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The accurate vestibule segmentation from CT images is essential to the quantitative analysis of the anatomical structure of the ear.
However, it is a challenging task due to the tiny size, blur boundary, and drastic variations in shape and size. In this paper, according
to the specific characteristics and segmentation requirements of the vestibule, a vestibule segmentation network with a hybrid deep
feature fusion of 2D CNN and 3D CNN is proposed. First, a 2D CNN is designed to extract the intraslice features through multiple
deep feature fusion strategies, including a convolutional feature fusion strategy for different receptive fields, a feature channel fusion
strategy based on channel attention mechanism, and an encoder-decoder feature fusion strategy. Next, a 3D DenseUNet is designed
to extract the interslice features. Finally, a hybrid feature fusion module is proposed to fuse the intraslice and interslice features to
effectively exploit the context information, thus achieving the accurate segmentation of the vestibule structure. At present, there is
no publicly available dataset for vestibule segmentation. Therefore, the proposed segmentation method is validated on two self-
established datasets, namely, VestibuleDataSet and IEBL-DataSet. It has been compared with several state-of-the-art methods on
the datasets, including the general DeeplabV3+ method and specific 3D DSD vestibule segmentation method. The experimental
results show that our proposed method can achieve superior segmentation accuracy.

1. Introduction

The vestibule is one of the important organs in the inner ear,
located between the cochlea and the semicircular canal. The
accurate segmentation of the vestibule is fundamental to the
quantitative analysis of the anatomical structure of the ear,
which is significant for the clinical diagnosis of ear diseases
[1, 2]. As shown in Figure 1, the vestibule is highlighted in
blue. It can be seen that it is relatively small. Although the
existing image semantic segmentation networks based on
deep learning, such as DeepLab series, have achieved high
segmentation accuracy, they cannot work well when applied
to the vestibule segmentation task, due to the following facts:
(i) the vestibule has a precise structure with very few voxels,
and the boundary between the cochlea and semicircular
canals is not clear, as shown in Figure 1; (ii) the sample data
is difficult to label because it is time-consuming and due to
labor cost.

Medical image has unique characteristics that are differ-
ent from natural image. To obtain good segmentation
performance, it is necessary to design a specific network
architecture according to the characteristics of medical
images and the requirements of the segmentation task. In
recent years, 3D CNN has gradually attracted researcher’s
attention in medical image segmentation tasks. Since most
of medical data such as CT and MRI images exist in the form
of 3D volume data, the use of 3D CNN can better mine the
inherent correlation of the data. Therefore, some researchers
applied 3D CNN in medical image segmentation tasks.
Besides, it was also exploited in other segmentation tasks
and achieved good performance, such as foreground
segmentation [3] and moving object segmentation [4].

At present, the segmentation methods are usually
designed for specific medical image segmentation tasks.
There are relatively few methods for vestibule segmentation.
In [5], to solve the segmentation problem of sophisticated
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and small organs of the ears, a novel 3D Deep Supervised
Dense Network (3D DSD) has been proposed. The authors
adopted a dense connection structure and proposed a 3D
multipooling feature fusion strategy to segment nine differ-
ent ear organs simultaneously, including the vestibule. How-
ever, it is hard to train the 3D DSD network, and the
segmentation performance is not too high. In our previous
research work, we proposed a 2D CNN for the vestibule seg-
mentation, which integrates multiple deep feature fusion
strategies [6]. Since the segmentation method based on 2D
CNN cannot make good use of the interslice correlations,
the segmentation performance is to be improved.

In this paper, we design a vestibule segmentation
network for CT images. The network extracts the intraslice
features with 2D CNN and interslice features with 3D
CNN, respectively. Then, the two kinds of features are fused
with a hybrid feature fusion module to realize the accurate
segmentation of the vestibule. The proposed segmentation
method is demonstrated on two self-established datasets,
namely, VestibuleDataSet and IEBL-DataSet. The experi-
mental results show that, compared with several state-of-
the-art segmentation methods, our proposed method can
achieve superior segmentation accuracy.

The rest of this paper is organized as follows. Section 2
provides a detailed presentation of the proposed vestibule
segmentation network, and Section 3 describes the experi-
mental results and analysis in detail. The conclusions are
drawn in Section 4.

2. Proposed Vestibule Segmentation Network

A proposed vestibule segmentation network is shown in
Figure 2, in which a 2D CNN is designed to extract the intra-
slice features, and a 3D DenseUNet to extract the interslice
features. And then, the two kinds of features are fused
through a hybrid feature fusion module. The whole network
framework can be divided into three key components, 2D
CNN, 3D DenseUNet, and hybrid feature fusion module,
which will be introduced in detail.

2.1. 2D CNN with Multiple Deep Feature Fusion Strategies.
In our previous research work [6], we designed a 2D CNN
vestibule segmentation network with multiple deep feature
fusion strategies. The network adopts the basic framework
of encoder-decoder [7–9], as shown in Figure 3. Three fea-
ture fusion strategies are integrated to realize the accurate

vestibule segmentation, namely, (i) a convolution feature
fusion strategy for different receptive fields, (ii) a feature
channel fusion strategy based on channel attention mecha-
nism, and (iii) an encoder-decoder feature fusion strategy.

In this paper, this method is improved to extract the
intraslice features. As shown in Figure 3, the main improve-
ments are as follows: (1) To extract the deep features better,
we use five layers of block in the encoder and decoder,
respectively. (2) Downblock is elaborately designed, which
is composed of convolution layer, SEblock layer, batch norm
layer, and ReLU layer. Max pooling is used in Downblock1
and average pooling in Downblock2~Downblock4, respec-
tively. (3) SEblock is removed from the decoder. And
cascading operation is used for the connection between the
encoder and decoder. Experimental results demonstrate that
the above improvements can effectively improve the
segmentation performance of 2D CNN.

2.2. 3D DenseUNet Structure. To deal with the dramatic
changes among different slices of the vestibule, in this paper,
DenseNet-BC and U-Net are integrated together to obtain a
3D DenseUNet network, which is used to extract the inter-
slice features. DenseNet adopts a feed-forward way to con-
nect the layers. For each layer, all the feature maps of the
previous layer are used as input. This connection manner
can strengthen the transfer of features, and the information
of different scales can be fully utilized. In addition, it also
has fewer parameters, making the network easier to train.
The network structure using the bottleneck layer and the
transition layer is named as DenseNet-BC.

In the encoder part, the DenseNet architecture is
adopted. Due to the high memory consumption of 3D con-
volution and the limitation of GPU memory, we reduce the
number of convolution layers of each dense block to be half
of the original DenseNet-121 and set the growth rate K as
32. The feature size of the input is 224 × 224 × 8, and the fea-
ture size of the output after downsampling is 7 × 7 × 2. The
parameters of each layer of the decoder are shown in
Table 1. The UNet long-range connection links the encoder
and the decoder, and the feature size of the output after
upsampling is 224 × 224 × 8.

2.3. Hybrid Feature Fusion Module. In order to fuse the fea-
tures extracted by 2D CNN and 3D DenseUNet, a hybrid
feature fusion (HFF) module is designed in this paper.
HFF is composed of convolution layer, dropout layer, BN
layer, and ReLU layer, as shown in Figure 4.

The output feature of 2D CNN is represented by the out-
put of upblock 5; the feature size is 224 × 224. The output
features of 3D DenseUNet are represented by the output of
upsampling layer 5, and the feature size is 224 × 224 × 8.
Before fusion, it is necessary to ensure that the size of the
feature maps is the same. The function ƒ represents the
conversion of a 3D volume to two adjacent 2D slices, and
the function ƒ−1 represents the inverse conversion of two
adjacent 2D slices to a 3D volume. The specific conversion
process is shown in Figure 2. Firstly, the output feature 8
× 224 × 224 × 64 of the 2D CNN is converted into a volume
form of 224 × 224 × 8 × 64 through ƒ−1. 3D DenseUNet

Figure 1: An example of the vestibule structure from CT image.
The vestibule is highlighted in blue.
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takes the original 3D images and the images segmented by
the 2D network as input by concatenating it, which can
reduce the optimization burden of the 3D network and
avoid learning useless features. Then, the 2D CNN features
and 3D DenseUNet features are cascaded to obtain 224 ×
224 × 8 × 64 features and sent to HFF. The output of the
HFF module is 224 × 224 × 8 × 2.

2.4. Loss Function. The cross-entropy loss function compares
the predicted value with the ground truth pixel by pixel. This
function has the same weights for each category, so it is very
vulnerable to the category imbalance. We use the weighted
cross-entropy loss function to train the network model,
which assigns a weight factor for each category, as shown in
Equation (1), to solve the problem of category imbalance.

LWeighted Cross‐Entropy y, y predð Þ = −
1
n
〠
n

i=1
〠
2

c=1
wc

i y
c
i log y predci ,

ð1Þ

where y is ground truth, y pred is the predicted value, c is the
number of categories, wi is the weight factor of i-th category,
and n is the total number of data samples.

3. Experimental Results and Analysis

3.1. Datasets and Evaluation Metrics. Since there is currently
no publicly available dataset for ear segmentation, we estab-
lished a vestibule segmentation dataset, namely, Vestibule-
DataSet, and an inner ear bone labyrinth segmentation
dataset, namely, IEBL-DataSet. All CT images were collected
from Beijing Friendship Hospital affiliated with Capital
Medical University. According to actual application require-

ments, we invited radiologists with rich clinical experience to
label the data in three dimensions. The collected CT images
were all scanned with a Phillips 64-slice spiral CT scanner on
the CT cross-section of the temporal bone. The specific
scanning parameters are as follows: tube current is
300mAs, tube voltage is 120/140 kV, FOV is 14 cm × 14 cm
~ 18 cm × 18 cm, the layer thickness is 0.625mm/0.67mm,
the resolution is 512 × 512, the pitch is 0.32mm, window
width is 4000HU, and window level is 700HU. Vestibule-
DataSet is divided into three parts: training set (82 samples),
validation set (10 samples), and test set (10 samples).

All of the data samples in IEBL-DataSet were collected
using ultrahigh resolution CT scanner, which was developed
elaborately for scanning the ears. Each case of the UHRCT
dataset contains image data from the top of the rock cone
to the stylomastoid on both sides. Among them, the single-
sided data axis plane contains 370 images. The scanning
parameters are as follows: receptive field of 65mm × 65
mm, axial resolution of 650 × 650, tube voltage of 100 kV,
tube current of 3.5mA, and pixel spacing, layer thickness,
and layer spacing are all 0.1mm. IEBL-DataSet contains 68
samples. They are divided into three parts: training set (47
samples), validation set (7 samples), and test set (14 samples).

In order to comprehensively evaluate the segmentation
performance, we use three commonly used evaluation
metrics, namely, Dice similarity coefficient (DSC), average
symmetric surface distance (ASD) [10], and average Haus-
dorff distance (AVD) [11].

3.2. Parameter Setting. The method proposed in this paper
was implemented and tested on the Keras platform with
two Nvidia Geforce GTX 1080Ti 11GB GPUs. In the train-
ing phase, the SGD [12] optimizer was used. The initial
learning rate, weight decay factor, and momentum were set
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Figure 2: The framework of the proposed vestibule segmentation network.
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as 0.008, 0.00005, and 0.9, respectively. Small-scale scaling
operations and random flip operations with a threshold
range of 0.8 to 1.2 were used to expand the number of the
data samples, which can effectively avoid overfitting in the
training process. It took about 24 hours and 72 hours to
train the 2D CNN and 3D DenseUNet models, respectively.

3.3. Comparisons with the State-of-the-Art Segmentation
Methods on VestibuleDataSet. To verify the effectiveness of
the segmentation method proposed in this paper, we com-
pared it with several state-of-the-art segmentation methods,

including DeeplabV3 + [13], 2D CNN based on multiple
deep feature fusion strategies [6], and 3D DSD [5]. Dee-
plabV3+ is the most representative semantic segmentation
method for natural images with better segmentation perfor-
mance. 2D CNN based on multiple deep feature fusion strat-
egies is a network dedicated to the vestibule segmentation
proposed in our previous research work. 3D-DSD is a net-
work dedicated to temporal bone segmentation, including
vestibule segmentation. All network models were trained
on VestibuleDataSet. The experimental results are shown
in Table 2.
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Figure 3: The framework of 2D CNN.
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It can be seen from Table 2 that, compared with the 2D
CNN and 3D DSD segmentation methods, the mean DSC of
the proposed method increases by 2.38% and 3.89%, respec-
tively, reaching 87.00%. Compared with the 3D DSD
segmentation method, although our proposed method has

a larger mean ASD value, the mean AVD value is smaller,
and the mean DSC value is much higher. It demonstrates
that our proposed method can achieve better segmentation
performance. In addition, all the segmentation performances
of 2D CNN, 3D DSD, and our proposed segmentation
method are better than that of the DeeplabV3+ segmenta-
tion method. It means that the specific network designed
according to the characteristics of the vestibule can achieve
better segmentation performance than the general network.

Figure 5 shows 4 the visualized segmentation results
using our proposed method on the test set. The result is a
subjective visualization of the axis position. To show the
results more clearly, we expanded the segmentation results
by 3 times. The green area represents the ground truth, the
red area represents the segmentation results, and the yellow

Table 1: Parameter setting of each module of 3D DenseUNet.

Block Feature size Convolution layer

Input 224 × 224 × 8 —

Convolution 1 112 × 112 × 4 7 × 7 × 7 × 96 conv

Pooling 56 × 56 × 2 3 × 3 × 3 max pooling

Dense block 1 56 × 56 × 2 1 × 1 × 1 × 128 convð Þ × 3
3 × 3 × 3 × 32 convð Þ × 3

Transition layer 1 28 × 28 × 2 1 × 1 × 1 conv
2 × 2 × 1 average pooling

Dense block 2 28 × 28 × 2 1 × 1 × 1 × 128 convð Þ × 4
3 × 3 × 3 × 32 convð Þ × 4

Transition layer 2 14 × 14 × 2 1 × 1 × 1 conv
2 × 2 × 1 average pooling

Dense block 3 14 × 14 × 2 (1 × 1 × 1 × 128 convÞ× 12
3 × 3 × 3 × 32 convð Þ × 12

Transition layer 3 7 × 7 × 2 1 × 1 × 1 conv
2 × 2 × 1 average pooling

Dense block 4 7 × 7 × 2 1 × 1 × 1 × 128 convð Þ × 8
3 × 3 × 3 × 32 convð Þ × 8

Upsampling layer 1 7 × 7 × 2 2 × 2 × 1 × 504 upconv

Sum with dense block 3 14 × 14 × 2 —

Upsampling layer 2 14 × 14 × 2 2 × 2 × 1 × 224 upconv

Sum with dense block 2 28 × 28 × 2 —

Upsampling layer 3 28 × 28 × 2 2 × 2 × 1 × 192 upconv

Sum with dense block 1 56 × 56 × 2 —

Upsampling layer 4 56 × 56 × 2 2 × 2 × 2 × 96 upconv

Sum with convolution 1 112 × 112 × 4 —

Upsampling layer 5 224 × 224 × 8 2 × 2 × 2 × 64 upconv

Output 224 × 224 × 8 1 × 1 × 1 × 3 conv
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Figure 4: The framework of HFF.

Table 2: Comparison results of segmentation performance by
using our proposed method and other methods.

Method DSC (%) ASD (mm) AVD (mm)

DeeplabV3+ [13] 76.36 0.38 6.95

2D CNN [6] 84.62 0.23 0.64

3D DSD [5] 83.11 0.19 0.27

Ours 87.00 0.21 0.24
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area represents the overlap areas between the ground truth
and the prediction results. The larger the overlap areas, the
better the segmentation results. It can be seen from
Figure 5 that our proposed method can segment the vesti-
bule well. On the whole, oversegmentation is more serious
than undersegmentation. This is because the vestibule struc-
ture is tiny, the boundary is not clear, and oversegmentation
often occurs.

Figure 6 shows the comparison of the segmentation
results using DeeplabV3+, 2D CNN based on multiple deep
feature fusion strategies, 3D DSD, and our proposed
method. It can be seen from Figure 6 that DeeplabV3+ and
3D DSD have serious undersegmentation problems. The
2D CNN based on multiple deep feature fusion strategies
and our proposed method can segment the vestibule accu-
rately. In general, the segmentation results of our proposed
method are much closer to the ground truth, which illus-
trates its superiority over the existing segmentation methods.

3.4. Comparisons with the State-of-the-Art Segmentation
Methods on IEBL-DataSet. To demonstrate the effectiveness
of the proposed method, we further conducted comparison
experiments on another self-established dataset for inner
ear bone labyrinth segmentation, namely, IEBL-DataSet.
The comparison methods include DeeplabV3+ [13], 3D

DSD [5], and 2D CNN [6]. The comparison results using
different segmentation methods are shown in Table 3.

It can be seen that our proposed method can obtain the
highest accuracy, reaching 88.93 of DSC, 1.69%, 0.98%, and
1.56% higher than those of DeeplabV3+, 3D DSD, and 2D
CNN, respectively. ASD are up to 0.41, 0.25, and 0.33 lower
than those of DeeplabV3+ and 2D CNN, respectively.

Figure 7 shows the visualized segmentation results by
using different methods. The yellow area shown in
Figure 7(a) is the ground truth. Green and pink areas repre-
sent the undersegmented and oversegmented parts, respec-
tively. It can be seen that other segmentation methods are
easily affected by the surrounding pixels, resulting in over-
segmentation or undersegmentation. Our segmentation
method can obtain more accurate segmentation results. All

(a) Example 1 of segmentation result (b) Example 2 of segmentation result

(c) Example 3 of segmentation result (d) Example 4 of segmentation result

Figure 5: Example of segmentation results by using our proposed method.

Ground truth DeeplabV3+ 3D DSD 2D CNN Ours
(a) (b) (c) (d) (e)

Figure 6: Comparison of segmentation results of several methods.

Table 3: Comparison results using different segmentation methods
on the IEBL-DataSet.

Method DSC (%) ASD (mm)

DeeplabV3+ [13] 87.46 0.66

3D DSD [5] 88.17 0.39

2D CNN [6] 87.59 0.74

Ours 89.15 0.41
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the above results show that our method has good robustness
and generalization capability.

3.5. The Parameter Scale of the Proposed Method. Table 4
shows the parameter scale of our proposed method and
comparison methods. It can be seen that the parameter scale
of the proposed method is much higher than those of the
comparison methods, since it fuses the deep features of 2D
CNN and 3D CNN. And the average inference time for a
224 × 224 image is about 0.02 second with the aid of GPU
accelerator. It means that our proposed method can improve
the segmentation accuracy, but at the cost of the computa-
tional complexity of the model. In our future work, it is also
necessary to reduce the consumption of computing
resources while maintaining the segmentation accuracy.

3.6. Ablation Studies. The network architecture proposed in
this paper consists of three key components, i.e., 2D CNN,
3D DenseUNet, and hybrid feature fusion module. To eval-
uate the effect of different modules on the overall segmenta-
tion performance, we conducted ablation studies. Table 5
shows the segmentation results obtained by using different
modules, in which A indicates that only 2D CNN is used,
A+B indicates 2D CNN is fused with the original 3D volume
and then sent to 3D DenseUNet for training, and A+B+C
indicates the proposed method.

It can be seen from Table 5 that (1) compared with the
original 2D CNN with multiple deep feature fusion strate-
gies, the improved 2D CNN increase the segmentation
accuracy by 1.08%. It demonstrates the effectiveness of the
improved 2D CNN method. (2) Each module leads to a
significant improvement in segmentation performance,
and when the three modules are used together, the highest
segmentation performance can be obtained. The reason is

(a) Ground truth (b) Ours

(c) 2D CNN (d) DeeplabV3+

(e) 3D DSD

Figure 7: The visualization comparison results of IEBL-DataSet. (a) The ground truth. (b) The segmented results of our proposed method.
(c–e) The segmentation results obtained by using the three comparison methods, respectively.

Table 4: Parameter scale of different methods.

Method Parameter scale

UNet [14] 7.77MB

DeeplabV3+ [13] 41MB

3D DSD [5] 9.86MB

Ours 95.4MB

Table 5: Effect of different modules on segmentation performance.

Method DSC (%) ASD (mm) AVD (mm)

A 85.70 0.24 1.80

A+B 86.65 0.22 0.25

A+B+C 87.00 0.21 0.24
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that 2D CNN can extract the intraslice features, and 3D
CNN can extract the interslice features, and the hybrid
feature fusion module can help to make full use of the
intra- and interslice features, thus achieving better
segmentation performance.

4. Conclusions

According to the specific structural characteristics and
segmentation requirements of the vestibule, we design a
network architecture through hybrid deep feature fusion of
2D CNN and 3D CNN. First, a 2D CNN based on multiple
deep feature fusion strategies is used to extract the intraslice
features and 3D DenseUNet to extract the interslice features.
Then, a hybrid feature fusion module is designed to fuse the
two kinds of features. Experimental results show that our
proposed segmentation network can achieve a higher
segmentation accuracy and good generalization ability. In
future work, we will design an efficient CNN network to
further improve the segmentation accuracy with lower
computational complexity.
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