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Object. Due to challenges in HCC prognosis evaluation, novel prognosis-related markers are urgently needed. This study
attempted to screen reliable prognostic HCC prognostic markers by bioinformatics methods. Methods. GSE (14520, 36376,
57957, 76427) datasets were accessed from GEO database. 55 differential mRNAs (DEGs) were obtained by differential analysis
based on the datasets. GO and KEGG analysis results indicated that the DEGs were enriched in xenobiotic metabolic process
and other pathways. Expression profiles and clinical data of TCGA-LIHC mRNAs were from TCGA database. We established
a prognostic model of HCC through univariate and multivariate Cox risk regression analyses. ROC curve analysis was used to
examine the prognostic model performance. GSEA analysis was performed between the high- and low-risk score sample
groups. Results. A 4-gene HCC prognostic model was constructed, in which the gene expressions correlated to HCC patients’
survival. The AUC value presented 0.734 in the ROC analysis for the prognostic model. Conclusion. The four-gene model
could be introduced as an independent prognostic factors to assess HCC patients’ survival status.

1. Introduction

Liver cancer is the sixth most commonly diagnosed malig-
nancy, with increasing incidence and mortality year by year
[1]. Primary liver cancer consists of 75%-85% hepatocellular
carcinoma (HCC) and 10%-15% intrahepatic cholangiocarci-
noma along with other rare types [2]. Clinical staging, age,
and vascular invasion as important clinical factors may con-
tribute to improvement of survival prediction [3]. Due to the
complexmolecular mechanism of tumor regulation, traditional
clinical information prediction ability is limited. Though a lot
of strategies such as hepatectomy, radiofrequency ablation,
transcatheter arterial chemoembolization, liver transplantation,
and chemotherapy are used in HCC treatment, HCC patient’s
prognosis is still poor [4]. About 70% of HCC patients have
recurrence or metastasis within 5 years after surgery [5]. With
the continuous improvement of tumor heterogeneity and
molecular mechanism research, new tools like molecular
markers are in urgent need for accurate prediction of patient’s
prognosis.

Genome sequencing technology and data emerged in this
genomic era [6]. Microarray and bioinformatics analysis are
applied to screen differentially expressed genes (DEGs) at the
genomic level, which may aid in the identification of DEGs
and pathways correlated with occurrence and development
of HCC. Gene chips can rapidly detect DEGs, generate slicing
data, and store them in a public database, which is a reliable
technology [7]. Great contributions have been made to tumor
diagnosis and prognosis prediction. On the basis of these data,
valuable evidence can be found for new research. For example,
through public databases, more and more potential biomark-
ers are being mined [8–10]. Feng et al. used lung adenocarci-
noma (LUAD) dataset from TCGA and found that LUAD
patients expressing high HMGB1 level had dismal overall sur-
vival (OS) [11].Wang et al. take advantage of RNA sequencing
(RNA-seq) data from TCGA-KIRC to confirmDEGs [12]. For
HCC, Kong et al. selected the top 25% DEGs from the
GSE62232 dataset and screened out prognostic-related mod-
ules to build protein-protein interaction (PPI) networks, who
obtained 5 candidate genes (PCNA, RFC4, PTTG1, H2AFZ,
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and RRM1) finally [13]. It is indicated that these fresh next-
generation sequencingmethods and data can screen biomarkers.

Despite the prognostic ability of signature genes being
explored by bioinformatics analysis, these prognostic predic-
tion effects are limited due to the heterogeneity of HCC [14].
These prognostic prediction effects are subject to certain
challenges, and thus, it is necessary to develop reliable novel
signature genes to design a more personalized diagnostic
and therapeutic plan. In this study, we downloaded 4 sets
of HCC mRNA chip data from GEO database and analyzed
them to obtain the differentially expressed mRNAs (DEmR-
NAs) between HCC tissues and noncancer tissues. Subse-
quently, biological significance and key pathways of the
DEGs were explored through GO and KEGG enrichment
analyses. Cox regression analysis, risk assessment, and clini-
cal information analysis helped us find markers that could
predict HCC patients’ prognoses. Here, a total of 55 DEmR-
NAs and 4 independent prognostic factors for HCC were
identified, which may be candidate biomarkers for HCC,
being utilized for prediction of HCC progression and prog-
nosis. A new method for adjuvant therapy of clinical HCC
patients was put forward in this study.

2. Materials and Methods

2.1. Data Downloading and Processing. HCC-related matrix
was downloaded from GEO database (https://www.ncbi
.nlm.nih.gov/geo/). Criteria for obtaining matrix were (1)
human HCC tissue samples, (2) cancer and noncancer sam-
ples, (3) the total number of samples ≥ 30, and (4) based on
the same sequencing platform. Four groups of HCC mRNA
chip data including GSE14520 (normal: 220, tumor: 225),
GSE36376 (normal: 193, tumor: 240), GSE57957 (normal:
193, tumor: 240), and GSE76427 (normal: 52, tumor: 115)
were selected for this research. The sequencing platform
for GSE36376, GSE57957, and GSE76427 was GPL10558
Illumina HumanHT-12 V4.0 chip, and the sequencing plat-
form for GSE14520 was GPL3921 HT_HG-U133A. Then,
the combined differential analysis (logFC > j1:0j, padj <
0:05) was done with “limma” (PMID: 25605792) and
“RobustRankAggreg” (PMID: 31638362) in R package to
identify DEmRNAs in HCC tissues.

The mRNA expression data and clinical data of TCGA-
LIHC were downloaded from TCGA database (https://
portal.gdc.cancer.gov/). DEmRNA expression and clinical
information screened by differential expression analyses
were extracted for subsequent validation.

2.2. Functional Enrichment Analysis. GO and KEGG enrich-
ment analyses of DEGs were conducted using R package
“clusterProfiler” (PMID: 22455463). GO enrichment analy-
sis investigates the biological significance of DEmRNAs,
including long-term enrichment analysis of biological pro-
cesses, molecular functions, and cellular components. KEGG
pathway enrichment analysis seeks key pathways closely
related to DEmRNAs. P value < 0.05 and false discovery
rate ðFDRÞ < 0:05 were set as thresholds. P value was calcu-
lated based on hypergeometric separation.

2.3. Cox Regression Analysis andModel Assessment.Univariate
and multivariate Cox risk regression analyses were done on
DEmRNAs using the R package “survival” [15]. At first, the
clinical information provided by TCGA was used to conduct
univariate Cox regression analysis on DEmRNAs, and the
DEmRNAs with P value < 0.01 were selected (omnibus test).
Then, these DEmRNAs were further analyzed by multivariate
Cox regression analysis to establish a multigene risk model.
Samples were divided into high- and low-risk groups by
median risk score, and OS of two groups was compared by R
package “survival”. To assess the accuracy and predictive value
of risk assessment model, we used R package “survivalROC”
(PMID: 33790572) to draw receiver operating characteristic
(ROC) curves and conduct independent ROC tests for genes
in risk assessment model, respectively, to obtain area under
curve (AUC) value.

2.4. GSEA Analysis for Hub Genes. To investigate pathway
changes in the high- and low-risk groups, the GSEA software
(V 4.1.0) was utilized to perform KEGG enrichment path-
way analysis to explore potential mechanism of action
(PMID: 16199517). Normalized enrichment score (NES)
and FDR were used to quantify enrichment and statistical
significance, respectively [16].

2.5. Correlation Analysis of Risk Scores and Clinical
Characteristics. The expression levels of feature genes in the
high- and low-risk groups were analyzed by using heat map,
and their differences in different clinical information and risk
score coefficients were analyzed. The performance of risk scores
in different tumor stages was analyzed by box plots, and the reli-
ability of the prognostic model in liver cancer was further vali-
dated. Kaplan-Meier survival curve was used to assess the effect
of the combination of high- or low-risk score and tumor stage
on survival rate (log-rank test was introduced for statistical test).

2.6. Expressions of Hub Genes and Survival Analysis. GEPIA
database (http://gepia.cancer-pku.cn/index.html) is an inte-
gration of RNA expression profiles of tumor and normal
samples from TCGA and GTEx projects [17], which can
be used for individual analysis. Kaplan-Meier plotter is a
popular web tool for assessing the impact of a large number
of genes on survival based on EGA, TCGA, and GEO data-
bases [18]. In this study, GEPIA was utilized for expression
confirmation and survival analysis of hub genes, and log-
rank tests were conducted to measure statistical significance.

3. Results

3.1. Identification of DEmRNAs in HCC. Four datasets
GSE14520, GSE36376, GSE57957, and GSE76427 were
obtained fromGEO database. Subsequently, a differential gene
expression analysis was performed among the 4 datasets and
then integrated to remove batch effects; finally, 6 significantly
upregulated mRNAs and 49 prominently downregulated
mRNAs were screened (Figure 1). These DEGs were selected
for further analysis.

3.2. GO and KEGG Enrichment Analyses for the DEmRNAs.
Then, functional enrichment analysis was conducted on
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above 55 DEmRNAs to explore their potential biological func-
tions. GO enrichment analysis revealed that these genes were
mainly concentrated in cellular response to cadmium ion,
detoxification of inorganic compound, and cellular response
to zinc ion (Figure 2(a)). KEGG unveiled those genes were

enrichedmainly in mineral absorption, chemical carcinogene-
sis DNA adducts, and drug metabolism-cytochrome P450
(Figure 2(b)). Therefore, these DEmRNAs may influence the
progression of HCC by influencing these biological functions
and pathways.
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Figure 1: Heat map of DEGs screened by combined analysis of 4 datasets from GEP database. The numbers in the grids represent the fold
changes of genes in different datasets between the tumor group and the normal group.
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Figure 2: Continued.
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3.3. Screening and Verifying the Optimal Prognostic Hub
Genes. To screen out hub genes with the best prognosis, we
carried out univariate Cox regression analysis on 55 DEmR-
NAs and selected 20 genes noticeably associated with HCC
patients’ prognoses (Table 1). Multivariate Cox regression
analysis was done on these 20 related genes to establish a risk
model of four genes, among which CDC20 was a high-risk fac-
tor while CYP2C9, CLEC1B, and LCAT were low-risk factors
(Figure 3(a)). Next, patients were assorted into high- and low-
risk groups bymedian risk score. R package “survival”was uti-
lized to compare survival time of two groups, and survival
curves were plotted. A significant difference in OS was seen
between the two groups, which demonstrated that survival
time of patients in the high-risk group was dramatically
shorter than the other group, indicating that the risk score
could be used for risk grading and prognosis assessment of
HCC patients (Figure 3(b)). The ROC curves manifested that
AUC value of the model was 0.734 (Figure 3(c)), indicating

that the model had a certain accuracy in diagnosing patients’
prognoses. Thus, risk scores of these four hub genes were dra-
matically associated with HCC patients’ prognoses.

3.4. Functional Analysis of 4 Selected Genes via GSEA. In
order to analyze function changes of the high- and low-
risk groups, we used the GSEA software to carry out KEGG
pathway analysis on the two groups, and the results dis-
played that compared with the low-risk group, complement
and blood coagulation cascade, fatty acid metabolism, per-
oxidase, and primary bile acid biosynthesis pathways are sig-
nificantly activated in the high-risk group (Figure 4). These
pathways are closely related to the liver and are the major
metabolic processes in the liver. Hence, changes in these
pathways can affect the metabolic function of the liver.
Therefore, we speculated that hub genes may affect the bio-
logical function of cancer cells by regulating the metabolic
process of the liver, so as to play a role in prognosis.
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Figure 2: GO and KEGG pathway analyses of DEmRNAs in HCC: (a, b) GO and KEGG enrichment analyses of DEGs.
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3.5. Relationship between the Hub Genes and Clinical Features.
To validate the reliability of the prognostic model, we explored
the performance of the risk score on clinical features. Heat
map results showed that CDC20 level increased gradually,
while CYP2C9, CLEC1B, and LCAT levels decreased gradu-
ally, with increased risk score (Figure 5(a)). Significant differ-
ences were seen in different grades, pathological stages, and
T stages between high- and low-risk group (Figure 5(a)). Sur-
vival time of patients with risk score combined with different
clinical stages, pathological grades, and T stages was signifi-
cantly different (Figure 5(b)), which may be reference factors
predicting patient’s prognosis. With progression of tumor,
the risk value increased (Figure 5(c)). This further indicated
that the four-gene model could predict the risk of tumors,
and the risk scores and some clinical features established by
us (stage, grade, T) could be utilized to comprehensively eval-
uate patient’s prognosis.

3.6. Analysis of Hub Genes by the Kaplan-Meier Plotter and
GEPIA. GEPIA dataset was used to conduct survival and
ROC analysis on 4 hub genes in cancer and normal tissues
to test significance of the 4 hub genes to patients’ prognosis.
We searched the Kaplan-Meier OS curves and progression-
free survival (PFS) curves of the four genes in the risk model
in the GEPIA database and manifested that these four-gene
levels had a dramatic impact on OS of patients (Figure 6(a)),
among which the HCC patients with high expressions of
CLEC1B, CYP2C9, and LCAT presented poor prognosis.
Moreover, CDC20, CLEC1B, and LCAT expression levels also

had significant effects on PFS (Figure 6(b)). Independent ROC
tests were conducted for the four genes in the risk model, and
it was noted that the AUC value of each gene reached more
than 0.6 (Figure 6(c)). Therefore, the above results suggested
that the expressions of these four genes in HCC were related
to the progression of cancer and correlated with prognosis,
and these four genes could be used as independent prognostic
factors for HCC.

4. Discussion

Liver cancer is a malignant tumor with different histological
characteristics, which is mainly caused by chronic hepatitis
virus infection, gene mutation, cell damage, alcoholic liver dis-
ease, and aflatoxin poisoning. Despite advances in cancer treat-
ment, prognosis is unfavorable with increasing morbidity and
mortality [19]. Most HCC patients without early detection
are not suitable for radical treatment, which may be a reason
for dismal prognosis. Many studies have demonstrated that
biomarkers can determine the progression of cancer. For exam-
ple, CCND1, c-myc, and RAS mutations, and hypermethyla-
tion of CCND2 promoter have been associated with HCC
[20, 21]. Splicing changes of NT5E, Sulf1, and SLC39A14 were
also associated with HCC [22–24]. All of these factors can be
used as markers to predict the progression of HCC. However,
the molecular mechanism of HCC is very complex, including
many genetic and epigenetic changes, chromosomal aberra-
tions, gene mutations, and alternative molecular pathways
[25]. Therefore, potential and efficient diagnostic and thera-
peutic markers are in great need. Microarray technology
enables the exploration of genetic changes in HCC and has
been proved to be an effective strategy for mining novel bio-
markers in other diseases.

We analyzed four microarray datasets by multichip com-
bined analysis to obtain DEmRNAs between HCC and non-
cancer tissues. 55 DEmRNAs were identified, containing 6
upregulated genes and 49 downregulated mRNAs. It is well
known that main metabolic pathways in the liver include bile
acid synthesis, fatty acid metabolism, complement and coagu-
lation cascade, etc., which play a vital role in disease and
human homeostasis [26–29]. Therefore, we used GO and
KEGG enrichment analyses to explore biological functions
and pathway enrichment of DEmRNAs. The results exhibited
that DEmRNAs were mainly concentrated in biological func-
tions such as response to exotic biological stimulation, drug
catabolism, complement activation, cAMP response, and sig-
naling pathways such as cytochrome P450, drug metabolism,
complement and coagulation cascade, fatty acid metabolism,
peroxisome, and primary bile acid biosynthesis. Another study
has suggested that the activation of complement can promote
the tumor [30]. Oxidoreductase activity may lead to antioxi-
dant defense and can encode tumor repressors that are often
altered in tumors [31, 32]. The accumulation of bile acids in
the liver inhibits cell growth and improves survival [33]. These
conclusions are all consistent with our predictions.

Subsequently, Cox regression analysis and the construc-
tion of risk model obtained the 4-gene risk model consisting
of CDC20, CLEC1B, CYP2C9, and LCAT. The risk values of
these four-gene sets were evaluated and verified to be

Table 1: Univariate Cox regression analysis screened genes that
were significantly associated with the prognosis of HCC patients.

Gene HR z P value

CDC20 1.303474527 4.659540595 3.17E-06

LCAT 0.800676874 -4.422698682 9.75E-06

DNASE1L3 0.834137148 -4.228589383 2.35E-05

GHR 0.813122352 -4.187942095 2.81E-05

CYP2C9 0.887041102 -4.126833672 3.68E-05

ANXA10 0.877021937 -3.969016876 7.22E-05

SPP2 0.907350691 -3.964707036 7.35E-05

SLC10A1 0.914033265 -3.67849838 0.000234611

SLC22A1 0.909870575 -3.598475946 0.000320087

AFM 0.902676346 -3.557458905 0.00037446

TAT 0.912717953 -3.472545816 0.000515547

ADH1B 0.901724063 -3.429051233 0.000605695

KLKB1 0.842899464 -3.320604451 0.000898227

VIPR1 0.851232022 -3.312650071 0.000924165

TOP2A 1.210739633 3.308652423 0.000937461

RDH16 0.903679968 -3.278095563 0.0010451

CLEC1B 0.860469147 -3.090652798 0.00199717

FCN3 0.8707386 -2.958448406 0.00309192

C7 0.919120279 -2.896960425 0.003767973

IGFALS 0.912348703 -2.779238461 0.005448651
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prognostic factors for HCC. We also found from the exten-
sive literature that these hub genes played an essential role in
many cancers including HCC. Based on the gene expression
and clinical information of liver cancer patients obtained
from the TCGA database, Long et al. used univariate,
LASSO, and multivariate Cox regression analyses to estab-
lish the prognostic model of liver cancer and used GEO
database to verify the feasibility of the model. Finally, a prog-
nostic model based on four marker genes is obtained, and
the model can predict the overall survival of liver cancer
patients [34]. Similarly, in our study, based on 4 GSE data-
sets in the GEO database, the liver cancer prognostic model
was established by univariate and multivariate Cox regres-
sion models and finally verified by the GEPIA database.
Since we built the model based on multiple gene sets, the
results of this study are more reliable to a certain extent as
compared with the earlier studies. Dysregulation of cell cycle
processes is vital in the development of tumors [20, 35, 36].
CDC20 is an important regulatory factor in the cell cycle
process, which forms ubiquitin-proteolytic enzyme complex

by binding with APC and participates in the degradation of
various proteins to modulate cell cycle process [37]. It has
been reported that upregulation of CDC20 may predict the
decrease of OS and DFS in HCC patients [38]. Increased
CDC20 in HCC was related to gender, differentiation, and
TNM stage [39], which is similar to our results. Through risk
model, we manifested that CDC20 was a high-risk factor and
was also associated with clinical features. CYP2C9 is a drug
metabolism enzyme and is a decreased low-risk factor in
HCC [40]. Shuaichen and Guangyi have discovered that
CYP2C9 may promote the development of HCC, especially
can be a diagnostic biomarker in drug metabolism [41].
CLEC2 is expressed in platelets and some hematopoietic
cells. Wang et al. have put forward that CLEC2 inhibits gas-
tric cancer metastasis, prevents the activation of AKT and
glycogen synthase signals, and affects the invasion and
expression of EMT markers, which can be a potential bio-
marker in gastric cancer [42]. However, fewer studies on
CLEC2 in HCC have been reported. So, our study provided
a data source for the role of this gene in HCC. Finally, LCAT
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Figure 3: Constructing and verification the prognostic model. (a) Forest map of the 4-gene prognostic model established by multivariate
Cox risk regression analysis; (b) Kaplan-Meier OS curves for the high- and low-risk groups are plotted based on risk score. Horizontal
axis: survival time; vertical axis: overall rate; red line: high-risk samples; blue line: low-risk samples. (c) ROC curves based on the risk model.
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is the only enzyme that can esterify cholesterol in plasma,
which determines maturation of high-density lipoprotein
as a key enzyme for reverse cholesterol transport with
reports of its role in atherosclerosis, cholesterol deposition,
and kidney [43–45]. Besides, Russell et al. have pointed out
that LCAT plays a role as a diagnostic marker in epithelial
ovarian cancer [46]. It can also predict OS of HCC [47]. In
conclusion, the four hub genes found in this study played a
crucial role in HCC. These genes also function in pathways

such as complement and blood coagulation cascade, fatty
acid metabolism, peroxisome, and primary bile acid biosyn-
thesis. Their expressions in HCC will indirectly affect the
changes of these pathways, thus affecting the incidence of
HCC, which fully illustrates the importance of these hub
genes of HCC progression.

Taken together, we attempted to screen DEmRNAs that
may be related to HCC occurrence and development. 55
DEmRNAs and 4 hub genes had been identified as diagnostic
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Figure 4: GSEA pathway enrichment results based on median risk score grouping.
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Figure 5: Analysis of DEmRNAs and clinical relationship and patients’ prognosis. (a) Heat map of 4 gene expressions in the high- and
low-risk groups of risk model and clinicopathological differences between the two groups; (b) OS curves combined risk score and the
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biomarkers for HCC, which offered an effective basis for the
treatment of HCC. But this experiment still has certain limita-
tions. This study only conducted a pure bioinformatics analysis
through the GEO database, further verification in multicenter
clinical trials, and prospective studies is required. Nevertheless,
biological functions of these genes in HCC need further study.
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