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Background. Accurate pathological diagnosis of gastric endoscopic biopsy could greatly improve the opportunity of early diagnosis
and treatment of gastric cancer. The Japanese “Group classification” of gastric biopsy corresponds well with the endoscopic
diagnostic system and can guide clinical treatment. However, severe shortage of pathologists and their heavy workload limit
the diagnostic accuracy. This study presents the first attempt to investigate the applicability and effectiveness of AI-aided
system for automated Japanese “Group classification” of gastric endoscopic biopsy. Methods. In total, 260 whole-slide images of
gastric endoscopic biopsy were collected from Dalian Municipal Central Hospital from January 2015 to January 2021. These
images were annotated by experienced pathologists according to the Japanese “Group classification.” Five popular
convolutional neural networks, i.e., VGG16, VGG19, ResNet50, Xception, and InceptionV3 were trained and tested. The
performance of the models was compared in terms of widely used metrics, namely, AUC (area under the receiver operating
characteristic curve, i.e., ROC curve), accuracy, recall, precision, and F1 score. Results. Results showed that ResNet50 achieved
the best performance with accuracy 93.16% and AUC 0.994. Conclusion. Our results demonstrated the applicability and
effectiveness of DL-based system for automated Japanese “Group classification” of gastric endoscopic biopsy.

1. Background

Gastric cancer has long been acknowledged as a severe pub-
lic health problem across the globe [1] with a 5-year survival
rate of lower than 40% [2]. Despite the decrease of mortality
over the past few decades in some countries, it remains the
fourth leading cause of cancer death worldwide [3] and third
in China [4]. In China, it is still highly prevalent and
accounts for over 40% of new cases in the world [3, 4]. Most
gastric cancer cases are diagnosed at an advanced stage due
to its atypical symptoms in early stage and late aggressive
behaviors [5]. The situation is more severe in China, where
more than 60% of patients were diagnosed at an advanced
stage [6]. However, the treatment options are often limited
at this stage, resulting in unsatisfactory prognosis [7]. Early

diagnosis of gastric cancer enables early clinical intervention,
thus improving prognosis and survival rate. Currently,
timely and correct diagnosis of gastric cancer relies heavily
on pathological examination of gastric biopsy tissue, which
is performed by highly trained pathologists with an optical
microscopy. However, this process is tedious and time-
consuming. Moreover, the accuracy of pathological diagno-
sis of gastric biopsy is quite limited [4] due to the shortage
of pathologists worldwide. Such shortage leads to heavy
workload for pathologists and possible errors in diagnosis.

Therefore, there is a great need for automated and
accurate pathology diagnosis of gastric cancer. Several
applications of deep learning (DL) models have emerged in
digital pathology image analysis. The common task is either
binary classification task as tumor detection or three-way
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classification task as cancer classification. For instance,
Wang et al. [8] proposed GastricNet, a DL-based framework
for automatic gastric cancer identification. The model
achieved 100% accuracy for slice-based classification, out-
performing the state-of-the-art networks like DenseNet
and ResNet. Leon et al. [9] proposed two independent
approaches based on convolutional neural network (CNN)
for gastric cancer detection using histopathological image
samples. The first one analyzed the morphological features
of the whole image. The second one analyzed the local
characteristic properties. The histopathological image was
classified as either benign or malignant. Qu et al. [10]
performed the same task with a transfer learning strategy.
The model was first pretrained with ImageNet and further
fine-tuned with a well-annotated benign/malignant dataset.
A detection accuracy of up to 89.72% was achieved, showing
the promise of automated gastric cancer detection. On the
other hand, Sharma et al. [11] explored the deep learning
methods for classification in H&E-stained histopathological
whole slide images (WSIs) of gastric carcinoma. The WSIs
were classified as HER2+ tumor, HER2- tumor, or nontu-
mor. The model achieved an overall accuracy of 0.6690.
More recently, Iizuka et al. [12] investigated the feasibility
of CNNs and recurrent neural networks (RNNs) for classify-
ing WSI into adenocarcinoma, adenoma, and nonneoplastic,
achieving area under the curves (AUCs) up to 0.97 and 0.99
for gastric adenocarcinoma and adenoma, respectively. The
work described above suggests that DL models are promis-
ing for pathological image analysis for gastric cancer. How-
ever, clinical application remains challenging. The ultimate
purpose of automated pathological image analysis is to
better serve for decision making in treatment. However, this
work does not immediately translate to clinic decisions.

In China, the majority of pathologists are trained with
WHO classification [13] while most treatment options are
adopted from Japan [4, 5] with reference to the Japanese
Gastric Cancer Treatment Guidelines [14] (Japanese guide-
lines). However, the pathological classification adopted in
Japanese guidelines is the “group classification” of gastric
biopsy specimens (Groups 1~5), rather than WHO classifi-
cation. Thereby, the pathologists and gastroenterologists
speak different languages, and the pathological diagnosis
does not correspond well with clinical treatment decisions.

In this paper, the feasibility of deep learning models
for automated Japanese “Group classification” of WSIs of
gastric endoscopic biopsy was investigated. Five popular
DL models, VGG-16 [15], VGG-19 [15], ResNet-50 [16],
Xception [17], and InceptionV3 [18], were trained and
compared. Results showed that ResNet50 achieved the best
performance with an accuracy of 93.16% and an AUC of
0.994. To the best of our knowledge, this is the first
attempt to investigate the applicability and effectiveness
of AI-aided system for pathological group classification
of human gastric epithelial lesions.

2. Methods

2.1. Whole-Slide Image Preparation. In total, 260 cases of
gastric endoscopic biopsy from 173 patients (128 males

and 45 females, aged from 27 to 92 years old, mean ± std:
65:2 ± 11:4) with human gastric epithelial lesions were
collected from Dalian Municipal Central Hospital from Jan-
uary 2015 to January 2021. The WSIs were stained with
hematoxylin and eosin (H&E) and further produced at ×40
magnification (0.238μm/pixel) by the digital scanner (KF-
PRO-005). All procedures performed in studies involving
human participants were approved by the Medical Ethics
Committee of Dalian Municipal Central Hospital and in
accordance with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards. Informed
written consent was also obtained from individual partici-
pants included in the study. The workflow of the study is
illustrated in Figure 1.

2.2. Annotation Procedure. All the WSIs were annotated by
two experienced pathologists using an open-source annota-
tion tool labelme (https://github.com/wkentaro/labelme).
According to the Japanese “Group classification,” gastric
endoscopic biopsy can be classified as 5 groups (see
Figure 2 for illustration). The description of the 5 groups is
shown in Table 1. Briefly, it defines Group 1 as normal tissue
or nonneoplastic lesion tissue, Group 2 as tissue that is diffi-
cult to make diagnosis between neoplastic and nonneoplastic
lesions, Group 3 as adenoma, Group 4 as tissue with neo-
plastic lesion that is suspected to be carcinoma, and Group
5 as tissue with carcinoma [14].

The annotation tool, labelme, enables the pathologists to
segment a WSI into various regions and label each region
with the group they belong to. It has to be noted that differ-
ent regions from a single WSI could be labeled as different
groups, whereas a single region can only be labeled as a
single group. The annotation process was accomplished by
two pathologists. Pathologist 1 first drew the outline of each
region and annotated with Groups 1~5. The initial annota-
tion was then modified, confirmed, or verified by a senior
pathologist. An example of WSI with final annotation is
illustrated in Figure 3. The region outlined in red was anno-
tated as Group 5, while the region outlined in green was
annotated as Group 1. The remaining regions that were
not outlined were the regions that are hard to classify.

2.3. Preprocessing and Datasets. A big challenge faced in
computational pathology is the huge size of a WSI. A single
image can contain hundreds of millions of pixels. To apply
deep learning models, a WSI image was first segmented into
small tiles with 400 × 400 pixel size. The tiles with a tissue
area less than 50% were discarded. In clinical practice, in
order to increase diagnostic accuracy, pathologists often
observe the specimens under various magnifications of the
view (40×, 100×, 200×, and 400×). Therefore, we varied
the size of the tiles from 400 × 400 pixel, 600 × 600 pixel,
800 × 800 pixel to 1000 × 1000 pixel and established 5 data-
sets consisting of tiles with different sizes (see Table 2). All
datasets underwent the tile selection process described
above.

2.4. Model Training, Testing, and Evaluation. Each dataset
was split into a training set (60%), validation set (20%),

2 Computational and Mathematical Methods in Medicine

https://github.com/wkentaro/labelme


and testing set (20%). To avoid data imbalance, the splitting
process was done within each group. Five popular models
were trained, i.e., VGG16, VGG19, ResNet50, Xception,
and InceptionV3. Standard data augmentation techniques
(such as reflection, rotation, and shift) and early stopping
were employed to avoid overfitting. TensorFlow was used
as the framework to build DL models. All models were

trained/tested on one Nvidia GeForce RTX 2080Ti 8GB
GPU.

Commonly used metrics, namely, overall accuracy (Acc)
and area under the receiver operator characteristic (ROC)
curve (AUC), were used to evaluate the performance of the
models, which were calculated from comparing model
prediction with the annotation of pathologists. The accu-
racy, recall, precision, and F1 score were also calculated for
each group to provide detailed information of model
performance.

Acc represents the overall accuracy, which was defined
as the percentage of correctly predicted tiles in all tiles.

The recall for Group i was defined as

Recall = TP
TP + FN

, ð1Þ

where TP (true positive) is the number of tiles that were
annotated as Group i by pathologists and correctly predicted

Annotation Segmentation

Tile selection

Data split

Annotation Segmentation

Tile selecti

Data splitTraining
evaluation
testing

Figure 1: Workflow of the study.

Group 1 Group 2

Group 3 Group 4 Group 5

Figure 2: Typical examples of Groups 1~5 according to the Japanese “Group classification.” Framed in the left corner of each subfigure is
the typical appearance of the corresponding class.

Table 1: Description of Japanese “Group classification”.

Group Description

Group 1 Normal tissue or nonneoplastic lesion tissue

Group 2
Difficult to make diagnosis between neoplastic and

nonneoplastic lesions

Group 3 Adenoma

Group 4
Can be diagnosed as neoplastic lesion and is

suspected to be carcinoma

Group 5 Carcinoma
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as Group i by the model; FN (false negative) is the number of
tiles that were annotated as Group i but predicted incorrectly
as any other groups by the model. It represents the percent-
age of tiles that were correctly predicted by the model in all
tiles annotated as Group i by pathologists.

The precision for Group i was defined as

Precision =
TP

TP + FP
, ð2Þ

where FP (false positive) is the number of tiles that were
predicted as Group i but annotated as any other groups by
pathologists. It stands for the percentage of tiles that were
annotated as Group i by pathologists in all tiles that were
predicted as Group i by the model.

The F1 score, a metric that combines both precision and
recall, was defined as

F1 score =
2 × precision × recall
Precision + recall

: ð3Þ

3. Results

3.1. Among the Five Model Architectures, ResNet50 Performs
the Best.We first compared the performance of five different
models trained with Dataset 1 (see Table 3). Among the five
models, ResNet50 achieved the best performance with an
AUC of 0.988 and an Acc of 89.5%, followed by VGG16
and VGG19 with an AUC of 0.970 and 0.949, respectively.
We further analyzed the accuracy, recall, precision, and F1
score of the five models for each group individually (see
Figure 4). Results showed that ResNet50 achieved 90.33%,
81.56%, 88.33%, 81.15%, and 95.18% recall for Groups

Figure 3: An example of annotated WSI, segmented with labelme. Outlined in red was annotated as Group 5 while in green was annotated
as Group 1.

Table 2: Information of datasets.

Group 1 Group 2 Group 3 Group 4 Group 5

Number of WSIs 166 84 45 68 58

Dataset 1 (400 × 400) 45001 10274 17999 20845 41521

Dataset 2 (600 × 600) 21430 4307 7584 8967 17834

Dataset 3 (800 × 800) 10875 2291 4204 4931 9944

Dataset 4 (1000 × 1000) 7243 1387 2652 3044 6318

Dataset 5 (mixed size∗) 39548 7985 14440 16942 34096
∗Tiles with various sizes (600 × 600, 800 × 800, and 1000 × 1000) were mixed to construct Dataset 5.

Table 3: Test accuracy of five different models∗.

Model AUC Acc (%)

ResNet50 0.988 89.5

VGG16 0.970 83.1

VGG19 0.949 76.6

Xception 0.894 66.2

InceptionV3 0.881 63.0

∗The models were trained on Dataset 1.
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1~5, respectively, leading all the other models for all groups.
As also can be seen, ResNet50 outperformed all other
models in terms of all metrics (higher green bars in
Figure 4), except precision for Group 1, which is slightly
lower compared to VGG16 (89.08% compared to 90.22%).

3.2. The Best Performance Was Achieved with Dataset 5 with
Mixed Size of Tiles.We further tested the performance of the
ResNet50 models trained with different datasets. The AUC
and Acc are listed in Table 4. As can be seen, ResNet50 per-
formed the best when trained with Dataset 5 with an AUC of
0.994 and an Acc of 93.16%, which consists of tiles with
mixed sizes. Apart from the overall AUC and Acc, we also
calculated the accuracy, recall, precision, and F1 score of
ResNet50 models for each group trained with different data-
sets (Figure 5). Results showed that ResNet50 achieved the
highest accuracy, recall, precision, and F1 score for all
groups when trained on Dataset 5 (higher green bars in
Figure 5), except the highest recall for Group 5, which was
achieved when the model was trained on Dataset 3.
Figure 6 shows the normalized confusion matrix of
ResNet50 trained on Dataset 5 to better illustrate the model
performance.

4. Discussion

The present study is the first attempt to investigate the feasi-
bility of deep learning models for automated Japanese
“Group classification” based on WSIs. Specifically, we
trained 5 popular CNN models, namely, VGG16, VGG19,

ResNet50, Xception, and InceptionV3. Results showed that
ResNet50 achieved the leading performance in terms of
AUC and Acc. This is not surprising since comprehensive
empirical evidence has shown that residual network can gain
accuracy from considerably increased depth. To apply DL
models to huge WSIs, each WSI was first segmented into
small tiles. We varied the size of tiles and built five datasets
that constitute tiles of different sizes (see Table 2). In clinic,
pathologists observe the biopsy under various magnifica-
tions of view to enhance diagnosis. Similarly, a dataset with
mixed sized tiles was also constructed in this work. We
further trained ResNet50 with different datasets. Results
showed that when trained with mixed sized tiles (Dataset
5), the model achieved the best performance, with an AUC
of 0.994 and an Acc of 93.16%. With tiles of different sizes,
the model is able to “see” the samples at various spatial
scales, as the pathologists observe the biopsy under various
magnifications of view. Our results suggest that DL models

Group 1 Group 2 Group 3 Group 4 Group 5

93.12% 97.01% 97.33% 95.44% 96.05%
90.94% 94.32% 95.80% 91.51% 93.65%
89.44% 93.04% 92.52% 86.60% 91.54%
81.64% 91.58% 91.29% 85.43% 82.55%
77.62% 92.15% 89.55% 84.74% 81.89%
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Figure 4: Performance (accuracy, recall, precision, and F1 score) of five different models for each group evaluated on the test set. All models
were trained on Dataset 1. The values of the metrics for ResNet50 are highlighted above the corresponding green bars.

Table 4: AUC and accuracy of ResNet-50 models trained on
different datasets.

Dataset AUC Acc (%)

Dataset 1 (400 × 400) 0.988 89.48%

Dataset 2 (600 × 600) 0.989 90.64%

Dataset 3 (800 × 800) 0.983 88.09%

Dataset 4 (1000 × 1000) 0.979 87.21%

Dataset 5 (mixed size) 0.994 93.16%
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Group 1 Group 2 Group 3 Group 4 Group 5

Dataset 1 93.12% 97.01% 97.33% 95.44% 96.05%
Dataset 2 94.10% 96.76% 97.28% 95.94% 97.19%
Dataset 3 93.16% 96.39% 96.14% 94.48% 96.01%
Dataset 4 91.25% 96.78% 96.15% 94.86% 95.37%
Dataset 5 95.42% 97.91% 98.17% 97.09% 97.72%
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Dataset 5 94.06% 83.07% 94.40% 89.99% 95.68%
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Figure 5: Performance (accuracy, recall, precision, and F1 score) of ResNet50 evaluated on the test set. The models were trained on five
different datasets. The values of the metrics for ResNet50 trained on Dataset 5 are highlighted above the green bars.
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Figure 6: Normalized confusion matrix of ResNet50 on the test set. The model was trained on Dataset 5.
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for automated Group classification of neoplastic lesion
biopsy is promising and could help relief the workload of
pathologists and increase diagnosis accuracy.

A closer investigation suggested that such improvement
lies in a much higher recall for Group 2 (88.48% compared
to 81.56%, 74.68%, 64.63%, and 67.51%) and Group 4
(90.70% compared to 81.15%, 83.21%, 76.27%, and
79.64%) and a fairly higher recall for Group 3 (91.07% com-
pared to 88.33%, 87.61%, 85.14%, and 81.32%). The correct
recognition of Groups 2~4 gastric biopsy is challenging in
clinical practice. Meanwhile, it is critical for early detection
of gastric cancer, enabling good prognosis with proper
intervention. Therefore, higher recall for Groups 2~4 is
of high clinical importance. Our results suggest that train-
ing the model with mixed sized tiles enables a higher
recall for Groups 2~4.

In addition, our results suggest that the size of tiles has
an effect on the model performance. An interesting trend
revealed by our results is that the model degenerates when
trained with bigger tiles. Two possible reasons may explain
this. First, when segmented into big-sized tiles, the number
of tiles is smaller. The samples in the training set could be
insufficient for model training, leading to underfitting of
the model. Second, the big-sized tiles are more likely to
contain unwanted information, increasing the difficulty of
model training.

There is currently no standardized treatment protocol
that is globally accepted, and clinical practice alters across
countries. This is mainly due to the fact that gastric cancer
populations from different countries have distinct etiology,
epidemiological characteristics, and clinicopathological fea-
tures, especially between the East and the West [2, 4, 5].
There are several pathological diagnosis systems of gastric
cancer around the world. Two main systems are the
“WHO classification of tumors of digestive system” [13]
and the Japanese “Group classification” [14]. Most patholo-
gists in China are trained with the “WHO classification”
while the gastroenterologists are trained with the Japanese
guidelines. Such discrepancy causes a reduction in collabora-
tion efficiency between the pathologists and gastroenterolo-
gists. Therefore, current pathological diagnosis system in
China does not fully play its due role in guiding clinical
treatment. The Japanese “Group classification,” on the other
hand, corresponds well with the endoscopic diagnostic sys-
tem and could provide direct guidance for clinical treatment.
Another problem that cannot be ignored in China is that the
pathologists are extremely in short. Therefore, AI-aided
automatic system for Japanese “Group classification” of
gastric epithelial lesions is of clinical importance and the
present study is the first attempt. If validated, such a system
could be applied, not only to relieve the workforce of pathol-
ogists and improve their diagnosis accuracy but also to
better translate pathological diagnosis to clinical practice.

To the best of our knowledge, the present study is the
first to investigate the feasibility of automated Japanese
“Group classification” of gastric biopsies based on patholog-
ical images. Automated pathological image analysis for
human gastric epithelial lesions is not a novel topic. Most
studies focus on early cancer diagnosis or cancer classifica-

tion and treat the task as a binary [9, 10] or three-way clas-
sification problem [19]. For instance, Qu et al. [10] proposed
a step-wise fine-tuning approach for gastric pathology image
classification, where the model was first pretrained with
ImageNet and further fine-tuned with a well-annotated
benign/malignant dataset. Similarly, Leon et al. [9] proposed
a CNN-based approach to classify gastric histopathological
images as benign or malignant. On the other hand, Li et al.
[19] proposed a DL-based approach for early diagnosis of
gastric cancer, where non-precancerous lesion, precancerous
lesion, and gastric cancer were automatedly differentiated.
Sharma et al. [11] proposed a convolutional neural network
for cancer classification based on immunohistochemical
response and achieved 0.669 accuracy, in which the WSIs
of surgical sections were classified as HER2+ tumor,
HER2- tumor, or nontumor.

A common limitation of DL models for medical applica-
tions is that their interpretability is very weak. Their decision
should be suggestive or assisted, rather than deterministic.
However, they are still quite helpful. One important applica-
tion of the present study is to quickly screen out Group 1
and Group 5 biopsy, which is defined as normal tissue or
nonneoplastic lesion tissue and carcinoma, respectively.
Although the pathological diagnosis of Group 1 and Group
5 is relatively easy, it still takes time. Such automated screen-
ing could greatly reduce the workload of pathologists so that
they have more time spending on other suspicious speci-
mens, thus increasing the diagnosis accuracy, as well as
efficiency. ResNet50 achieved 7.24% false-negative rate for
Group 1 and 4.32% false-positive rate for Group 5, respec-
tively, suggesting its potential to be applied as so. The
false-positive rate and false-negative rate for each group
are provided in Table 5. The false-negative rate for Group
5 indicates the rate of missed diagnosis of carcinoma, which
can have a more negative effect on the patient. Therefore, a
low value is highly expected. Our results showed 3.18%
false-negative rate for Group 5, which is acceptable for an
assistive screening system. Moreover, the inference time for
one WSI is about 30 seconds, which is shorter than conven-
tional diagnosis by pathologists with a microscope. The
elapsed training time is about 7 hours.

One limitation of the present study is that all WSIs were
collected from one center and produced by an identical
digital scanner. WSIs from multiple centers with various
digital scanners should be included for further validation
of this approach.

5. Conclusions

This paper presents the first attempt to investigate the appli-
cability of convolutional neural networks for automated

Table 5: The false-positive rate (FPR) and false-negative rate
(FNR) of each group.

Group 1 Group 2 Group 3 Group 4 Group 5

FPR 5.94% 16.93% 5.60% 10.01% 4.32%

FNR 7.24% 11.52% 8.93% 9.30% 3.18%
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Japanese “Group classification” of WSIs of gastric endo-
scopic biopsy. Five popular CNNs were trained and tested.
Results showed that ResNet50 achieved the best perfor-
mance with an accuracy of 93.16% and an AUC of 0.994.
Our results demonstrated the applicability and effectiveness
of DL-based system for automated Japanese “Group classifi-
cation” of gastric endoscopic biopsy.
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