I:

ð46Þ

After substituting the value of S0 = λ/μ, we are left with

dU
dt

= −
λ − μSð Þ2
μS

+ μ + δð Þ μ + γ + αð Þ
μ 1 − lð Þ + δ

R0 − 1ð Þ: ð47Þ

At the disease extinction equilibrium E0, the basic repro-
ductive ratio R0 ≤ 1, and for all positive values of S, L, I, and
R, it is clear that dU/dt ≤ 0. Hence, using LaSalle’s Invari-
ance Principle [36], it is concluded that the model (1) is
globally asymptotically stable.

Lemma 6. The infectious extinction equilibrium ðE0Þ of the
model (1) is globally asymptotically stable when R0 ≤ 1, and
the disease is naturally dispelled from the populations.

6.2. Global Stability at Infectious Persistence Equilibrium.
Since none of the state variables are zero at the infectious
persistence equilibrium E∗ = ðS∗, L∗, I∗, R∗Þ, thus a Lyapu-
nov function is assumed as

U tð Þ = S − S∗ − S∗ ln S
S∗

� �� �
+ B1 L − L∗ − L∗ ln L

L∗

� �� �

+ B2 I − I∗ − I∗ ln I
I∗

� �� �
+ B3 R − R∗ − R∗ ln R

R∗

� �� �
,

ð48Þ

where B1, B2, and B3 are all nonnegative constants to be
obtained. This kind of Lyapunov function has been studied
in [37–40].

The infectious persistence equilibrium E∗ = ðS∗, L∗, I∗,
R∗Þ satisfies the following equations:

λ = βS∗I∗ + μS∗, ð49Þ

μ + δð ÞL∗ = lβS∗I∗, ð50Þ

μ + γ + αð Þ = 1 − lð ÞβS∗I∗ + δL∗, ð51Þ

μR∗ = γI∗: ð52Þ
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Now, differentiate U with respect to time t,

U ′ = 1 − S∗

S

� �
S′ + B1 1 − L∗

L

� �
L′ + B2 1 − I∗

I

� �
I ′ + B3 1 − R∗

R

� �

� R′ = 1 − S∗

S

� �
βS∗I∗ + μS∗ − βSI − μS½ � + B1 1 − L∗

L

� �

� lβSI − B1 μ + δð ÞL + B1 μ + δð ÞL∗ + B2 1 − I∗

I

� �
1 − lð ÞβSI + δL½ � − B2 μ + γ + αð Þ

� I + B2 μ + γ + αð ÞI∗ + B3 1 − R∗

R

� �
γI − B3μR + B3μR

∗,

ð53Þ

which can be further simplified to

U ′ = −μ
S − S∗ð Þ2

S
+ βS∗I∗ 1 − S∗

S

� �
+ SI −β + B1lβ + B2 1 − lð Þβ½ �

+ I −B2 μ + γ + αð Þ + B3γ + βS∗½ � + L −B1 μ + δð Þ + B2δ½ � + R −B3μ½ �
− B1lβSI

L∗

L
+ B1lβS

∗I∗ − B2 1 − lð ÞβSI∗ − B2δL
I∗

I

+ B2 1 − lð ÞβS∗I∗ + B2δL
∗ − B3γI

R∗

R
+ B3γI

∗:

ð54Þ

For the positive constants B1, B2, and B3, the coefficients
of SI, I, L, and R must be zero, that is,

−β + B1lβ + B2 1 − lð Þβ = 0, ð55Þ

−B2 μ + γ + αð Þ + B3γ + βS∗ = 0, ð56Þ
−B1 μ + δð Þ + B2δ = 0, ð57Þ

−B3μ = 0: ð58Þ
By solving, the above equation (55) yields

B1 =
δ

μ + δ
B2,

B2 =
μ + δ

1 − lð Þμ + δ
,

B3 = 0:

ð59Þ

For advantage, we set up new variables x = S/S∗, y = L/
L∗, z = I/I∗, and u = R/R∗ to seek S, L, I, and R and setting
the expressions of B1, B2, and B3 in Equation (54), we have

U ′ = −μ
S − S∗ð Þ2

S
+ B2 1 − lð ÞβS∗I∗ 2 − 1

x
− x

� �
+ B1lβS

∗I∗ 2 − 1
x
−
xz
y

� �

+ B2δL
∗ 1 − y

z

� �
+ B3γI

∗ 1 − z
u

� �
:

ð60Þ

Multiplying by B1 to the 2nd equation of (49) and the 3rd
equation of (55) by L∗ yields

B1 μ + δð ÞL∗ = B1lβS
∗I∗,

B1 μ + δð ÞL∗ = B2δL
∗:

ð61Þ

Hence, it follows that

−B1lβS
∗I∗ + B2δL

∗ = 0: ð62Þ

Multiplying byF1ðXÞto the last equation, whereF1ðXÞis
considered as a general function that will be determined later
andX = ðx, y, z, uÞ, yields

−B1lβS
∗I∗F1 Xð Þ + B2δL

∗F1 Xð Þ = 0 ð63Þ

Multiplying the 4th equation of (49) by B3 and the 4th
equation of (55) by R∗ yields

B3μR
∗ = B3γI

∗,
B3μR

∗ = 0:
ð64Þ

Hence, it follows that

B3γI
∗ = 0: ð65Þ

Multiplying byF2ðXÞto the last equation, whereF2ðXÞis
considered as a general function that will be determined later
andX = ðx, y, z, uÞ, yields

B3γI
∗F2 Xð Þ = 0: ð66Þ

From (54) using (63) and (66) yields

U ′ = −μ
S − S∗ð Þ2

S
+ B2 1 − lð ÞβS∗I∗ 2 − 1

x
− x

� �

+ B1lβS
∗I∗ 2 − 1

x
−
xz
y

− F1 Xð Þ
� �

+ B2δL
∗ 1 − y

z
+ F1 Xð Þ

� �
+ B3γI

∗ 1 − z
u
+ F2 Xð Þ

� �
:

ð67Þ

Now, the functions F1ðXÞ and F2ðXÞ are taken so that
the coefficients of L∗ and I∗ are zero. For these cases, we get

F1 Xð Þ = y
z
− 1, ð68Þ

and

F2 Xð Þ = z
u
− 1: ð69Þ

Then, Equation (67) becomes

U ′ = −μ
S − S∗ð Þ2

S
+ B2 1 − lð ÞβS∗I∗ 2 − 1

x
− x

� �
+ B1lβS

∗I∗ 2 − 1
x
−
xz
y

−
y
z
+ 1

� �

= −μ
S − S∗ð Þ2

S
+ B2 1 − lð ÞβS∗I∗ 2 − x −

1
x

� �
+ B1lβS

∗I∗ 3 − 1
x
−
y
z
−
xz
y

� �
:

ð70Þ

By the arithmetic mean-geometric mean inequality, for
equality, if and only ifS = S∗andy = z = u, the last expression
must be less than or equal to zero. Thus, we have U ′ ≤ 0 with
equality if and only if S = S∗ and L/L∗ = I/I∗ = R/R∗. By
LaSalle’s Invariance Principle [36], for each solution, the
omega-limit set remains in an invariant set that is contained
in Ω = fðS, L, I, RÞ: S = S∗, L/L∗ = I/I∗ = R/R∗g. Since S must
be in S∗, S′ turns zero, which implies that I = I∗, L = L∗, and
R = R∗. Thus, there is only invariant set in Ω which is single-
ton fE1g. For each solution that intersects, ℝ4

+0fL = I = R
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= 0g limits to E1, which concludes that the disease persis-
tence equilibrium E∗ of (1) is globally asymptotically stable
in ℝ4

+0fL = I = R = 0g [24].

Lemma 7. The infectious persistence equilibrium ðE∗Þ of the
model (1) is globally asymptotically stable when R0 > 1, and
the disease persists in the populations for a long time.

7. Parameter Estimation

In this section, we obtain the value of the unknown param-
eters for the model (1). To estimate parameter values, we
have assumed the initial condition of the state variables as
ðS0, L0, I0, R0Þ = ð10000, 0, 1, 0Þ. There are seven parameters
in our model which are to be obtained. Among these param-
eters, natural mortality rateμis estimated as 0.002; the
recruitment of susceptible classλ = μS0 = 20; the rate which
leavesLðtÞforIðtÞ, i.e., incubation periodδ = 1/7; and the frac-
tion ofSðtÞwhich moves toLðtÞ;l = 0:95; and disease-induced
mortality rate is estimated asα = 0:0054. These are derived
from the data in the literature [30]. And the rest of the
parameters are disease transmission rate β and the recovered
rate γ which have to be fitted; therefore, θ = ðβ, γÞ. Consider
the initial value of the parameters to be ω0 = ðλ, μ, α, l, β, δ
, γÞ = ð20,0:002,0:0054,0:95,0:0000065, 1/7, 0:005Þ, and the
initial condition of the state variables is ðS0, L0, I0, R0Þ = ð
10000, 0, 1, 0Þ. Using the initial value of the parameters and
the initial conditions of the state variables, the value of the
unknown parameters is fitted to the model (1) with the help
of the nonlinear least square (NLS) method. Table 1 contains
the description and estimated or the best fitted values of the
parameters. Here, we have simulated the cumulative value of
the daily case data, which are illustrated in Figures 2 and 3
that also represent the population dynamic of the suscepti-
ble, latent, and infected population SðtÞ, LðtÞ, and IðtÞ,
respectively. From these figures, it is observed that the
infected population (I-class) increases significantly upon
the infection and arrives at the peak at the 36th day ðIð43Þ
= 3:126 × 103Þ; after that, it is decaying.

8. Numerical Results

To further investigate the behaviour of the model (1), we
conducted various numerical investigations applying the
estimations that are gained and given in Table 1. For this
intention, we consider two parameter sets resembling the
cases of stability of the infectious persistence equilibrium,
where R0 > 1, and disease extinction steady state, where
R0 < 1. The outcomes obtained for both equilibria with sta-
bility analysis are also numerically demonstrated using
MATLAB R2018a.

Using the parameter values from Table 1, the basic
reproductive ratio becomes R0 = 5:86 > 1 thereby signifying
the asymptotic stability of the infected steady state. For this
reason, different initial conditions of ðS0, L0, I0, R0Þ are cho-
sen as IC1 = ð10000, 0, 1, 0Þ, IC2 = ð8000, 0, 2, 0Þ, and IC3 =
ð12000, 0, 3, 0Þ.

Figure 4 illustrates the system dynamics of the suscepti-
ble, latent, and infected population for the three initial con-

ditions within two years, i.e., 730 days. In Figure 4(a), the
susceptible population decays very sharply and reaches the
nadir at 189, 283, and 134 for IC1, IC2, and IC3, respec-
tively. As time increases, they are again increasing together
and reaching a peak point of approximately 2782. Again, it
is decreasing and reaches another nadir at 1525. Further, it
is increasing and asymptotically stable at 1706 within two
years; i.e., susceptible population would be constant. In
Figure 4(b), the latent population increases sharply and
reaches the first peak points 3136, 2200, and 4161 for IC1,
IC2, and IC3, respectively; then, they are decreasing sharply
and reach a nadir at 5 together within 3.67 months and sta-
ble about three months. As time increases, they are again
increasing and reach the second peak at 305 within the next
3 months. Again, they are decaying and reach another nadir
at 51 within the next 3.67 months. Further, they increase and
reach the third peak point of 158 within the next 4 months.
They are decaying further and reach another nadir at 85
within the next 4 months. As time increases, they are
increasing further and asymptotically stable at 109 within 2
years. Moreover, in Figure 4(c), the infected population
increases very sharply and reaches the first peak points at
2383, 1739, and 3058 for the same initial conditions; then,
they are decaying as they are increased and reach a nadir
at 5 together within 4 months and stable about three
months. As time increases, they are again increasing and
reaches the second peak at 280 within the next 3.33 months.
Again, they are decaying and reach another nadir at 47
within the next 3.67 months. Further, they are increasing
and reach the third peak at 145 within the next 4 months.
They are decaying further and reach another nadir at 80
within the next 3.67 months. As time increases, they are
increasing further and asymptotically stable at 100 within 2
years.

Figure 5 illustrates the system’s phase portrait for differ-
ent initial conditions. It represents the relative change of the
susceptible SðtÞ, latent LðtÞ, and infected populations IðtÞ to
one another over time by a single trajectory. It also charac-
terises the stability of the system. For different initial condi-
tions, the trajectories are approaching a single point which
specifies the disease persistence equilibrium point E∗ = ð
1706,109,100,7814Þ when the basic reproduction number
R0 = 5:86 > 1. In this case, the trajectories approach the
long-term steady state, and the disease persists in the popu-
lations for t⟶∞.

For disease-extinction equilibrium, we assume the value
of infection transmission rate β different from Table 1 as β
= 0:000005. Therefore, the basic reproductive ratio is evalu-
ated as R0 = 0:302 < 1. For this case, the disease dynamics
are illustrated in Figure 6 for the same initial conditions.
The latent and infected populations are converged to 0
within 4 months that are illustrated in Figures 6(b) and
6(c), respectively, which indicates that the disease will be
extincted from the populations by itself within 120 days.
However, in Figure 6(a), in the susceptible population, only
positive values remain for the different initial conditions that
indicate the infection-free steady state. Moreover, Figure 7
illustrates the infection-free steady states and the interaction
between the populations by three trajectories for three
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different initial conditions. The trajectories are approaching
a single point defined as infection-free steady-state E0 = ð
10000, 0, 0, 0Þ and remain at this point for t⟶∞.

9. Conclusion

We have proposed a diphtheria epidemic model and found
two steady-state equilibrium points: one is disease extinction
equilibrium point E0 (37), and another is infectious persis-
tence equilibrium point E∗ (38). We have formulated the
basic reproductive number in terms of parameters. We have
also shown analytically that the infectious extinction equilib-
rium (37) is globally asymptotically stable when the basic
reproductive ratio R0 does not exceed unity; the infection
is dispelled by itself from the populations. The infectious
persistence equilibrium (38) is also globally asymptotically
stable when the basic reproductive ratio R0 is more than
unity; the disease persists in the populations at a certain
level. We have fitted the daily case data from November 8,
2017, to December 27, 2017, given in [30] to our model
and have evaluated the parameter’s value. Both equilibria
have been analyzed numerically and found a lot that
matches the real scenario. We have found the first peak at
38 days for IC1 that matches with the real data, and the sec-
ond and third peaks have been found at 310 days and 1.5
years, respectively, which also a lot matches with the real
scenario, like the highest infection found after one month,
given in [30, 41–44]. The enumerated infectious persistence
equilibrium E∗ is ð1706,109,100,7814Þ and infection-free
steady-state E0 is ð10000, 0, 0, 0Þ. A statistical model was
used to calculate the numeric value of the basic reproductive
ratio R0 in [30] and deduced a range of estimates ranging
from 4.7 to 14.8 with a median estimate of 7.2. But in this
study, it has calculated R0 = 5:86 by involving a mathemat-
ical model, which indicates that the infection rate is very
high. This study suggests applying treatments to control
the diphtheria epidemic. Lastly, we hope that this study will
be focused on the assumption of control strategies by con-
stituents and policymakers.
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