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Background. Alzheimer’s disease (AD) is a neurodegenerative disorder and the major cause of senile dementia. The Reelin
pathway has been involved in both learning and AD pathogenesis. However, the specific Reelin-related gene signature during
the pathological process remains unknown. Methods. Reelin-related gene (CDK5R1) expression was analyzed using the GEO
datasets. The relevant genes of CDK5R1 were identified using differential expression analysis and weighted gene correlation
network analysis (WGCNA) based on the GSE43850 dataset. ConsensusClusterPlus analysis was applied to identify subtypes
(C1 and C2) of AD. The CIBERSORT algorithm was used to assess the immune cell infiltration between the two AD subtypes.
Results. CDK5R1 was downregulated in AD. 244 differentially expressed CDK5R1-related genes (DECRGs) between the two
subgroups were mainly enriched in GABAergic synapse, neuroactive ligand-receptor interaction, synapse organization,
neurotransmitter transport, etc. Furthermore, the GSVA results indicated that immune-related pathways were significantly
enriched in the C1 subgroup. Interestingly, 10 Reelin pathway-related genes (CRK, DAB2IP, LRP8, RELN, STAT5A, CDK5,
CDK5R1, DAB1, FYN, and SH3KBP1) were abnormally expressed between the two subgroups. The proportion of T cell
gamma delta, monocytes, macrophage M2, and dendritic cells activated decreased from C1 to C2, while the proportion of
plasma cells, T cell follicular helper, and NK cells activated increased. Conclusion. Two CDK5R1-related subtypes of AD were
identified, helping us to better understand the role of CDK5R1 in the pathological process of AD.

1. Introduction

Alzheimer’s disease (AD) is a common form of neurodegen-
erative dementia with a progressive deficit of cognitive func-
tions, such as social disorders, behavioral abnormalities,
cognitive dysfunction, and memory loss [1, 2]. The inci-
dence of AD is positively correlated with age, with about
20% of AD patients over 65 years of age [3]. According to
statistics, nearly half a million new cases of AD are recorded
each year, and AD is the fifth leading cause of death for peo-
ple 65 and older [4, 5]. However, due to the complex patho-
logical mechanism of AD, most treatment strategies cannot
successfully prevent or cure AD. Therefore, the identifica-

tion of molecular markers to understand the etiology and
pathogenesis of AD is of great significance for the early diag-
nosis, prevention, and treatment of AD.

Various hypotheses have been proposed regarding the
pathological mechanism of AD. Based on previous studies,
the abnormal hyperphosphorylation of tau protein, neuroin-
flammation, mitochondrial cascade, oxidative stress, and
deposition of amyloid β-protein are the primary pathogene-
ses of AD [1, 6, 7]. The Reelin signaling pathway was
involved in the pathogenesis of human brain diseases, includ-
ing epilepsy, AD, mental retardation, depression, bipolar
disorder, schizophrenia, autism, and lissencephaly [8]. The
changes in Reelin signaling or processing were associated
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with AD-related neuronal dysfunction [9]. Cyclin-dependent
kinase 5 regulatory subunit 1 (CDK5R1) is one of the key
genes in the Reelin pathway, whose activity plays an impor-
tant role in neuronal differentiation and migration during
neurodevelopment and is involved in neurodegenerative dis-
eases [10, 11]. Suppression of CDK5R1 activity improved
diabetes-related cognitive deficits [12]. The polymorphisms
and mutations in CDK5R1 and CDK5 contributed to the
onset of intellectual disability [13]. The miR-15/107 family
plays an important role in the pathogenesis of AD through
the upregulation of CDK5R1/p35 levels [14]. It has been
reported that CDK5R1 is an important regulator participat-
ing in the aberrant hyperphosphorylation of tau in AD
[15]. These studies implied that CDK5R1 has a vital role in
AD. However, the CDK5R1 expression differences that
existed in AD patients have not been investigated.

The rapid development of bioinformatics technology
provides a powerful technical mean for exploring new ther-
apeutic targets and complex disease mechanisms [16–20]. In
the present study, we aimed to identify CDK5R1-related
gene signatures and CDK5R1-related AD subtypes that are
implicated in AD pathogenesis via integrated bioinformatics
analysis. The flowchart of the present study is shown in

Figure 1. Our research will provide a novel perspective for
further understanding the CDK5R1 implicated in AD
development.

2. Methods

We acquired the AD transcriptome data sets (GSE48350,
GSE1297, and GSE33000) from Gene Expression Omnibus
(GEO) database. The GSE48350 dataset contains 173 normal
samples and 80 AD samples, with the platform GPL570. The
GSE1297 dataset includes 9 normal samples and 7 severe
AD samples, with the platform GPL96. The GSE33000 data-
set contains 157 normal samples and 310 AD samples, with
the platform GPL4372. Detailed information on these data-
sets is shown in Table 1. We downloaded the raw data of
these datasets using the “GEOquery” package. And the
“justRMA” function from the “affy” package was used for
the normalization of these gene expression profiles. Reelin
pathway-associated genes were obtained from the MSigDB
database.

2.1. Identification of CDK5R1-Related Differentially
Expressed Genes (DEGs). 80 AD samples from the

GSE48350 dataset
Validation of CDK5R1 expression using
GSE1297 and GSE33000 datasets

CDK5R1 high-and low-groups

WGCNA

Consensus cluster plus analysis: C1 and
C2 subgroups

Comprehensive analysis of the two groups:
Functional analysis, GSVA, ROC, and
immune cell infltration

DEGs

Figure 1: The flowchart of this study.

Table 1: Basic information of the microarray datasets.

GEO ID Platform ID Normal group AD group Source Application

GSE48350 GPL570 173 80 Brain tissue Analysis

GSE1297 GPL96 9 7 Hippocampal CA1 tissue Verification

GSE33000 GPL4372 157 310 Prefrontal cortex brain tissue Verification
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GSE48350 dataset were divided into low- and high-CDK5R1
subgroups based on the median expression of CDK5R1.
Then, we used the limma R package of R to identify DEGs
between the two subgroups by setting adjusted p < 0:05
and jlogFCj ≥ 1 [21]. The heat map and volcano plots of
these DEGs were visualized using “pheatmap” and “limma”
packages of R [22, 23].

2.2. Weighted Gene Correlation Network Analysis
(WGCNA). The “WGCNA” package of R was used to per-
form WGCNA based on the gene expression profiles of the
GSE48350 dataset (80 AD samples) [24]. The “pickSoft-
Threshold” function of the WGCNA package was applied
to calculate the soft threshold. A topological overlap matrix
(TOM) was constructed by transforming the adjacency
matrix. We used the dynamic tree cut to identify the coex-
pressed gene modules in the low- and high-CDK5R1
subgroups. The important modules with the highest correla-
tion genes were selected for further analysis. Mode member-
ship ðMMÞ > 0:8 and gene significance ðGSÞ > 0:5 were

considered the threshold to identify hub genes in the key
modules [25].

2.3. Consensus Clustering of Subtypes Based on CDK5R1-
Related Genes in AD Patients. We used the “ConsensusClus-
terPlus” R package to investigate the expression pattern of
the CDK5R1-related DEGs in AD patients. We performed
consensus clustering using the k-means algorithm with
repeat 100 times of 80% of the total samples.

2.4. Identification and Analysis of Differentially Expressed
CDK5R1-Related Genes (DECRGs) in the Two Subtypes.
The limma R package was used to identify DECRGs between
the C1 and C2 subgroups by setting adjusted p < 0:05 and
jlogFCj ≥ 1:5. The heat map and volcano plots of these
DECRGs were visualized using “pheatmap” and “limma”
packages of R. The Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analyses were
carried out using the “clusterProfiler” package to investi-
gate the potential pathways of DECRGs. p < 0:05 was
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Figure 2: The heat map of Reelin pathway-related genes in the GSE48350 dataset. Red indicates upregulation, while light blue indicates
downregulation.

3Computational and Mathematical Methods in Medicine



GSE48350

6

4

CD
K5

R1
 ex

pr
es

sio
n

2

0

–2

–4
AD Normal

⁎⁎

(a)

GSE1297

11.5

CD
K5

R1
 ex

pr
es

sio
n

11.0

10.5

10.0
AD Normal

⁎

(b)

0.4

CD
K5

R1
 ex

pr
es

sio
n 0.2

0.0

–0.2

–0.4

AD Normal

GSE33000
⁎⁎⁎

(c)

1.0

CD
K5

R1
 ex

pr
es

sio
n

0.5

0.0

–1.0

–1.5

AD Normal

–0.5

Entorhinal cortex
⁎⁎

(d)

1.0

CD
K5

R1
 ex

pr
es

sio
n

0.5

0.0

–1.0

–1.5

AD Normal

–2.0

–0.5

Hippocampus
⁎⁎

(e)

6

CD
K5

R1
 ex

pr
es

sio
n 4

2

–2
AD Normal

0

Postcentral gyrus
ns

(f)

Figure 3: Continued.
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considered statistically significant. Besides, we also used
the “GSVA” R package to perform the gene set variation
analysis (GSVA) for the investigation of signaling pathway
change between the C1 and C2 subgroups.

2.5. Immune Analyses. To analyze the immune cell infiltra-
tion levels between the two subgroups, we used the Cell-
type Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT) algorithm to assess the immune
infiltration. ComplexHeatmap package of R was applied to
visualize the infiltration level of immune cells. The immune
cell infiltration levels between the C1 and C2 subgroups were
visualized via drawing boxplots using the “ggplot2” package
of R.

2.6. Statistical Analysis. The R software (v4.0.3) was used to
perform the data statistical analysis. The differences between
the two groups were analyzed using the Wilcoxon rank sum
test. Statistical significance was set at p < 0:05.

3. Results

3.1. Expression of CDK5R1 in AD. Firstly, we analyzed 13
Reelin pathway-related genes in GSE48350. The expression
of CDK5R1 in AD samples was lower than that of normal
samples (Figures 2 and 3(a)). We also analyzed the CDK5R1
expression levels in GSE1297 and GSE33000 datasets
(Figures 3(b) and 3(c)), and the results showed that
CDK5R1 was significantly downregulated in AD patients.
Furthermore, we further analyzed the CDK5R1 expression
levels in different brain regions in the GSE48350 dataset,
due to the heterogeneity of brain tissue. As shown in
Figures 3(d)–3(g), we found that CDK5R1 expression was
downregulated in the entorhinal cortex, hippocampus, and
superior frontal gyrus in AD samples compared to normal
samples. However, there was no significant difference in
CDK5R1 level in the postcentral gyrus (Figure 3(f)). These
findings showed that CDK5R1 was abnormally expressed

in AD patients, implying that CDK5R1 may play an impor-
tant role in AD pathogenesis.

3.2. Identification of DEGs. The AD samples of the GSE48350
dataset were divided into CDK5R1 low- and high-expression
groups based on the median level of CDK5R1. The PCA
result indicated that there were some differences between
the CDK5R1 low-expression and CDK5R1 high-expression
groups (Figure 4(a)). A total of 441 DEGs were significantly
expressed between the two groups (Figure 4(b)). Among
them, 334 DEGs were downregulated and 107 DEGs were
upregulated in the CDK5R1 low-expression group com-
pared with those in the CDK5R1 high-expression group
(Figure 4(c)).

3.3. Identification of Key Modules Associated with CDK5R1
in AD. We performed WGCNA to identify the key modules
related to CDK5R1 in AD. After merging similar modules,
we identified a total of 30 modules in the two subgroups
(Figures 5(a) and 5(b)). We drew a heat map to present
the correlated modules (Figure 5(c)), and the results showed
that the antiquewhite4 module exhibited the strongest posi-
tive correlation with CDK5R1 (p = 1:3e − 12, r = 0:69),
whereas the darkseagreen4 module exhibited the strongest
negative correlation with CDK5R1 (p = 6:8e − 10, r = −0:62).
Therefore, the two modules were selected for the following
analysis by setting the thresholds of MM> 0:8 and GS > 0:5
(Figures 5(d) and 5(e)).

3.4. Identification of CDK5R1 Subgroups Using Consensus
Clustering. A total of 207 intersection genes between the
DEGs and antiquewhite4 module were obtained, and 59
intersection genes between the DEGs and darkseagreen4
module were obtained. Then, a total of 266 common genes
were used to carry out consensus clustering (Figure 6(a)).
The 80 AD samples of GSE48350 were clustered into two
CDK5R1-related subtypes based on these 266 common
genes. Based on the CDF curves (Figure 6(b)) and delta area
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Figure 3: The CDK5R1 expression in the GEO database. Analysis of CDK5R1 expression levels between the AD and normal groups based
on GSE48350 (a), GSE1297 (b), and GSE33000 (c) datasets. CDK5R1 expression in the entorhinal cortex (d), hippocampus (e), postcentral
gyrus (f), and superior frontal gyrus (g) in the GSE48350 dataset.
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Figure 4: Identification of DEGs. (a) PCA of the high- and low-CDK5R1 expression groups after standardization. (b) The volcano plot
presented the DEGs in the high- and low-CDK5R1 expression groups. The blue dots indicate downregulated genes; the red dots indicate
upregulated genes. (c) Heat map presented the DEGs in the high- and low-CDK5R1 expression groups. Red indicates upregulation, while
light green indicates downregulation.
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Figure 5: Construction of coexpression modules related to CDK5R1 in AD. (a) Clustering dendrogram of 80 AD samples. (b) In the cluster
dendrogram of genes in the GSE48350 dataset, all genes were clustered in 30 modules. (c) Module-trait relationship of two traits and 30
modules. The scatter plot presented the correlation between gene significance and module membership in the antiquewhite4 module (d)
and darkseagreen4 module (e).
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map (Figure 6(c)), we selected the optimal division (k = 2) as
the optimal number of clusters. Therefore, the 80 AD sam-
ples were divided into C1 (n = 39) and C2 (n = 41) sub-
groups (Figure 6(d)).

3.5. Identification and Analysis of DECRGs in the C1 and C2
Subtypes. The PCA result indicated significant differences
between the C1 and C2 subgroups (Figure 7(a)). A total of
244 DECRGs were significantly expressed between the two
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Figure 6: Construction of CDK5R1-related gene clusters. (a) The common genes between DEGs and key modules. (b) The cumulative
distribution function (CDF) curve for k = 2‐10. (c) Delta area map. (d) The matrix heat map indicates the consensus matrix at k = 2 in
the GSE48350 dataset.
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Figure 7: Continued.
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groups (Figure 7(b)). Among them, 79 DECRGs were down-
regulated and 165 DECRGs were upregulated in the C2
group compared with those in the C1 group (Figure 7(c)).

We performed the functional enrichment analyses of
244 DECRGs. As shown in Figure 7(d) and Table 2, the
primary enrichment pathways for DECRGs were the syn-
apse organization, regulation of cation channel activity,
neurotransmitter transport, regulation of transmembrane
transporter activity, neuroactive ligand-receptor interaction,
and GABAergic synapse. Furthermore, we also performed
GSVA to explore the potential biological pathways enriched
in the C1 and C2 subgroups. Our findings indicated that
CDK5R1-related genes were mainly enriched in primary

immunodeficiency, B cell receptor signaling pathway, Toll-
like receptor signaling pathway, complement and coagula-
tion cascades, regulation of immune response, activation of
the innate immune response, lymphocyte costimulation,
WNT signaling pathway, regulation of JNK cascade, cell
cycle, T cell differentiation in the thymus, negative regulation
of exocytosis, and axon guidance (Figure 7(e)), and these
pathways were inhibited in the C2 subgroup.

3.6. Expression Levels and Diagnostic Value of Reelin
Pathway-Related Genes. We compared the expression levels
of Reelin pathway-related genes between the C1 and C2
subgroups. As shown in Figure 8(a), CRK, RELN, STAT5A,
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Figure 7: Identification of DECRGs. (a) PCA of the C1 and C2 subgroups after standardization. (b) Heat map presented the DECRGs in the
C1 and C2 subgroups. Red indicates upregulation, while light blue indicates downregulation. (c) The volcano plot presented the DECRGs in
the C1 and C2 subgroups. The blue dots indicate downregulated genes; the red dots indicate upregulated genes. (d) Functional enrichment
analysis of the DECRGs. The red dots indicate genes; the blue dots indicate enrichment pathways. (e) Heat map showed the activation state
of potential pathways in the C1 and C2 subgroups after processing using GSVA. Blue indicates inactivation, while red indicates activation.
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CDK5, CDK5R1, and SH3KBP1 were downregulated, whereas
DAB2IP, LRP8, DAB1, and FYN were upregulated in the
C2 group compared with those in the C1 group. Besides,
we also assessed the diagnostic values of these genes in
the two subgroups, and findings revealed that the diagnostic
AUC values of STAT5A, CDK5, CDK5R1, and FYN genes
were 0.911, 0.766, 0.844, and 0.826, respectively (Figures 8(b)
and 8(c)). Our results indicated that these genes had high
diagnostic ability for distinguishing AD subgroups.

3.7. Immune Characteristics of the CDK5R1-Related Subtypes
in AD. In this study, we used the CIBERSORT algorithm to
further assess the immune response of AD patients. As
shown in Figure 9(a), the heat map of 22 types of immune
cell infiltration levels in AD samples indicated that plasma
cells, T cell follicular helper, T cell gamma delta, NK cells
activated, monocytes, and macrophage M2 were signifi-
cantly different between the C1 and C2 subgroups. Besides,
the proportions of plasma cells, T cell follicular helper, and
NK cells were significantly lower in the C1 subgroup than
the C2 subgroup, whereas the proportions of monocytes,
macrophage M2, T cell gamma delta, and dendritic cells
activated were higher in the C1 subgroup than the C2 sub-
group (Figure 9(b)). Based on the results of correlation anal-
ysis, the CRK expression was positively correlated with B cell
memory, T cell CD4 memory resting, T cell CD4 memory
activated, T cell gamma delta, and monocytes whereas nega-
tively correlated with T cells CD8 and NK cells activated;
LRP8 was positively correlated with B cell memory, T cell
CD8, T cell follicular helper, and NK cells activated whereas
negatively correlated with B cell naïve, T cell CD4 memory
resting, monocytes, and macrophage M1; DAB2IP expres-
sion was positively correlated with T cell follicular helper
whereas negatively correlated with macrophage M1 and
dendritic cells activated; RELN was positively correlated
with monocytes, macrophage M2, and dendritic cells acti-
vated whereas negatively correlated with macrophage M0

and neutrophils; STAT5A was positively correlated with T
cell CD4 memory resting, T cell gamma delta, monocytes,
macrophage M1, macrophage M2, and dendritic cells acti-
vated whereas negatively correlated with plasma cells, T cells
CD8, T cells follicular helper, and NK cells activated;
CDK5R1 was positively correlated with macrophage M2
and dendritic cells activated whereas negatively correlated
with T cell follicular helper and macrophage M0; DAB1
was negatively correlated with dendritic cells activated;
FYN was positively correlated with T cell follicular helper
and neutrophils whereas negatively correlated with T cell
gamma delta, monocytes, macrophage M2, and dendritic
cells activated (Figure 9(c)).

4. Discussion

AD is a degenerative disease of the central nervous system
that occurs in old age. The pathological mechanism of AD
is not clear, and there is no radical cure at present [26]. A
large number of studies have indicated that the pathological
development of AD preceded the appearance of clinical
symptoms by several decades [27]. Thus, the identification
of potential biomarkers will contribute to the early diagnosis
of AD and provide potential therapeutic targets for its treat-
ment. CDK5R1 plays an important role in the central ner-
vous system development [28]. In the present study, we
found that CDK5R1 is downregulated in AD patients, which
implied its potential role in AD development. Besides, our
findings also provided a scientific basis for effective diagnosis
and individual treatment of AD.

Ten Reelin pathway-related genes (CRK, DAB2IP, LRP8,
RELN, STAT5A, CDK5, CDK5R1, DAB1, FYN, and
SH3KBP1) may serve as potential diagnostic markers for
AD patients. We found that the AD patients could be divided
into two subgroups (C1 and C2) using a series of bioinfor-
matics analyses, such as WGCNA and ConsensusClusterPlus
analysis. GSVA revealed that the AD patients in the C1

Table 2: Functional enrichment analysis of the DECRGs.

Ontology ID Description GeneRatio BgRatio p value p.adjust q value

BP GO:0050808 Synapse organization 20/194 408/18670 1.02e-08 2.97e-05 2.52e-05

BP GO:0042391 Regulation of membrane potential 20/194 434/18670 2.84e-08 4.15e-05 3.53e-05

BP GO:0034765 Regulation of ion transmembrane transport 20/194 483/18670 1.62e-07 1.58e-04 1.34e-04

BP GO:2001257 Regulation of cation channel activity 12/194 178/18670 3.62e-07 2.65e-04 2.25e-04

BP GO:1904062 Regulation of cation transmembrane transport 16/194 342/18670 6.05e-07 3.54e-04 3.01e-04

BP GO:0006836 Neurotransmitter transport 14/194 269/18670 8.93e-07 4.35e-04 3.70e-04

BP GO:0051216 Cartilage development 12/194 209/18670 1.99e-06 8.31e-04 7.07e-04

BP GO:0032412 Regulation of ion transmembrane transporter activity 13/194 260/18670 3.45e-06 0.001 0.001

BP GO:0022898 Regulation of transmembrane transporter activity 13/194 268/18670 4.80e-06 0.002 0.001

BP GO:0002062 Chondrocyte differentiation 9/194 123/18670 5.57e-06 0.002 0.001

KEGG hsa04080 Neuroactive ligand-receptor interaction 14/85 341/8076 1.09e-05 0.001 0.001

KEGG hsa05033 Nicotine addiction 5/85 40/8076 5.65e-05 0.004 0.004

KEGG hsa05032 Morphine addiction 6/85 91/8076 3.71e-04 0.017 0.016

KEGG hsa04727 GABAergic synapse 5/85 89/8076 0.002 0.080 0.078
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subgroup were mainly enriched with DECRGs related to the
primary immunodeficiency, B cell receptor signaling path-
way, Toll-like receptor signaling pathway, complement and
coagulation cascades, regulation of immune response, activa-
tion of innate immune response, lymphocyte costimulation,
WNT signaling pathway, regulation of JNK cascade, cell
cycle, T cell differentiation in thymus, negative regulation
of exocytosis, and axon guidance. Previous studies have
revealed that CRK plays specific roles in regulating immune
cell functions [29]. For example, CRK could control the sup-
pression and activation of natural killer cells [30]. It also
could regulate natural killer cell differentiation and expan-

sion during mouse virus infection [31]. DAB2IP is one of
the members of Ras GTPase superfamily implicated in
the regulation of cell metastasis, apoptosis, and prolifera-
tion; it also has been associated with immune cell infil-
trates in renal cell carcinoma [32]. LRP8 is an important
member of the low-density lipoprotein receptor family
and plays a vital role in the synaptic plasticity of brain tis-
sue [33, 34]. RELN gene variants may play an important
role in both hippocampal formation and AD pathogenesis
[35, 36]. Decrease of RELN expression is an early phe-
nomenon of AD’s pathology [37]. STAT5A is indispens-
able in T regulatory cell development and maintenance
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and involved in T helper 17 cell differentiation [38]. An
increase of STAT5A expression plays a vital role in leuke-
mia development [39]. STAT5A also plays a distinct role
in T cell development [40]. CDK5R1 plays an important
role during neurodevelopment and is associated with the
development of neurodegenerative diseases [41]. The pre-
vious study has revealed that CDK5R1 implicated in AD
pathogenesis is regulated by the miR-15/107 family of
miRNAs, which is anomalously regulated in AD [14].
FYN is an important regulator in neurodegenerative path-
ways [42]. It has been reported that targeting FYN could
rescue memory deficits in an AD mouse model [43]. In our
study, we found that the expressions of the seven Reelin
pathway-related genes (CRK, DAB2IP, LRP8, RELN,
STAT5A, CDK5R1, and FYN) were significantly correlated
with some immune cell infiltration levels in AD patients,
implying that these genes may play an important role in
immune infiltrates of AD.

We also assessed the infiltrating level of immune cells
in the two subgroups of AD, which could provide new
insight into AD pathogenesis. We found that the propor-
tions of plasma cells, T cell follicular helper, and NK cells
activated were significantly lower in the C1 subgroup than
the C2 subgroup, whereas the proportions of monocytes,
macrophage M2, T cell gamma delta, and dendritic cells

activated were higher in the C1 subgroup than the C2 sub-
group. AD is a chronic inflammatory disease; a role of the
immune response in AD development and progression has
been proposed [44, 45]. Abnormal production of inflamma-
tory cytokines by activated NK cells is thought to be partly
responsible for the neurodegenerative process of AD [46].
Besides, NK cell activity is negatively correlated with the cog-
nitive status assessed by the analysis of Mini-Mental State
Examination score in AD patients [47]. The state of macro-
phage M2 is typically related to restorative processes of
inflammation [48]. It has been demonstrated that macro-
phage infiltrating the aged brain may be impacted by the
inflammatory environment and subsequently influence neu-
ronal health [49, 50]. Macrophage M2 transplantation
improves cognitive deficits in the AD model of rats [51].
Monocytes are the major elements in the clearance of amy-
loid-β and play an important role in the development of
AD [52, 53]. The previous study has indicated that the blood
dendritic cell levels are decreased in AD patients, which is
associated with AD progression and severity of depressive
symptoms [54]. In our study, significantly different infiltra-
tion levels of dendritic cells, monocytes, macrophage M2,
and NK cells activated were found in the two subgroups
(C1 and C2), implying a possible difference in the patholog-
ical process of AD patients. However, there are several
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Figure 9: Immune characteristics of the CDK5R1-related subtypes in AD. (a) Heat map of 22 types of immune cells in the two subgroups.
(b) The immune cell infiltration levels between C1 and C2 subgroups. (c) The correlation of CRK, DAB2IP, LRP8, RELN, STAT5A, CDK5,
CDK5R1, DAB1, FYN, and SH3KBP1 expressions with 22 types of immune cells in AD.

14 Computational and Mathematical Methods in Medicine



limitations in the present study. First, larger clinical sample
sizes are needed to verify the CDK5R1 expression. Second,
the role of Reelin pathway-related genes in AD should be fur-
ther investigated in AD-related cell or animal models.

5. Conclusion

We identified two CDK5R1-related AD subtypes based on
CDK5R1 expression. Our results showed the important role
of CDK5R1 in the development and progression of AD and
implied that the Reelin pathway-related genes may serve as
potential markers for the diagnosis and treatment of AD
patients. These findings will help us to further understand
the potential function and mechanism of CDK5R1 in AD.

Data Availability

All data in the present study can be obtained from the corre-
sponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Xu Shao wrote the manuscript. Yanxian Yang conceived and
designed the study. Yu Feng, Jieyun Chen, Runping Zhao,
Lei Xu, and Xilong Guo performed bioinformatics and sta-
tistical analyses. Lina Qin revised the manuscript. All
authors contributed to the article and approved the submit-
ted version. Xu Shao and Yanxian Yang contributed equally
to this work.

Acknowledgments

This work was supported by the Role and Mechanism of
Reelin Signaling Pathway in Regulating Myelinogenesis in
Alzheimer’s Disease (project no. 2020A1515010219).

References

[1] O. Serý, J. Povová, I. Míšek, L. Pešák, and V. Janout, “Molecu-
lar mechanisms of neuropathological changes in Alzheimer’s
disease: a review,” Folia Neuropathologica, vol. 51, no. 1,
pp. 1–9, 2013.

[2] N. K. Isaev, E. V. Stelmashook, E. E. Genrikhs, M. V. Oborina,
M. R. Kapkaeva, and V. P. Skulachev, “Alzheimer’s disease: an
exacerbation of senile phenoptosis,” Biochemistry (Moscow),
vol. 80, no. 12, pp. 1578–1581, 2015.

[3] O. Zanetti, S. B. Solerte, and F. Cantoni, “Life expectancy in
Alzheimer’s disease (AD),” Archives of Gerontology and Geri-
atrics, vol. 49, Suppl 1, pp. 237–243, 2009.

[4] “2021 Alzheimer’s disease facts and figures,” Alzheimer's &
Dementia : The Journal of the Alzheimer's Association,
vol. 17, no. 3, pp. 327–406, 2021.

[5] M. Heron, “Deaths: leading causes for 2016,” National vital
statistics reports : from the Centers for Disease Control and Pre-
vention, National Center for Health Statistics, National Vital
Statistics System, vol. 67, no. 6, pp. 1–77, 2018.

[6] P. Scheltens, K. Blennow, M. M. Breteler et al., “Alzheimer’s
disease,” The Lancet, vol. 388, no. 10043, pp. 505–517, 2016.

[7] M. R. Minter, J. M. Taylor, and P. J. Crack, “The contribution
of neuroinflammation to amyloid toxicity in Alzheimer’s dis-
ease,” Journal of Neurochemistry, vol. 136, no. 3, pp. 457–
474, 2016.

[8] Y. Jossin, “Reelin functions, mechanisms of action and signal-
ing pathways during brain development and maturation,” Bio-
molecules, vol. 10, no. 6, p. 964, 2020.

[9] J. Chin, C. M.Massaro, J. J. Palop et al., “Reelin depletion in the
entorhinal cortex of human amyloid precursor protein trans-
genic mice and humans with Alzheimer’s disease,” The Journal
of neuroscience : the official journal of the Society for Neurosci-
ence, vol. 27, no. 11, pp. 2727–2733, 2007.

[10] T. Chae, Y. T. Kwon, R. Bronson, P. Dikkes, E. Li, and L. H.
Tsai, “Mice lacking p35, a neuronal specific activator of
Cdk5, display cortical lamination defects, seizures, and adult
lethality,” Neuron, vol. 18, no. 1, pp. 29–42, 1997.

[11] J. Ko, S. Humbert, R. T. Bronson et al., “p35 and p39 are essen-
tial for cyclin-dependent kinase 5 function during neurodeve-
lopment,” The Journal of neuroscience : the official journal of
the Society for Neuroscience, vol. 21, no. 17, pp. 6758–6771,
2001.

[12] W. Liu, Y. Zhou, R. Liang, and Y. Zhang, “Inhibition of
cyclin-dependent kinase 5 activity alleviates diabetes-
related cognitive deficits,” FASEB Journal : Official Publica-
tion of the Federation of American Societies for Experimental
Biology, vol. 33, no. 12, pp. 14506–14515, 2019.

[13] S. Moncini, P. Castronovo, A. Murgia et al., “Functional char-
acterization of _CDK5_ and _CDK5R1_ mutations identified
in patients with non-syndromic intellectual disability,” Journal
of Human Genetics, vol. 61, no. 4, pp. 283–293, 2016.

[14] S. Moncini, M. Lunghi, A. Valmadre et al., “The miR-15/107
family of microRNA genes regulates CDK5R1/p35 with impli-
cations for Alzheimer’s disease pathogenesis,”Molecular Neu-
robiology, vol. 54, no. 6, pp. 4329–4342, 2017.

[15] I. Mateo, J. L. Vázquez-Higuera, P. Sánchez-Juan et al., “Epis-
tasis between tau phosphorylation regulating genes (CDK5R1
and GSK-3β) and Alzheimer’s disease risk,” Acta Neurologica
Scandinavica, vol. 120, no. 2, pp. 130–133, 2009.

[16] Q. Dai, C. Bao, Y. Hai et al., “MTGIpick allows robust identi-
fication of genomic islands from a single genome,” Briefings
in Bioinformatics, vol. 19, no. 3, pp. 361–373, 2018.

[17] R. Kong, X. Xu, X. Liu, P. He, M. Q. Zhang, and Q. Dai,
“2SigFinder: the combined use of small-scale and large-
scale statistical testing for genomic island detection from a
single genome,” BMC Bioinformatics, vol. 21, no. 1,
p. 159, 2020.

[18] S. Yang, Y. Wang, Y. Chen, and Q. Dai, “MASQC: next gener-
ation sequencing assists third generation sequencing for qual-
ity control in N6-methyladenine DNA identification,”
Frontiers in Genetics, vol. 11, p. 269, 2020.

[19] Z. Yang, W. Yi, J. Tao et al., “HPVMD-C: a disease-based
mutation database of human papillomavirus in China,” Data-
base, vol. 2022, 2022.

[20] M. Onesime, Z. Yang, and Q. Dai, “Genomic island predic-
tion via chi-square test and random forest algorithm,” Compu-
tational and Mathematical Methods in Medicine, vol. 2021,
Article ID 9969751, 9 pages, 2021.

[21] E. Sohrabi, E. Rezaie, M. Heiat, and Y. Sefidi-Heris, “An inte-
grated data analysis of mRNA, miRNA and signaling pathways

15Computational and Mathematical Methods in Medicine



in pancreatic cancer,” Biochemical Genetics, vol. 59, no. 5,
pp. 1326–1358, 2021.

[22] M. E. Ritchie, B. Phipson, D. Wu et al., “limma powers differ-
ential expression analyses for RNA-sequencing and microar-
ray studies,” Nucleic Acids Research, vol. 43, no. 7, article e47,
2015.

[23] Y. Pan, L. Wu, S. He, J. Wu, T. Wang, and H. Zang, “Identifi-
cation of hub genes in thyroid carcinoma to predict prognosis
by integrated bioinformatics analysis,” Bioengineered, vol. 12,
no. 1, pp. 2928–2940, 2021.

[24] P. Langfelder and S. Horvath, “WGCNA: an R package for
weighted correlation network analysis,” BMC Bioinformatics,
vol. 9, no. 1, p. 559, 2008.

[25] Q. Quan, X. Xiong, S. Wu, and M. Yu, “Identification of
immune-related key genes in ovarian cancer based on
WGCNA,” Frontiers in Genetics, vol. 12, article 760225, 2021.

[26] X. Dong, J. Nao, J. Shi, and D. Zheng, “Predictive value of rou-
tine peripheral blood biomarkers in Alzheimer’s disease,”
Frontiers in Aging Neuroscience, vol. 11, p. 332, 2019.

[27] L. Vermunt, S. A. M. Sikkes, A. Hout et al., “Duration of pre-
clinical, prodromal, and dementia stages of Alzheimer’s dis-
ease in relation to age, sex, and APOE genotype,” Alzheimer's
& Dementia : The Journal of the Alzheimer's Association,
vol. 15, no. 7, pp. 888–898, 2019.

[28] A. Gupta and L. H. Tsai, “Cyclin-dependent kinase 5 and neu-
ronal migration in the neocortex,” Neuro-Signals, vol. 12,
no. 4-5, pp. 173–179, 2003.

[29] D. Liu, “The adaptor protein Crk in immune response,”
Immunology and Cell Biology, vol. 92, no. 1, pp. 80–89, 2014.

[30] D. Liu, M. E. Peterson, and E. O. Long, “The adaptor protein
Crk controls activation and inhibition of natural killer cells,”
Immunity, vol. 36, no. 4, pp. 600–611, 2012.

[31] T. Nabekura, Z. Chen, C. Schroeder et al., “Crk adaptor pro-
teins regulate NK cell expansion and differentiation during
mouse cytomegalovirus infection,” Journal of Immunology,
vol. 200, no. 10, pp. 3420–3428, 2018, (Baltimore, Md. : 1950).

[32] H. Cao, J. Zhang, and W. Wang, “DAB2IP plays important
clinical significance and correlates with immune infiltration
in renal cell carcinoma,” Technology in Cancer Research &
Treatment, vol. 19, article 1533033820936682, 2020.

[33] I. Cuchillo-Ibañez, M. P. Lennol, S. Escamilla et al., “The apo-
lipoprotein receptor LRP3 compromises APP levels,” Alzhei-
mer's Research & Therapy, vol. 13, no. 1, p. 181, 2021.

[34] S. Jaeger and C. U. Pietrzik, “Functional role of lipoprotein
receptors in Alzheimer’s disease,” Current Alzheimer Research,
vol. 5, no. 1, pp. 15–25, 2008.

[35] A. T. Marckx, K. E. Fritschle, L. Calvier, and J. Herz, “Reelin
changes hippocampal learning in aging and Alzheimer’s dis-
ease,” Behavioural Brain Research, vol. 414, article 113482,
2021.

[36] D. Seripa, M. G. Matera, M. Franceschi et al., “The RELN locus
in Alzheimer’s disease,” Journal of Alzheimer's disease : JAD,
vol. 14, no. 3, pp. 335–344, 2008.

[37] A. Herring, A. Donath, K. M. Steiner et al., “Reelin depletion is
an early phenomenon of Alzheimer’s pathology,” Journal of
Alzheimer's disease : JAD, vol. 30, no. 4, pp. 963–979, 2012.

[38] L. Wei, A. Laurence, and J. J. O'Shea, “New insights into the
roles of Stat5a/b and Stat3 in T cell development and differen-
tiation,” Seminars in Cell & Developmental Biology, vol. 19,
no. 4, pp. 394–400, 2008.

[39] B. T. Kaymaz, N. Selvi, A. A. Gokbulut et al., “Suppression of
STAT5A and STAT5B chronic myeloid leukemia cells via
siRNA and antisense-oligonucleotide applications with the
induction of apoptosis,” American journal of blood research,
vol. 3, no. 1, pp. 58–70, 2013.

[40] T. Kanai, S. Seki, J. A. Jenks et al., “Identification of STAT5A
and STAT5B target genes in human T cells,” PLoS One,
vol. 9, no. 1, article e86790, 2014.

[41] S. Moncini, A. Bevilacqua, M. Venturin et al., “The 3' untrans-
lated region of human cyclin-dependent kinase 5 regulatory
subunit 1 contains regulatory elements affecting transcript sta-
bility,” BMC Molecular Biology, vol. 8, no. 1, p. 111, 2007.

[42] S. Demuro, R. M. C. Di Martino, J. A. Ortega, and A. Cavalli,
“GSK-3β, FYN, and DYRK1A: master regulators in neurode-
generative pathways,” International Journal of Molecular Sci-
ences, vol. 22, no. 16, p. 9098, 2021.

[43] A. C. Kaufman, S. V. Salazar, L. T. Haas et al., “Fyn inhibition
rescues established memory and synapse loss in Alzheimer
mice,” Annals of Neurology, vol. 77, no. 6, pp. 953–971, 2015.

[44] I. Blasko and B. Grubeck-Loebenstein, “Role of the immune sys-
tem in the pathogenesis, prevention and treatment of Alzhei-
mer’s disease,” Drugs & Aging, vol. 20, no. 2, pp. 101–113, 2003.

[45] A. Le Page, G. Dupuis, E. H. Frost et al., “Role of the peripheral
innate immune system in the development of Alzheimer’s dis-
ease,” Experimental Gerontology, vol. 107, pp. 59–66, 2018.

[46] C. Solana, R. Tarazona, and R. Solana, “Immunosenescence of
natural killer cells, inflammation, and Alzheimer’s disease,”
International Journal of Alzheimer's Disease, vol. 2018, article
3128758, 9 pages, 2018.

[47] S. B. Solerte, M. Fioravanti, A. Pascale, E. Ferrari, S. Govoni,
and F. Battaini, “Increased natural killer cell cytotoxicity in
Alzheimer’s disease may involve protein kinase C dysregula-
tion,” Neurobiology of Aging, vol. 19, no. 3, pp. 191–199, 1998.

[48] S. K. Biswas and A. Mantovani, “Macrophage plasticity and
interaction with lymphocyte subsets: cancer as a paradigm,”
Nature Immunology, vol. 11, no. 10, pp. 889–896, 2010.

[49] S. Girard, D. Brough, G. Lopez-Castejon, J. Giles, N. J.
Rothwell, and S. M. Allan, “Microglia and macrophages differ-
entially modulate cell death after brain injury caused by
oxygen-glucose deprivation in organotypic brain slices,” Glia,
vol. 61, no. 5, pp. 813–824, 2013.

[50] A. M. Minogue, “Role of infiltrating monocytes/macrophages
in acute and chronic neuroinflammation: effects on cognition,
learning and affective behaviour,” Progress in Neuro-
Psychopharmacology & Biological Psychiatry, vol. 79, no. Part
A, pp. 15–18, 2017.

[51] D. Zhu, N. Yang, Y. Y. Liu, J. Zheng, C. Ji, and P. P. Zuo, “M2
macrophage transplantation ameliorates cognitive dysfunc-
tion in amyloid-β-treated rats through regulation of microglial
polarization,” Journal of Alzheimer's Disease, vol. 52, no. 2,
pp. 483–495, 2016.

[52] Y. Feng, L. Li, and X. H. Sun, “Monocytes and Alzheimer’s dis-
ease,” Neuroscience Bulletin, vol. 27, no. 2, pp. 115–122, 2011.

[53] H. Guo, Z. Zhao, R. Zhang et al., “Monocytes in the peripheral
clearance of amyloid-β and Alzheimer’s disease,” Journal of
Alzheimer's Disease, vol. 68, no. 4, pp. 1391–1400, 2019.

[54] A. Ciaramella, F. Salani, F. Bizzoni et al., “Myeloid dendritic
cells are decreased in peripheral blood of Alzheimer’s disease
patients in association with disease progression and severity
of depressive symptoms,” Journal of Neuroinflammation,
vol. 13, no. 1, p. 18, 2016.

16 Computational and Mathematical Methods in Medicine


	Identification of Two CDK5R1-Related Subtypes and Characterization of Immune Infiltrates in Alzheimer’s Disease Based on an Integrated Bioinformatics Analysis
	1. Introduction
	2. Methods
	2.1. Identification of CDK5R1-Related Differentially Expressed Genes (DEGs)
	2.2. Weighted Gene Correlation Network Analysis (WGCNA)
	2.3. Consensus Clustering of Subtypes Based on CDK5R1-Related Genes in AD Patients
	2.4. Identification and Analysis of Differentially Expressed CDK5R1-Related Genes (DECRGs) in the Two Subtypes
	2.5. Immune Analyses
	2.6. Statistical Analysis

	3. Results
	3.1. Expression of CDK5R1 in AD
	3.2. Identification of DEGs
	3.3. Identification of Key Modules Associated with CDK5R1 in AD
	3.4. Identification of CDK5R1 Subgroups Using Consensus Clustering
	3.5. Identification and Analysis of DECRGs in the C1 and C2 Subtypes
	3.6. Expression Levels and Diagnostic Value of Reelin Pathway-Related Genes
	3.7. Immune Characteristics of the CDK5R1-Related Subtypes in AD

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments



