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Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease for which there is a lack of therapeutic options. Genome-
wide association studies (GWASs) have identified over 100 genetic loci associated with RA susceptibility; however, the most causal
risk genes (RGs) associated with, and molecular mechanism underlying, RA remain unknown. In this study, we collected 95 RA-
associated loci from multiple GWASs and detected 87 candidate high-confidence risk genes (HRGs) from these loci via integrated
multiomics data (the genome-scale chromosome conformation capture data, enhancer-promoter linkage data, and gene
expression data) using the Bayesian integrative risk gene selector (iRIGS). Analysis of these HRGs indicates that these genes
were indeed, markedly associated with different aspects of RA. Among these, 36 and 46 HRGs have been reported to be related
to RA and autoimmunity, respectively. Meanwhile, most novel HRGs were also involved in the significantly enriched RA-
related biological functions and pathways. Furthermore, drug repositioning prediction of the HRGs revealed three potential
targets (ERBB2, IL6ST, and MAPK1) and nine possible drugs for RA treatment, of which two IL-6 receptor antagonists
(tocilizumab and sarilumab) have been approved for RA treatment and four drugs (trastuzumab, lapatinib, masoprocol, and
arsenic trioxide) have been reported to have a high potential to ameliorate RA. In summary, we believe that this study provides
new clues for understanding the pathogenesis of RA and is important for research regarding the mechanisms underlying RA
and the development of therapeutics for this condition.

1. Introduction

Rheumatoid arthritis (RA) is an autoimmune and inflamma-
tory disease in which the immune system mistakenly attacks
healthy joint tissues, thereby causing inflammation that pri-
marily affects the joints [1]. It is a multifactorial disease
involving complex traits affected by many genetic and envi-
ronmental factors, as well as the potential interactions
among these factors [2]. Although the etiology underlying
RA development is not fully understood, investigators have
determined that abnormal immune system responses are

the core cause of RA-associated inflammation and joint
destruction [3].

Currently, there is no cure for RA. Disease-modifying
antirheumatic drugs (DMARDs) still represent the main
treatment strategy for RA. These drugs mainly act on the
immune system and slow the progression of RA; they can
efficiently attenuate disease symptoms and substantially
decrease and/or delay joint deformity [4]. DMARDs can be
classified as follows: conventional DMARDs and biologic
DMARDs [5]. Commonly used conventional DMARDs
include methotrexate, leflunomide, hydroxychloroquine,
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and sulfasalazine. Recently, many biological DMARDs,
including TNF inhibitors (adalimumab, infliximab, and eta-
nercept), anti-CD20 antibodies (rituximab), IL-6 receptor
antibodies (sarilumab), RANKL antibodies (denosumab),
and Janus kinase inhibitors (baricitinib), have been devel-
oped [6, 7]. Despite the increasing numbers of new drugs
and treatment regimens, agents that completely cure RA or
long-acting agents for RA are still far from being developed;
thus, novel therapeutics and/or targets for this condition are
required.

Hereditary factors show a clear causal relationship with
RA [8]. And elucidating the pathogenesis of RA from the
genomics and genetics standpoints is an important means
for clinical therapeutics and drug discovery [9]. At present,
genome-wide association studies (GWASs) have identified
over 100 genetic loci associated with RA susceptibility [10,
11]. Although genetic information indicates an association
between genetic factors and RA, the most causal risk genes
(RGs) associated with RA and the molecular mechanisms
underlying this disease remain unknown [12]. Mo et al.
[13] predicted the RA-associated susceptibility genes by the
summary data-based Mendelian randomization (SMR) anal-
ysis and identified 140 genes that showed causal association
with RA. Moreover, thus far, only a few effective drug targets
have been identified through GWASs [14].

In this study, to identify RA-associated RGs and predict
candidate drug targets for RA, we collected 95 RA-associated
loci from different GWASs and detected the candidate RGs
from these loci via integrated multiomics data (the
genome-scale chromosome conformation capture data,
enhancer-promoter linkage data, and gene expression data)
using the Bayesian integrative risk gene selector (iRIGS)
[15]. Then, we evaluated the relevance between the candi-
date RGs and RA progression in the context of multiple
aspects, such as biological functions, gene expression, and
gene regulatory patterns. Finally, we predicted the candidate
targets and drugs of these RA-associated RGs using the drug
repositioning prediction approach (Figure 1(a)).

2. Methods

2.1. RA-Associated Loci. We collected over 100 RA-
associated loci from multiple GWASs, including 101 loci
collected from a meta-analysis GWAS containing over
100,000 subjects of European and Asian ancestries (29,880
RA cases vs. 73,758 controls) [16], two loci collected from
a GWAS containing over 1,600 subjects (397 RA cases vs.
1,211 controls) [17], and four loci collected from a case-
control GWAS of a cohort of Arab subjects (511 RA cases
vs. 352 controls) [18]. Finally, a total of 104 RA-associated
loci were collected (there are 3 duplicated SNPs). After
excluding 12 loci for which SNP IDs were unavailable, 95
RA-associated loci were included in this study.

2.2. Identifying RGs for the RA-Associated Loci. The high-
confidence risk genes (HRGs) of RA were inferred by iRIGS
(GRCh38/hg38) [15], which is a powerful tool for RG iden-
tification that integrates multiomics data and gene networks.
Here, the omics data include two RA-associated gene expres-

sion datasets, i.e., GSE55235 [19] and GSE77298 [20], two
distal regulatory element- (DRE-) promoter linkage datasets,
1,618,000 DRE promoter linkages obtained from genome-
scale chromosome conformation capture (Hi-C) [21], and
66,899 enhancer-promoter linkages obtained from the FAN-
TOM5 project [22]. All these omics data have been proc-
essed and deposited in iRIGS. Furthermore, the GO
network data containing gene-gene relationships obtained
by the iRIGS method were also integrated. A total of 1,972
candidate genes located within a 2Mb region centered at
the index SNP were collected as the candidate genes for
iRIGS analysis. The posterior probability (PP) value was cal-
culated by a Bayesian framework embedded in iRIGS [15],
which is the index of possibility for genes to serve as an
RG for RA. For each GWAS locus, one or more RGs can
be selected according to the PP value. In this study, we only
selected one risk gene with the highest PP for each locus. For
evaluation of HRGs, we constructed two background gene
lists for comparison with the HRGs: (1) the local back-
ground genes (LBGs), which is defined as the genes with P
P values less than the median PP of all candidate genes
(1,972 genes located within a 2Mb region of the RA-
associated loci). Ultimately, a total of 986 LBGs were
obtained; (2) the whole-genome background genes (WBGs),
which are defined as the genes that included all the human
genes (obtained from the R package of iRIGS) except the
HRGs. Ultimately, a total of 25,814 WBGs were obtained.

2.3. Data Collection. Five RA-associated keyword gene sets
(keywords: “Arthritis,” “Rheumatic,” “Autoimmune,”
“Joint,” and “Connective Tissue”) were constructed from
the GeneCards database (http://www.genecards.org). At
first, the five keywords were used to research the related
genes in the GeneCards database; then, the genes with a rel-
evance score greater than 10 were considered as the
keyword-related genes. Finally, it was found that the “Con-
nective Tissue” gene set contained 507 genes, the “Joint”
gene set contained 1,063 genes, the “Autoimmune” gene
set contained 457 genes, the “Arthritis” gene set contained
422 genes, and the “Rheumatic” gene set contained 65 genes.
Furthermore, an immune system-related gene set containing
1,534 genes was collected from the ImmPort database
(https://www.immport.org) [23]. The tissue-specific gene
expression profiles (FPKM, reads per kilobase of transcript
per million mapped reads) were collected from GTEx release
V8 data source [24].

2.4. Drug Repositioning Prediction of the HRGs. To predict
the drug-specific target genes and corresponding drugs spe-
cific to the HRGs, a command-line Python software,
Genome for REPositioning drugs (GREP), was used [25].
The GREP software quantifies the enrichment of drug tar-
gets by using DrugBank and the Therapeutic Target Data-
base. Approximately 22,300 drugs and 2,029 genes were
categorized based on the Anatomical Therapeutic Chemical
(ATC) and World Health Organization (WHO) classifica-
tion system; the P values and odds ratios for this categoriza-
tion were calculated using Fisher’s exact test.
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Figure 1: A flowchart depicting the steps in our study and the function enrichment analysis of the HRGs. (a) A flowchart detailing the steps
followed in this study. (b) The GO and KEGG pathway analyses of the HRGs.
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2.5. Statistical Analysis. The differentially expressed genes
(DEGs) were identified using the Limma package in the R
software (adjusted. P < 0:05) [26]. The GO and pathway
enrichment analyses were performed using Metascape [27].
One-sided Fisher’s exact test and one-sided Wilcoxon
rank-sum test were performed using the R software. The
Jensen–Shannon divergence (JSD) score was calculated
using the R package “philentropy.” The P values were
adjusted using the Bonferroni correction method.

3. Results

3.1. Predicting HRGs for RA. A total of 87 HRGs related to
the 95 RA-associated loci were inferred using iRIGS; most
of these genes have been implicated in RA and/or autoim-
munity (see Table 1 and Supplementary Table 1). Some of
the well-known drug targets for RA treatment, such as
IRAK1, HIF1A, and IL6ST, have been identified as HRGs
for RA [28]. Further, 36 and 46 genes have been reported
to be related to RA and autoimmunity, respectively. For
instance, IL6/IL6ST signaling plays a key role in the
progression of RA, and some IL6 receptor antagonists have
been proved to be effective in altering leukocyte trafficking
and reducing the severity of RA [29]. GATA-3 has been
shown to protect against severe joint inflammation and
reduce the differentiation of Th17 cells in mice with RA
[30]. EGR2 acts as a key regulator for systemic
autoimmunity by regulating cytokine production and cell

proliferation [31]. Meanwhile, we also investigated the rest
HRGs which have no direct evidence linking to RA and
found that these HRGs might also be close to RA or
autoimmunity diseases (Table 2). For example, PTPRC is
associated with response to antitumor necrosis factor-alpha
therapy, which is a mainstay of treatment in rheumatoid
arthritis [32]. ANXA11 is an antigen associated with
multiple systemic autoimmune diseases [33]. GDI2 is a
candidate biomarker in synovial fluid of RA [34]. And
there are seven genes (TNFAIP3, XPO1, GDI2, GATA3,
EGR2, DDB1, and ABI2) supported by more than one
SNP. Most of which are related to the RA. TNFAIP3
showed differential expression between RA and
osteoarthritis synoviocytes [35]. XPO1 has been indicated
to serve as new candidate therapeutic targets for RA [36].
Moreover, the GO and KEGG pathway enrichment
analyses of the HRGs showed that these genes were
enriched mainly in intercellular communication and
immune-related functions and pathways, such as leukocyte
cell-cell adhesion, focal adhesion, regulation of cytokine-
mediated signaling pathways, tight junction formation,
Th17 cell differentiation, and regulation of interleukin-2
production (Figure 1(b)). These functions and pathways
have been reported to be critical for RA progression [37, 38].

3.2. Evaluation of the HRGs. To assess the reliability of the
HRGs, we constructed two background gene lists for com-
parison with the HRGs: the local background genes (LBGs)

Table 1: Information of some RA or autoimmunity-related HRGs.

HRG SNP PMID RA related Autoimmunity related

IL6ST rs7731626 16646038 Yes Yes

SUMO1 rs6715284 30562482; 17360386 Yes

XPO1 rs13385025, rs34695944 24965445 Yes

FOXO1 rs9603616 24812285 Yes Yes

HIF1A rs3783782 27445820 Yes Yes

DUSP22 rs9378815 29287311 Yes

GATA3 rs12413578, rs3824660 19248112; 29097726 Yes Yes

AKT1 rs2582532 28559961 Yes

CD40 rs4239702 28455435 Yes Yes

EGR2 rs6479800, rs71508903 24058814 Yes

Table 2: Information of some HRGs without direct evidence linking to RA.

HRGs SNP PP value Description

PTPRC rs17668708 0.429 Associated with response to TNFα therapy

ANXA11 rs726288 0.427 Antigen associated with systemic autoimmune diseases

SPRED1 rs8032939 0.369 Suppressor of the Ras–ERK pathway

PRDM1 rs9372120 0.366 PRDM1 is belonging to the B cell development pathway

BUB1 rs6732565 0.351 Differentially expressed in RA chondrocytes

LCLAT1 rs10175798 0.327 Related to triacylglycerol biosynthesis and fatty acyl-CoA biosynthesis

AZI2 rs3806624 0.292 Activator of NFKB

GDI2 rs947474 0.284 Is a candidate biomarker in synovial fluid of RA

CNOT6L rs10028001 0.2766 Differentially expressed in RA

RFTN1 rs4452313 0.271 Involved in T-cell antigen receptor-mediated signaling

4 Computational and Mathematical Methods in Medicine



LBG VS HRG

Connective tissue

Rheumatic

Joint

Arthritis

Autoimmune

ImmPort

WBG VS HRG

3
–log10 (P_val)

6 9 3 6 9

12.5

10.0

7.5

5.0

2.5

OR

3
6
9

–log10 (P_val)

(a)

Cap_hic

D
RE

 p
ro

m
ot

er
 li

nk
s

D
RE

 p
ro

m
ot

er
 li

nk
s

p < 2.22e–16
p < 6.6e–14

75

50

25

0

600

400

200

0

WBG LBG HRG

p < 0.00018
p < 0.46

WBG LBG HRG

GSE77298

GSE55235

Fantom5

WBG LBG HRG

–l
og

10
 (P

_D
E)

20

20

15

15

10

10

5

5

p < 2.22e–16
p < 2.22e–16

p < 1.3e–13
p < 6.5e–12

WBG LBG HRG

–l
og

10
 (P

_D
E)

(b)

Figure 2: Continued.
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included 986 genes with PP values less than the median PP
of all candidate genes, and the whole-genome background
genes (WBGs) included all the human genes except the
HRGs (25,814 genes). At first, concerning biological func-
tion, we compared the HRGs with the LBGs and WBGs
using the six RA-related gene sets, i.e., the “Arthritis,”
“Rheumatic,” “Autoimmune,” “Joint,” “Connective Tissue,”
and “ImmPort” gene sets (see Methods for details). As

shown in Figure 2(a), HRGs were significantly enriched in
all the six RA-related gene sets (one-sided Fisher’s exact test:
P value < 0.05). Next, about gene expression, we compared
the HRGs with the LBGs and WBGs using the two gene
expression datasets GSE77298 and GSE55235; as shown in
Figure 2(b), the HRGs were more likely to serve as the DEGs
in these two RA gene expression profiles (one-sided Wil-
coxon rank-sum test: P value < 0.05). Then, with regard to
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Figure 2: Comparison of the HRGs with the local background genes (LBGs) and whole-genome background genes (WBGs). (a)
Comparison of the HRGs with the LBGs and WBGs using the six RA-related gene sets: the “Arthritis,” “Rheumatic,” “Autoimmune,”
“Joint,” “Connective Tissue,” and “ImmPort” gene sets. (b) Comparison of the HRGs with the LBGs and WBGs using the two gene
expression datasets GSE77298 and GSE55235 and the two DRE-promoter linkage datasets obtained using the Hi-C and FANTOM5. (c)
Tissue-specificity analysis of the HRGs (one-sided Wilcoxon rank-sum test).
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gene regulation, we compared the HRGs with the LBGs and
WBGs using the two DRE-promoter linkage datasets
obtained using the Hi-C and FANTOM5 methods. These
results also showed that the HRGs were significantly associ-

ated with a large number of DREs (Figure 2(b); one-sided
Wilcoxon rank-sum test: P value < 0.05). To investigate
the tissue specificity of the HRGs, we converted the RPKM
GTEx data to JSD scores to represent the tissue specificity
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Figure 3: Drug repositioning prediction of the HRGs based on (a) the ATC large dataset and (b) the detailed ATC dataset.
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of each gene for each tissue. Moreover, compared to the
LBGs, the HRGs showed a significantly high expression in
the muscles, blood vessels, blood, etc. (see Figure 2(c), one-
sided Wilcoxon rank-sum test: adjusted P value < 0.05).
These tissues have been proved involved in RA progression.
For example, muscle deterioration (myositis and weakness)
and inflammation of blood vessels (vasculitis and ulcers)
are common complications of RA [39].

3.3. Predicting the Targets and Corresponding Drugs for the
HRGs. To investigate whether some HRGs could serve as
targets of existing repositioned drugs for RA therapy, we
used GREP to perform enrichment analysis to ascertain the
targets of the existing and approved drugs (see Methods
for details). As shown in Figure 3 and Supplementary
Table 2, three HRGs, ERBB2, IL6ST, and MAPK1, were
identified to be related to the targets of
immunosuppressants and antineoplastic agents. A total of
six potential drugs (trastuzumab, pertuzumab, trastuzumab
emtansine, lapatinib, afatinib, and masoprocol) were
predicted to target ERBB2. Of these, trastuzumab,
pertuzumab, and trastuzumab emtansine are HER2/ErbB2
receptor monoclonal antibodies approved for the treatment
of metastatic HER2-positive breast cancer, and
trastuzumab has been reported to inhibit RA synovial cell
growth [40]. Lapatinib has been reported to ameliorate
experimental arthritis in rats by targeting epidermal
growth factor receptors (EGFRs) [41]. Li et al. [42] found
that masoprocol significantly reduces the severity of bone
destruction and osteoclast recruitment in the ankle joint of
rats with adjuvant-induced arthritis and indicated the
potential utility of masoprocol as a therapeutic agent for
RA. Pertuzumab and afatinib have also been approved as
antineoplastic agents. Two potential drugs (tocilizumab
and sarilumab) were predicted to target IL6ST.
Tocilizumab, which functions by targeting IL-6 receptors,
was the first DMARD to be approved for RA treatment
[43]. Sarilumab was the second IL-6 receptor antagonist to
be approved for the treatment of RA [44]. Arsenic trioxide,
which has been reported as a potential therapeutic agent
for RA, was predicted to target MAPK1; it has also been
approved to treat leukemia and reported to regulate the
Treg and Th17 cell balance by modulating STAT3
expression in treatment-naïve RA patients [45].

4. Discussion

To date, the exact cause of the immune system’s faulty
response in RA remains unclear [46]. Though some genes
have been identified to be responsible for the increased risk
of developing RA, such as HLA complex, STAT4, TRAF1,
and PTPN22 [47], most RA-related RGs and their causal
variants remain unknown [48]. Recently, GWASs have been
utilized to identify RA-associated genetic variants on a
genome-wide scale, and over 100 RA-associated loci were
obtained [10, 11]. However, the presence of most GWAS
variants (90%) in noncoding regions hinders the identifica-
tion of disease-related RGs [49], which also obscures the
interpretation of their mode of action and the correct iden-

tification of the target gene via which the causal variant
may affect the phenotype [50]. Herein, to fill this gap, we
identified 87 HRGs from 95 RA-associated loci collected
from different GWASs based on multiomics data. The
assessment of the HRGs indicated that they were markedly
correlated with RA progression. In addition, using drug
repositioning prediction, we also identified several targets
of these genes and the drugs associated with their function.
Some of these identified drugs have already been approved
for RA treatment.

The inspection of previously published literature
revealed that 36 and 46 HRGs have been implicated in RA
progression and autoimmunity, respectively. Besides the
well-known drug targets for RA treatment, such as IRAK1,
HIF1A, and IL6ST, some HRGs, including XPO1, GATA3,
MYC, and CD40, have also been indicated to serve as new
candidate therapeutic targets for RA [36, 51, 52]. The func-
tion enrichment analysis of the HRGs showed that they were
enriched mainly in the immune system- and intercellular
communication-related functions and pathways. It is known
that RA is a classic autoimmune and inflammatory disease
that strongly involves multiple innate and adaptive
immune-related processes [53]. Additionally, the dysfunc-
tion of several intercellular signaling pathways, including
the JAK/STAT, SAPK/MAPK, and PI-3K/AKT/mTOR sig-
naling pathways, plays a critical role in RA [37]. Cell-cell
crosstalk mediates various biological processes in the tissue
microenvironment in RA. Therefore, many studies have
focused on the development of new therapeutics for RA by
considering the intercellular communications in RA
[54–56]. These results indicate that the HRGs identified
herein are markedly involved in RA progression and are of
importance for research regarding the mechanism underly-
ing RA and therapeutic strategies for this condition. More-
over, some of the rest HRGs without direct evidence
linking to RA are also involved in autoimmunity disease-
related functions or pathways. This part of HRGs is probably
more worth exploring than the well-known RA-related
HRGs.

The comparison of the HRGs with the LBGs and HRGs
showed that the HRGs are markedly associated with RA-
related functions and RA-related DEGs and indicated that
the expression levels of the HRGs tend to be regulated by
DREs. Interestingly, the HRGs showed a markedly high
expression in the muscle tissues, blood vessels, and blood.
Muscle deterioration (myositis and weakness) and inflam-
mation of blood vessels (vasculitis and ulcers) are common
complications of RA [39]. Therefore, the high expression
of HRGs in these tissues may implicate them in the progres-
sion of RA and may highlight them as potential therapeutic
targets for RA. Further, the expression of HRGs in the blood
may mainly influence RA-related immune processes [57,
58]; this may also implicate these HRGs as factors governing,
and ultimately, as candidate biomarkers for, the progression
of RA.

Drug repositioning prediction of the HRGs yielded three
targets and nine drugs. Two IL-6 receptor antagonist drugs,
tocilizumab and sarilumab, have been approved for RA
treatment. Meanwhile, trastuzumab, lapatinib, masoprocol,
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and arsenic trioxide have been reported to ameliorate the
symptoms of RA in patients or model animals and may serve
as candidate DMARDs for RA treatment. The other drugs,
pertuzumab, trastuzumab emtansine, and afatinib, have also
been approved as immunosuppressants and/or antineoplas-
tic agents. These results not only indicate that these HRGs
are markedly involved in RA progression but also provide
a trajectory for screening effective drugs for RA treatment.

5. Conclusion

In this study, we collected 95 RA-associated loci from differ-
ent GWASs of RA and obtained 87 HRGs from these loci
using a multiomics-based method. The analysis and evalua-
tion of these HRGs indicated that these genes were indeed,
highly involved in RA. Moreover, the drug repositioning
prediction of the HRGs suggested several potential targets
and drugs for RA treatment. In summary, this study pre-
dicted new RGs, drug targets, and drugs for RA using the
GWAS and multiomics data. We believe that our study pro-
vides more clues for understanding the pathogenesis of RA
and will be important for research regarding the mecha-
nisms underlying RA and the possible therapeutic strategies
for this condition.
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