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As the concept of integrating global neuron coupling effect is increasingly accepted, investigating causal connection increasingly
requires the intervention of large-scale analysis. In this study, a large-scale brain network analysis was carried out by a description
length guided framework, which involves a unified Granger causality analysis (uGCA) method and now integrates the concept of
large-scale analysis. This will be helpful to make a more comprehensive determination for causal connection among the global
brain regions. Distinct from the conventional GCA, which involves a two-stage scheme consisting of Akaike information
criterion or Bayesian information criterion (AIC/BIC) and F-test to obtain a causal effect, a unified guided framework can
ensure more reliable results while eliminating some confounding influences among network nodes. Then, we performed
large-scale network simulation experiments involving 13 nodes; it was found that our proposal was more accurate and
robust in guiding the causal connection investigation of large-scale networks. When it comes to the resting-state fMRI datasets,
we studied a 90-node network selected from the Anatomical Automatic Labeling (AAL) template. Then, combining a K-means
clustering method, we found that most brain nodes in the connection network obtained by uGCA methods were gathered into
the corresponding functional brain regions and functionally related regions cooperated with each other. Compared to
conventional GCA, their results were more consistent with clinical and anatomical priors. Moreover, in studies of several
large-scale functional networks involving default mode network (DMN), dorsal attention network (DAN), and frontoparietal
control network (FCN), the uGCA method more clearly revealed their empirical cooperation. As a brain with numerous nodes
and massive connections, a unified large-scale analysis method is of great significance for the integration of causal connections
in the whole brain network in the future.

1. Introduction

With the rise of a notion that the brain works as a union of
complex neural circuits (functional integration) at different
spatial scales, more information should be taken into
account in describing brain region couplings; thus, more
attention should be paid to investigating causal connection
among brain regions. Moreover, dynamic coupling and syn-
chronous oscillation of a large number of neurons exist in
the brain; thus, aliasing and chaos may occur in some causal
connectivities between neuron clusters at the space-time
level. As a data-driven procedure, Granger causality analysis
(GCA) does not require a biophysical model for investigat-

ing causal connections. In such a huge and complex system
(the brain), GCA thus may be admirable to investigate these
causal couplings. Meanwhile, due to the presence of
intermediary external and potential nodes in the real-world,
indirect connections and synchronous instantaneous con-
nections will be hard to eliminate. Therefore, in order to
describe the internal coupling between brain regions more
unambiguously and accurately, investigating causal connec-
tion increasingly requires the intervention of large-scale
analysis [1–3].

In conventional GCA, many efforts and achievements had
been made, for example, conditional GCA, partial GCA,
kernel GCA, and Geweke-GCA [4–7]. However, all these
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developments still remain the framework of original GCA; it is
actually a two-stage scheme that uses AIC/BIC to determine
candidate models and then establishes causal connection
through the F-test. Therefore, we collectively refer to them
as conventional GCA. But in a purely mathematical sense,
these two stages are generalized model selection issues;
straight joint of two different mathematical theories will cause
inherent relation to be discontinuous in the quantitative
modeling process, namely, bringing in singularity. Meanwhile,
a subjective selection of confidence level is one of the stages of
conventional GCA, which will lead to a lack of uniformity of
research results and bring in some performance issues.
Another problem brought about by the F-test is a pairwise
comparison that candidate models need to compare with each
other through an intermediate model, which will increase
algorithm complexity. And selection results by pairwise F
-statistics sometimes depend on the initial targeted model
and search path heavily, especially in a large-scale network.
It is worth noting that selecting and using specific F-statistics
has become very careful in current scientific research, and its
statistical significance has also caused extensive discussion
[8–11]. In general, some inherent issues still remain to be dealt
with in conventional GCA which are the inconsistency of
mathematical theories, the subjective selection of confidence
level, and the algorithm complexity caused by a nested model.
To alter the conventional GCA framework, thus we proposed
a unified model selection approach for GCA based on the
minimum description length (MDL) principle, called uGCA,
and we had demonstrated its effectiveness and priority over
the conventional GCA in our previous studies [12, 13].

Recur to the novel uGCA framework [12], which over-
comes some inherent drawbacks of the conventional GCA;
further, large-scale network analysis should be absorbed to
improve it. Compared to conventional GCA, uGCA unifies
these two generalized model selection issues into a descrip-
tion length guided framework. Specifically, it can integrate
all candidate data into the same framework, so the estab-
lished data model will be under the same context and can
be used for large-scale network analysis more directly and
effectively. This unified methodological framework is consis-
tent with existing scientific theories and experiments, which
will bring some advantages for future experimental research
on mutiscale. As is well known, there are still many uncer-
tainties in the study of causal connectivities in brain regions,
we should try to avoid introducing new uncertain factors in
the process of data processing and modeling, such as the def-
inition of brain nodes is ambiguous, and causal connections
of brain networks may exist on different time scales. There-
fore, adhering to the principle of parsimony, our uGCA
framework intends to integrate the whole process of causal
investigating together and automatically returns to the most
suitable descriptive model. Such a unified framework will be
suitable for causal investigation on large-scale networks,
which can deal with indirect or spurious connectivities more
easily. In this paper, we will focus on the direct comparisons
in synthetic data and fMRI data experiments between uGCA
and conventional GCA to illustrate the priority of the uGCA
to conventional GCA in large-scale network analysis.

The rest of this article is organized as follows. Firstly, a
large-scale network investigation procedure using the uGCA
framework has been stated. Then, we illustrate the advan-
tages of several uGCA forms over the conventional two-
stage GCA in a 13-node synthetic data experiment; results
showed that most causal networks identified by uGCA were
closer to its ground truth. Then, in resting-state fMRI data-
sets, direct comparisons between the uGCA and conven-
tional GCA were carried out, which involved identifying
large-scale causal connections in 90 region networks of the
AAL template and several intrinsic functional networks,
respectively. By contrast, causal connections identified by
uGCA showed some clustering networks which were consis-
tent with existing clinical and anatomical experience, espe-
cially in three large-scale functional networks. At last, the
corresponding explanations are presented and we demon-
strated the comparison between conventional two-stage
GCA and our proposal.

2. Description Length and Unified Granger
Causality Analysis

In the conventional GCA, it involved a two-stage scheme
which actually both are generalized model selection issues.
Therefore, inspired by coding theory, we considered a novel
causal investigation method based on coding the candidate
model, which can describe data models more succinctly. With
the help of the MDL principle, which provides a generic solu-
tion for the model selection issue [14–17] and regards the
probability distribution as a descriptive standpoint to choose
the model with the shortest description of data, we propose a
unified description length guided GCA method, namely,
uGCA. Compared with the two-stage scheme of conventional
GCA, the uGCAmethod fixes attention on unifying the model
complexity term and error term into a unified description
length guided framework then to determinate causal connec-
tion with their description length, in which it can avoid the
inconsistency of applying several mathematical theories, the
subjectivity of selecting confidence levels, and pairwise com-
parison of nested models. Essentially, uGCA framework still
retained the foundation of the original GCA, Y Granger-
cause X when Y provides predicted information for X; the dif-
ference is that uGCA altered two different mathematical the-
ory procedures (AIC/BIC and F-test) of GCA into a single
theory (description length guided framework with help of
MDL). In this way, uGCA is essentially a more rigorous ver-
sion than the conventional GCA.

2.1. Description Length Guided Causal Investigation. Firstly,
considering two variables, XN and YN , the description
models associated with XN

Xt = 〠
n1

j=1
a1iXt−j + ε1t ,

Xt = 〠
n2

j=1
a2iXt−j + 〠

n3

j=1
b2iYt−j + ε2t ,

8>>>>><>>>>>:
ð1Þ
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where εt is fitting residual. Distilling the sense of Granger
causality, causal influence from Y to X within uGCA frame-
work is defined by, that is, causal identification between two
variables:

FY⟶X = LX − LX+Y , ð2Þ

where LX denotes the shortest description length of
restricted model in Equation (1), and LX+Y denotes the
shortest description length of unrestricted model in
Equation (1) after adding YN . Causal influence from Y to
X existed when FY⟶X > 0, or else, there is no causal effect
from Y to X.

Accessing the concept of conditional Granger causality,
the influence from Y to X can be identified while controlling
the effect from another node Z to X. This joint representa-
tion is

Xt = 〠
m1

j=1
a3iXt−j + 〠

m2

j=1
b3iZt−j + ε3t ,

Xt = 〠
m3

j=1
a4iXt−j + 〠

m4

j=1
b4iYt−j + 〠

m5

j=1
c4iZt−j + ε4t:

8>>>>><>>>>>:
ð3Þ

Thus, if FY⟶X > 0, causal influence from Y to X condi-
tioned Z is given by description length in (3):

FY⟶X∣Z = LX+Z − LX+Y+Z , ð4Þ

where LX+Z denotes the shortest length of description model
in Equation (3) after joining ZN . And LX+Y+Z is the optimal
length of description model in Equation (3) after joining XN
and ZN . Same as above, causal influence from Z to X condi-
tioned Y is

FZ⟶X∣Y = LX+Y − LX+Y+Z: ð5Þ

In this case, if both FY⟶X > 0 and FZ⟶X > 0 exist, con-
ventional GCA identifies causal effects by pairwise compari-
son of nested models, which has been illustrated in our
previous study [12]. Intuitively, in this unified framework,
all candidate models can be described as description length
and then compared freely. Unlike the nested models in the
conventional GCA scheme, uGCA can release the algorithm
complexity due to freely choosing the number of compari-
son models. Thus, if both FY⟶X > 0 and FZ⟶X > 0 exist,

FY ,Z⟶X =min LX+Y , LX+Zð Þ − LX+Y+Z: ð6Þ

If FY ,Z⟶X > 0, it means that both Y and Z have a direct
effect on X. But there will be two cases to be dealt with when
FY ,Z⟶X < 0. One is that FY ,Z⟶X = ðLX+Y − LX+Y+ZÞ < 0
existed, it indicates Y impacts on X directly, and Z has an
indirect causal effect on X. The other is FY ,Z⟶X = ðLX+Z −
LX+Y+ZÞ < 0; it implies a direct causal effect from Z to X.

In general, uGCA provides the optimal description
length of parametric model and then identify causal effect
through them, which the whole causal investigation proce-

dure only involves the description length. That is, the opti-
mal description length only involves modeling the
parametric model of candidate variables, like AIC/BIC. As
in (6), their optimal description lengths can be compared
when multipathways to the same node that exist, not like
that conventional causal effect mediated by the pairwise
nested models, in which F-statistics cannot be compared
directly. Consequently, uGCA methods conveying a unified
framework are more concise and have mathematical rigor,
which is more in line with Occam’s razor, or the principle
of parsimony.

2.2. Large-Scale Network Analysis. Extending the large-scale
network analysis into our uGCA framework to capture more
information between brain regions coupling, more related
nodes should be accommodated into causal investigation.
Figure 1 shows the main process of large-scale network anal-
ysis: a facilitated classification for the target node associated
network which contains target T and all its ancestors. All
indirect connections can be grouped into two kinds of
spurious connectivities that one sort of node X has only a
single pathway to target T, and the other sort of node Y
has more than two distinct pathways. In Figure 1(a), we
see that direct parents of target T are P1, P2, P3, and P4.

First, through the bivariate uGCA procedure, we can
obtain all the direct and indirect parent nodes of the target
node T. In Figure 1(a), these nodes were grouped into a set
A0 = ðP1 ⋯ P4 ; X1 ⋯ Xn ; Y1 ⋯ ;YnÞ. Second, to further
determine whether these connectivities obtained above were
direct or indirect, an ergodic process was executed. Consid-
ering the indirect connectivities mediated by a single path-
way, which just contains three nodes, we can eliminate
them by accommodating the conditional uGCA. Theoreti-
cally, all single pathway nodes from set A0 were removed.
Thus, the remaining set only contained direct parent node
class P and indirect node class Y associated with several
pathways, named A1 = ðP1 ⋯ P4 ; Y1 ⋯ ;YnÞ, shown in
Figure 1(b). For each node in A1, they impacted target node
T through several direct parent nodes. Similarly, we elimi-
nated these indirect connectivities by mediating several
nodes, rather than a single node in the conditional proce-
dure. In this process, the scale of conditioned nodes was
selected by an ergodic process of the global network. Until
now, we removed all indirect connectivities that were condi-
tioned on several direct parent nodes, and then, we obtained
a sparse network that only contained direct nodes to target
node T. In Figure 1(c), node class Y is further deleted from
A1, showing the remaining set as A2 = ðT1 ⋯ :T4Þ.

In our uGCA guided large-scale network analysis, it was
not restricted by pairwise comparison, which meant several
different pathway selections can be compared freely. In this
unified guided framework, description models for dataset
were mapped into a unified space which guaranteed coher-
ence of processing benchmark. Meanwhile, when faced with
multiple candidate models for comparison, our uGCA
framework showed advantages in a succinct modeling way,
which can automatically regress to an optimal model and
determine the causal connection [12].
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2.3. Different Forms of Description Length Model in uGCA.
The following is a causal investigation of which different
forms of uGCA guided for linear AR model. Particularly,
with the help of genetic solution of model selection in
MDL, the shortest length of parametric model in uGCA
(that is, the L in Equations (2) and (6)) is carried out. Vari-
able xn = fx1,⋯, xng is given:

xt = β1xt−1 + β2xt−2+⋯+βkxt−k + εt , ð7Þ

where t = 1,⋯,m, and m is more than k to keep the solution
determined. For describing xt , it arrives at

f xn ∣ xt , β, τð Þ = 1
2πτð Þm/2 e

− 1/2τð Þ〠
t

xt−〠
k

βkxt−k

 !
: ð8Þ

2.3.1. uGCA-TP: Crude Two-Part Coding Scheme. In uGCA-
TP, this two-part coding scheme divided the descriptive
model into a fitting error term and a parameter literal coding
term [18]. Its parameter vector consists of data θ = ðk, ξÞ
and ξ = ðτ, β1,⋯,βkÞ, where ξ ∈ Rk+1, τ = ξ0 is the variance-
parameter of zero-mean Gaussian distribution model for εt
. Let RSS denote the residual sum of squares in the parame-
ter estimation. Then, this description length is given as

LuGCA−TP =m ln
ffiffiffiffiffiffiffiffi
2πτ

p
+
RSS
2τ

+ 〠
k

i=0
ln

∣ξi ∣
δ

+ ln k + 1ð Þ,

ð9Þ

where δ is the precision, and it is optimal to choose 1/
ffiffiffiffi
N

p
[16, 19, 20]. Particularly, ∣ξi ∣ /δ < 1 should be ignored.

2.3.2. uGCA-MIX: g-Prior for Parameter Space. For the
uGCA-MIX, it provides some priors for describing parame-
ter space, which is a mixture form represented as a member
of the natural conjugate family of priors for an ordinary lin-
ear regression model, namely, normal inverse-gamma distri-
butions [20]:

ω β, τð Þ∝ τ −d+k+2ð Þ/2e− β−bð Þ′cΣ β−bð Þ+a/2τ, ð10Þ

where Σ = X′kXk =mS (X′k = fxi,t−kg) is a k ×m matrix
defined by the values of regressor variables [21]. [20] pro-
vided a special solution that a = d = 0, b = ð0, ::, 0Þ, and [22]
christened a specification the g-prior. The value of Σ
provided a closed-form expression for ĉ in [16], namely,
1/ĉ =max ðF − 1, 0Þ where F = ðm − kÞðXt ′Xt − RSSÞ/ðk ·
RSSÞ. Thus, R2 is the usual squared multiple correlation
coefficient; the mixture form is given:

T

P1

X Y

P2 P3 P4

(a)

T

Y

P1 P2 P3 P4

(b)

T

P1 P2 P3 P4

(c)

Figure 1: Large-scale network analysis procedure within uGCA. (a) All the direct and indirect parent nodes of the target node T. (b) Direct
nodes P and indirect nodes Y with several pathways. (c) Only contains direct nodes P.
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Figure 2: The causal connectivities between 13 nodes; the red one is the driving node.
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LuGCA−MIX =

m
2

ln
RSS
m − k

+
k
2
ln F + ln m, ifR2

⩽
k
n
,

m
2

log
Xt ′Xt

m
+
1
2
log m, otherwise:

8>><>>:
ð11Þ

Finally, a simple approximation to this form is applied to
derive the Stochastic Information Complexity (SIC) [16]:

SIC =
m − k − 2

2
logRSS +

k
2
log m +

1
2
logdet Σ½ �: ð12Þ

In this context, mixture form adapts to behave like
Bayesian model selection.

2.3.3. uGCA-NML: Minimax Solution for Inherent
Redundancy. In the earlier two-part code scheme, it remains
some inherent redundancy. Combining Fisher information
to remove it, a sharper description length with stochastic
complexity and universal process is derived for a class of
parametric processes [23]. This description form is moti-
vated by the maximum-likelihood estimate (MLE) which
requires satisfying the central limit theorem [21, 24]. Thus,
the nonintegrability of MLE is a key issue to be solved.
Firstly, Fisher information is given by

∣I β, τð Þ∣ = Sj j
2τk+2

, ð13Þ

and the integral of its square root dealt by [21, 23, 24] is

ð
βSβ≤R

ð∞
r0

I β, τð Þj j1/2dτdβ = 2 ∣ S ∣ð Þ1/2 R
τ0

� �k/2 Vk

k
, ð14Þ

where VkR
k/2 = 2ðπRÞk/2/ðk ffiffiffiffiffiffiffi

∣S ∣
p

Γðk/2ÞÞ is the volume of a k
-dimensional ball B = fβ′Sβ ≤ Rg. Lower bound τ0 is
determined by precision of data written; bτ0 = RSS/m and

R̂ = ðbβ ′Xt−k′ Xt−k
bβÞ/m are given by MLE. Thus, description

length in uGCA-NML arrives at

LuGCA−NML =m ln
ffiffiffiffiffiffiffiffi
2πτ

p
+
RSS
2τ

+
k
2
ln

m
2
− logΓ

k
2

� �
+ k
2
log

R̂
τ0

− 2 log k:

ð15Þ

3. Experiment

3.1. Large-Scale Network Simulation. To verify the effective-
ness of our uGCA method, we considered synthetic data
experiments which contained 13 nodes in the network, seen
in Figure 2. And this network was given by

x 1, ið Þ = 0:89x 1, i − 1ð Þ − 0:29x 1, i − 2ð Þ + ε1,

x 2, ið Þ = 0:79x 1, i − 1ð Þ − 0:27x 1, i − 2ð Þ + 0:88x 2, i − 1ð Þ
−0:37x 2, i − 2ð Þ + ε2,

x 3, ið Þ = 0:87x 2, i − 1ð Þ − 0:37x 2, i − 2ð Þ + 0:83x 3, i − 1ð Þ
−0:28x 3, i − 2ð Þ + ε3,

x 4, ið Þ = 0:75x 2, i − 1ð Þ − 0:36x 2, i − 2ð Þ + 0:73x 3, i − 1ð Þ
−0:29x 3, i − 2ð Þ + 0:82x 4, i − 1ð Þ − 0:28x 4, i − 1ð Þ + ε4,

x 5, ið Þ = 0:805x 4, i − 1ð Þ − 0:35x 4, i − 2ð Þ + 0:81x 5, i − 1ð Þ
−0:37x 5, i − 2ð Þ + ε5,

x 6, ið Þ = 0:65x 5, i − 1ð Þ − 0:31x 5, i − 2ð Þ + 0:77x 6, i − 1ð Þ
−0:32x 6, i − 2ð Þ + 0:71x 7, i − 1ð Þ − 0:35x 7, i − 2ð Þ + ε6,

x 7, ið Þ = 0:68x 6, i − 1ð Þ − 0:34x 6, i − 2ð Þ + 0:77x 7, i − 1ð Þ
−0:31x 7, i − 2ð Þ + 0:62x 8, i − 1ð Þ − 0:36x 8, i − 2ð Þ + ε7,

x 8, ið Þ = 0:66x 6, i − 1ð Þ − 0:39x 6, i − 2ð Þ + 0:64x 7, i − 1ð Þ
−0:38x 7, i − 2ð Þ + 0:69x 8, i − 1ð Þ − 0:35x 8, i − 2ð Þ + ε8,

x 9, ið Þ = 0:68x 8, i − 1ð Þ − 0:25x 8, i − 2ð Þ + 0:76x 9, i − 1ð Þ
−0:37x 9, i − 2ð Þ + ε9,

x 10, ið Þ = 0:71x 9, i − 1ð Þ − 0:31x 9, i − 2ð Þ + 0:75x 10, i − 1ð Þ
−0:35x 10, i − 2ð Þ + ε10,

x 11, ið Þ = 0:6 x 10, i − 1ð Þ − 0:40x 10, i − 2ð Þð + 0:78x 11, i − 1ð Þ
−0:32x 11, i − 2ð Þ + ε11,

x 12, ið Þ = 0:65x 10, i − 1ð Þ − 0:38x 10, i − 2ð Þ + 0:69x 11, i − 1ð Þ
−0:36x 11, i − 2ð Þ + 0:75x 12, i − 1ð Þ − 0:33x 12, i − 2ð Þ
  − 0:74x 13, i − 1ð Þ + 0:38x 13, i − 2ð Þ + ε12,

x 13, ið Þ = 0:67x 12, i − 1ð Þ − 0:37x 12, i − 2ð Þ + 0:73x 13, i − 1ð Þ
−0:28x 13, i − 2ð Þ + ε13,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
ð16Þ

where εi denotes the noise terms. To ensure the effectiveness,
synthetic data should be performed stationarity analysis and
passed before being allowed to be further used. Then, firstly,
it is necessary to test the anti-interference ability of uGCA
against different noises in a large-scale network; thus, noise
terms were ranged from 0.2 to 0.6.

Figure 3 illustrates causal networks obtained by several
uGCA forms and conventional GCA. Obviously, the noise
terms had few effects on all methods. For true connections
(the real connection edges in Figure 2), both several uGCA
forms and conventional GCA have an admirable property.
But as shown in our previous research [13], uGCA-MIX
had more chances of these false negatives in low noise level
because of introducing some priors on estimated parameter
distribution, as can be seen from the connection edge 1⟶2.
Then, for the other two forms, uGCA-TP and uGCA-NML
had a relatively stable performance in the true positive rate
(TPR). But we found that it was not accurate enough to
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identify the causal connection 13⟶12; none of the methods
can ensure a high TPR. As for false connectivities (the nonex-
istent connection edges in Figure 2), the advantages of uGCA
methods have emerged distinctly. Specifically, uGCA-MIX
and uGCA-NML had significantly higher true negative rates
(TNRs). Even for uGCA-TP, its false positives were also stifled
at a low level. However, poor identification in false connec-
tions was obvious for conventional GCA, at least for these
two confidence levels in the experiment. Particularly for
4⟶6, 5⟶7, 5⟶8, and 9⟶12, it had quite a few false
positives whatever its confidence level. Although results
showed that increasing confidence level improved its TNR,
the subjectivity of confidence level selection still needs to be
solved. In other words, the ground truth is given in a synthetic
data experiment, but in real data, its prior knowledge is usually
absent, which leads to the lack of a uniform standard to choose
a confidence level. In general, all methods had a good anti-
interference ability for noise. The uGCAmethods can identify
true connections with a high TPR while ensuring high TNR to
eliminate false connections, but conventional GCA can not
guarantee a high TNR.

To further confirm the validity of the uGCA method in
large-scale network analysis, we varied data length from 200
to 1000. Several uGCA forms and conventional GCA showed
their own characteristic performance seen in Figure 4. Unlike
varying the noise level, all methods were affected by varying
data lengths and had different performances. For conventional
GCA, it identified all true positives with high accuracy when

data length was above 500. When data length increased from
200 to 1000, conventional GCA eliminated some spurious
connections but led to an increase in some false positives.
For example, causal effects of 4⟶6, 5⟶7, and 9⟶12 were
eliminated to a low level while the rate of false positives of
5⟶8, 9,10,11⟶8 increased to a significant level, especially
for 5⟶8. And lots of false connections can not be fully elim-
inated even varying data lengths from 200 to 1000. Distinct
from conventional GCA, the uGCA method maintained a
positive correlation with data length, although several forms
had slight differences. For uGCA-TP form, except for the con-
nection edge of 13⟶12, it ensured very high TPRs when data
length was 300. Then, varying data length to 500, all true pos-
itives were fully identified. And uGCA-TP can also eliminate
some false positives as its data length increased. As for
uGCA-MIX, it achieved higher accuracy in identifying true
positives within a shorter data length than uGCA-TP. Mean-
while, uGCA-MIX stifled false positives to a very low level;
thus, it obtained a very sparse connection network.When data
length was 1000, uGCA-MIX almost identified a connection
network near to the ground truth (the synthetic network in
Figure 2) for every synthetic data sample. Same as uGCA-
MIX, uGCA-NML almost obtained a “ground truth network”
in every synthetic sample when the data length was 1000. As
for identifying false positives, uGCA-NML seemed to be more
admirable than uGCA-MIX; it had the highest accuracy in
eliminating these spurious connections. Similarly, except for
the connection edge 13⟶12, it all acquired high accuracy
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Figure 3: Causal connectivities obtained by several uGCA forms and conventional GCA. The top row represented results in low noise level
(var = 0:2); the middle was middle noise level (var = 0:4); the bottom denoted high noise level (var = 0:6).
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in identifying these true positives when data length was above
300 and fully obtained these connections when data length
was 500. Therefore, due to the increase of data length, the per-
formance of causal investigation in uGCA-NML had the most
obvious improvement. To sum up, all the methods have a
good anti-interference ability. Varying data length has no
improvement for the performance of conventional GCA. By
contrast, with the increase of data length, all uGCA forms have
different degrees of improvement in all aspects which
uGCA-NML is the most obvious. Specifically, uGCA-MIX
can ensure relatively high TPR and TNR when its data
length is short, and increasing the data length can further
improve its performance. The uGCA-NML seems to rely
on relatively long data length to ensure admirable identifi-
cation ability, and it is not affected by noise. The uGCA-
TP can be regarded as a conservative choice.

3.2. Resting-fMRI Data

3.2.1. Subjects. We downloaded freely available resting-state
fMRI data from the website http://fcon_1000.projects.nitrc
.org/indi/pro/nki.html, which all resting-state data on this
NITRC website are freely available. The dataset comprised
37 male participants and 66 female participants (ages 20 ~ 23;
mean age, 21.5 years; some left-handed).

3.2.2. AAL within uGCA. To further investigate the charac-
teristics of uGCA method in large-scale network analysis, it

is necessary to execute verification in real data. Within
resting-state fMRI data, we applied several uGCA forms to
identify causal connections of 90 brain regions in the
Anatomical Automatic Labeling (AAL) template present by
the Montreal Neurological Institute (MNI).

Figure 5 illustrates the causal connections obtained by
uGCA-MIX in 90 regions; it was the most sparse network.
At the same time, according to their causal connection net-
works, it seemed that there were also some functional clus-
ters between 90 regions. In order to show the functional
networks obtained by several uGCA forms more clearly,
we presented 90 ∗ 90 connection matrices obtained by them,
seen in Figure 6. Obviously, near the diagonal of these con-
nection matrices, causal connections between some brain
regions showed functional specialization. Meanwhile, the
presence of causal connections elsewhere (not in the diago-
nal) indicated that these brain regions integrated to work
together to cope with a specific task, scenario, stimulus,
etc., which was consistent with the concept of functional
integration of the brain.

Next, to further investigate the connection network
obtained by these methods, we carried out a cluster analysis.
Using the K-means algorithm, we clustered these connection
networks into 26 clusters, as shown in Figure 7. In general,
the causal connections of different forms of uGCA were sim-
ilar to some extent, and the results of clustering were also
similar to some extent, but there were still some differences
in subtle points.
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Figure 4: Causal connectivities obtained by uGCA and conventional GCA under different data length. The top row represented that data
length was 200; data length with 500 was in the middle; the bottom denoted data length in 1000.
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According to their connection matrices and clustering
results, the relatively accurate functional specialization cor-
responding to each anatomical node was carried out. For
example, we obtained a cluster of regions 45 to 58, named
cluster-v, which was really the brain region associated with
visual processing; the cluster of 63-70 nodes represented
the brain region related to reading, self-cognition, and epi-
sodic memory, named cluster-r. The cluster containing
regions 81-90 was a brain area associated with auditory pro-
cessing, named cluster-a. The clustering results of these
nodes were basically consistent with the current mainstream
empirical views of their functional specialization regions
[25–28]. Then, for nodes 1-44, they were clustered into sev-
eral regions. According to the previous anatomical and clin-
ical experiences, these brain regions represented the frontal
lobe and limbic system, which were involved in a high level
of cognitive processing and emotional processing. The inter-
nal and external connections were very complex, and the gap
between samples was also very obvious; it is difficult to find
more accurate clustering results between samples. Thus,
according to Figure 6, we considered dividing nodes 1-44
into a cluster, named cluster-c. For the remaining nodes,
they were more or less related to motion, named cluster-m.

At the same time, according to these results, it can be seen
not only the functional specialization of 90 nodes but also their
relevant connectivities among several large-scale clusters. For
cluster-c, it had a close connection with other clusters, espe-
cially for cluster-r. For cluster-a, the interaction with the lim-
bic system in cluster-c was considered to be due to the fact
that large noise of fMRI machine working will generally affect
the mood of subjects [26, 27, 29]. Finally, it seemed that visual
processing cluster-v was not obviously connected with other
clusters, which may be related to the resting state of subjects.
Thus, combined with their connection matrices in Figure 5,
these results showed that the clustering subnetworks of
uGCA-TP and uGCA-NML were more consistent with the
relevant anatomical and clinical experience [25, 28]. And the
clustering subnetworks obtained by uGCA-MIX also had
many similarities with the clustering results of the above
two. However, there were some differences between several
uGCA forms. The uGCA-MIX obtains a more sparse causal
network, followed by uGCA-NML, and uGCA-TP obtains
the network with themost connectivities. These were also con-

sistent with the simulation experiment results. In contrast,
conventional GCA had relatively poor clustering results at
low confidence levels, and improved confidence levels
appeared to improve. By the way, clustering analysis only
adopted a relatively simple K-means method, and there was
also some subjectivity in selecting clustering parameters,
whichmeant that these results only had some reference values.

3.2.3. Three Large-Scale Functional Network within uGCA.
Furthermore, we screened out the relevant nodes of several
large-scale functional networks and then used several uGCA
forms to perform causal connection analysis. According to
previous research [29–32], we screened out 43 nodes, 19 nodes
in the default mode network (DMN), 10 nodes in the dorsal
attention network (DAN), and 14 nodes in the frontoparietal
control network (FCN), seen in Table 1. Then, in Figure 8,
three clusters can be clearly seen in the diagonal position of
the connection matrix without using clustering methods, and
they corresponded to the three functional networks of DMN,
DAN, and FCN very accurately. For uGCA-TP, uGCA-
NML, and conventional GCA, three corresponding clusters
were obvious, and uGCA-MIX also can be seen some similar
clusters in its diagonal position. In general, these methods also
showed a consistent feature; the connection between DMN
and FCN nodes was very dense. For DAN, there were some
causal connectivities with FCN, but fewer connections to the
DMN, which was consistent with relevant clinical and ana-
tomical conclusions [25, 27–32].

In Figure 9, these properties of causal connections between
these large-scale networks are even more pronounced. There
are only a few connection edges between DMN and DAN
regardless of the form of uGCA. For causal connections
between DMN and FCN, their connection edges were very
dense. The coupling effect of DAN and FCN was in between
above. Moreover, we only showed those causal connection
edges whose count was above 5% of sample size. Clearly, there
were some differences in the characteristics of these causal net-
works obtained by different methods, but the overall perfor-
mance was consistent, especially for uGCA-TP and uGCA-
NML. It is worth noting that even though the uGCA results
were very similar in different forms; there were still differences
in the identification of causal connections among individuals.
In other words, the causal connection between nodes itself has

L R

Figure 5: Causal connectivities between 90 regions obtained by uGCA-MIX form.
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dynamic attributes, and different forms of uGCA can be seen
as describing the pseudodynamic causal connection between
nodes from different aspects. For conventional GCA, the
causal connections within three functional intrinsic networks
are very dense, but it seemed too many connections between
the networks, which was incompatible with the empirical
knowledge of economical coupling among brain networks.

4. Discussion

First of all, for the uGCA method, when the large-scale net-
work synthetic data model involving 13 nodes is involved,

their performance advantages are significant compared with
the conventional GCA. They also exhibit different character-
istics, even if the overall performance is similar. To be spe-
cific, all uGCA methods have a certain anti-interference
capability to noise. In addition to uGCA-MIX, this form does
not seem to perform very well in the case of low noise, with
some underreporting. But there is no denying that uGCA-
MIX can guarantee high TPRs and TNRs in the case of insuf-
ficient data length. In contrast, uGCA-NML requires longer
data to ensure high TPR and TNR, and it almost gets a
“ground truth” network when the data length reaches 1000.
The uGCA-TP is a conservative choice. It can guarantee high
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Figure 6: Causal connections between 90 regions by uGCA and conventional GCA among 103 subjects: (a) uGCA-TP; (b) uGCA-MIX; (c)
uGCA-NML; (d) conventional GCA (α = 0:05); (e) conventional GCA (α = 0:01).
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TPR, but there will be some false positives. Then, we used
these methods for large-scale network analysis in the resting
fMRI data, and the results showed that the characteristic per-
formance demonstrated by these methods was consistent
with their performances in the synthetic data. At the same
time, the clustering analysis of the connection network can
clearly see that some brain regions are clustered into several
specific brain regions, and there were also collaborative
works among these clustered brain regions. This was consis-
tent with the current clinical and anatomical basis and fur-
ther illustrated the need for a consistent causal investigation
framework in large-scale networks. Further causal analysis
in three large-scale functional networks was in line with the
results of previous studies on causal connections between sev-
eral networks and provided another strong evidence for the
robustness verification of the uGCAmethod. By the way, both

uGCA and conventional GCA methods adopted the same
large-scale network analysis procedures in Section 2.2 among
synthetic data and fMRI data experiments.

In addition, in order to eliminate the excessive false pos-
itives identified in conventional GCA, we have considered
reducing these high false positives through a family-wise cor-
rection (e.g., Benjamini-Hochberg correction of the false dis-
covery rate). However, considering that in this research, we
focus on illustrating some problems in conventional GCA
caused by the inconsistency of mathematical principles, sub-
jective selection of confidence level, and algorithm complex-
ity brought by the pairwise comparison. Different from those
conventional two-stage schemes, we proposed the uGCA
method to avoid these problems and formed a unified guid-
ing framework for causality determination. Then, to make
the comparison between uGCA and conventional GCAmore
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Figure 7: The clustering of causal connections between 90 regions: (a) uGCA-TP; (b) uGCA-MIX; (c) uGCA-NML; (d) conventional GCA
(α = 0:05); (e) conventional GCA (α = 0:01). Maximum number of clusters is 26.
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Table 1: Large-scale functional network location.

Macroanatomical region Seed tag
Coordinates

x y z

Anterior medial prefrontal cortex amPFC -8 56 14

Left anterior temporal lobe aTL.L -52 -10 -20

Right anterior temporal lobe aTL.R 52 -4 -16

Dorsal medial prefrontal cortex dmPFC -8 50 34

Left hippocampal formation HF.L -26 -8 -24

Right hippocampal formation HF.R 24 -14 -22

Left inferior frontal gyrus IFG.L -42 26 -14

Right inferior frontal gyrus IFG.R 50 32 -6

Posterior cingulate cortex pCC -2 -48 28

Left posterior inferior parietal lobule pIPL.L -50 -60 28

Right posterior inferior parietal lobule pIPL.R 58 -60 28

Precuneus PCu -2 -60 50

Left superior frontal gyrus SFG.L -8 20 62

Right superior frontal gyrus SFG.R 12 18 62

Left superior temporal sulcus STS.L -60 -28 -4

Right superior temporal sulcus STS.R 50 -36 4

Left temporal parietal junction TPJ.L -44 -52 22

Right temporal parietal junction TPJ.R 44 -58 18

Ventral medial prefrontal cortex vmPFC -2 44 -12

Left frontal eye fields FEF.L -24 2 62

Right frontal eye fields FEF.R 24 -2 56

Left inferior precentral sulcus iPCS.L -36 0 28

Right inferior precentral sulcus iPCS.R 42 6 26

Left middle temporal motion complex MT.L -44 -66 0

Right middle temporal motion complex MT.R 54 -54 -6

Left superior occipital gyrus SOG.L -18 -66 50

Right superior occipital gyrus SOG.R 26 -64 54

Left superior parietal lobule SPL.L -30 -48 52

Right superior parietal lobule SPL.R 38 -46 54

Left anterior inferior parietal lobule aIPL.L -54 -48 48

Right anterior inferior parietal lobule aIPL.R 50 -44 46

Left anterior insula aINS.L -30 20 -2

Right anterior insula aINS.R 32 20 -4

Dorsal anterior cingulate cortex daCC 6 30 40

Left dorsolateral prefrontal cortex dlPFC.L -38 32 30

Right dorsolateral prefrontal cortex dlPFC.R 44 42 26

Medial superior prefrontal cortex msPFC -2 20 50

Left middle frontal gyrus BA6 MFG.L(BA6) -28 14 58

Right middle frontal gyrus BA6 MFG.R(BA6) 26 16 48

Left middle frontal gyrus BA9 MFG.L(BA9) -40 24 34

Right middle frontal gyrus BA9 MFG.L(BA9) 44 26 42

Left rostrolateral prefrontal cortex rlPFC.L -32 58 2

Right rostrolateral prefrontal cortex rlPFC.R 32 58 8

Anatomical regions comprising the default mode network (19 nodes in the 1st grid), dorsal attention network (10 nodes in the 2nd grid), and frontoparietal
control network (14 nodes in the 3rd grid) of the brain. BA = Brodmann's area. Coordinates (x, y, and z) are in MNI stereotaxic space.
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direct, we only adopt different confidence levels of the F-test
in conventional GCA instead of combining correction tools,
which can more consistently and clearly show the original
intention of this study. Also, applying correction tools brings
another kind of mathematical theory, which is exactly what
we tried to avoid in the original design of the uGCA method.
Of course, it is meaningful to try to introduce relevant correc-
tion methods in the follow-up research and comparison.

As demonstrated above, uGCA’s method has shown very
good performance in both synthetic and real fMRI data.
Compared with traditional GCA, the uGCA method inte-
grates the whole causal analysis process into a unified frame-

work, and all judgments and choices are mediated by the
description length, which eliminates the inconsistency in
mathematical principles, the subjective selection at the confi-
dence level, and model complexity of pairwise models in the
conventional process. In this study, we introduced large-scale
network analysis into the uGCA framework, which can fur-
ther improve the consistency of the resulting causal net-
works. In fact, the idea that the brain works together by
integrating distributed networks is increasingly supported
by relevant studies, so we should pay more attention to the
problem of methodological rigor in large-scale network anal-
ysis. As we all know, with the increase of network nodes and
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Figure 8: Causal connections obtained by several uGCA forms and conventional GCA. The Y-axis represents the driving node, and the X
-axis represents the driven node.
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connection edges, the resulting false or spurious connections
can not be completely eliminated. Therefore, for causal anal-
ysis research involving large-scale networks, we should try
our best to model all datasets of brain nodes to a unified space
and then make a causal identification in this space. Other-
wise, the process is not closed, the singularity occurs, and
unexplained results occur.

Moreover, in this research, we have only preliminarily
compared our proposal with most of the conventional
GCA schemes, which involve two VAR models. Recently,
Barnett and Anil have introduced state-space Granger
causality in the literature, which can also accommodate the
surrogate data analysis [33, 34]. Another study compared
different methods for estimating GCA by showing that the
state-space model was superior to the conventional double
regression method [35]. In addition, a recent study intro-
duced the application of different methods to overcome the
limitations of the F-test and the chi-square test [36]. These
methods make a good attempt to overcome the limitations

of conventional GCA. Next, our method still needs to be
considered for further testing and comparison with these
GC estimation methods.

5. Conclusion

In this paper, we used the uGCA framework for the first
time to investigate causality on large-scale networks. The
unified guidance framework is of great significance for the
definition of the final causal network, and different uGCA
forms can describe the subtle differences of the connection
characteristics of the network from different aspects. At the
same time, several uGCA methods are suitable for studying
causal networks in different scenarios, which provides uni-
versality for the uGCA framework. More importantly, in
the future, causal network analysis in the brain will inevita-
bly be closer to large-scale networks. Due to the complexity
and uncertainty of causal analysis in large-scale networks, a
rigorous and unified method is more needed to guide it.

(a) uGCA-TP (b) uGCA-MIX

(c) uGCA-NML] (d) GCA (α = 0:05)

(e) GCA (α = 0:01)

Figure 9: Causal connectivities obtained by uGCA ð>0:05 ∗N). N is the sample size. Blue nodes represent the default mode network, red
nodes are dorsal attention network, and green nodes denote the frontoparietal control network.
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Data Availability

We downloaded the freely available resting-state fMRI data
(Oulu Kiviniemi, V.J./Veijiola, J.) from the website (FCP
Classic Data Table (http://nitrc.org)), which all data on this
NITRC website are freely available.
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