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The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), also referred to as COVID-19, has spread to several
countries and caused a serious threat to human health worldwide. Patients with confirmed COVID-19 infection spread the
disease rapidly throughout the region. Multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) are risk factors
for COVID-19, although the molecular mechanisms underlying the relationship among MM, DLBCL, and COVID-19 have not
been elucidated so far. In this context, transcriptome analysis was performed in the present study to identify the shared
pathways and molecular indicators of MM, DLBCL, and COVID-19, which benefited the overall understanding of the effect of
COVID-19 in patients with MM and DLBCL. Three datasets (GSE16558, GSE56315, and GSE152418) were downloaded from
the Gene Expression Omnibus (GEO) and searched for the shared differentially expressed genes (DEGs) in patients with MM
and DLBCL who were infected with SARS-CoV-2. The objective was to detect similar pathways and prospective medicines. A
total of 29 DEGs that were common across these three datasets were selected. A protein-protein interaction (PPI) network was
constructed using data from the STRING database followed by the identification of hub genes. In addition, the association of
MM and DLBCL with COVID-19 infection was analyzed through functional analysis using ontologies terms and pathway
analysis. Three relationships were observed in the evaluated datasets: transcription factor-gene interactions, protein-drug
interactions, and an integrated regulatory network of DEGs and miRNAs with mutual DEGs. The findings of the present study
revealed potential pharmaceuticals that could be beneficial in the treatment of COVID-19.

1. Introduction

The coronavirus associated with severe acute respiratory
syndrome type 2 (SARS-CoV-2) is a single-stranded RNA
virus, which is commonly referred to as COVID-19 [1–3].
Numerous studies have reported the risk factors for
COVID-19, among which the ones regarded as high-risk
factors include cancer, older age, and immunodeficiency
[4]. In addition, patients with hematological malignancies
(HM), such as multiple myeloma (MM) and diffuse large
B-cell lymphoma (DLBCL), present further severe symp-
toms and a higher fatality rate compared to patients with
other kinds of cancers. This is attributed to the greatly

reduced immune function in the above two diseases. MM
and DLBCL are also reported as high-risk factors for
COVID-19 [5–9]. Moreover, recent studies have highlighted
that the immune response to COVID-19 mRNA vaccination
in MM patients, evaluated based on the neutralizing capabil-
ity of vaccine-induced antibodies, is significantly compro-
mised in the case of COVID-19 variants [10]. Accordingly,
the risk of breakthrough infection with COVID-19 variants
was also significantly higher in patients with MM [11].

In the present study, three datasets were analyzed to
determine the clinical relationship of COVID-19 with MM
and DLBCL. The three datasets, namely, GSE16558,
GSE56315, and GSE152418, for COVID-19, MM, and

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 7017317, 12 pages
https://doi.org/10.1155/2022/7017317

https://orcid.org/0000-0001-6157-4006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7017317


DLBCL, respectively, were downloaded from the Gene
Expression Omnibus (GEO) database. First, the differentially
expressed gene (DEGs) were identified from these datasets.
Next, the common DEGs of the above three disorders were
identified. These common DEGs, which were critical for
the experiment, were subjected to pathway analysis and
enrichment analysis to attain deeper insights into the biolog-
ical processes associated with the genome-based expression.
Afterward, the protein-protein interactions (PPIs) network
was constructed based on these common DEGs, and from
this network, hub genes were identified. The hub genes
would enable the prediction of potential drugs for the dis-
eases. Finally, the miRNA-TF-mRNA network was estab-
lished. According to the results, recommendations of the
potential drugs for treating the three diseases were provided.

2. Materials and Methods

2.1. Datasets Used. In order to verify the common genetic
correlations among COVID-19, MM, and DLBCL, microar-
ray and RNA-seq datasets were downloaded from the GEO
database (GEO; https://www.ncbi.nlm.nih.gov/geo/) [12].
The COVID-19 dataset with the accession ID GSE152418
was used as entry into the GEO and subjected to high
throughput sequencing Illumina NovaSeq 6000 for RNA-
seq analysis [13]. The MM dataset with the GEO accession
ID GSE16558 comprised the data of human peripheral blood
samples, including sixty bone marrow (BM) samples and
five normal controls, obtained using the GPL6244
[HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array
[14]. The inclusion criteria used for sample selection in
the case of the MMmicroarray dataset were as follows: nor-
mal bone marrow plasma cell samples from MM patients
(≥40); no restrictions on patients’ gender, race, treatment
response, karyotype, mutation, and pathologic stages. The
DLBCL dataset of accession ID GSE56315(GEO) comprised
data from 55 patients with DLBCL and 33 normal tonsillar
tissue samples [15, 16]. The inclusion and exclusion criteria
for this database were obtained from a previous study [15].
The data series was derived using the GPL570 [HG-U133_
Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array.

2.2. Identification of the DEGs and Shared DEGs among MM,
DLBCL, and COVID-19. The Linear Models for Microarray
Data (LIMMA) package were employed to identify the sig-
nificant DEGs from the datasets using the criteria of P value
< 0.05 and jlogFCj ≥ 1:0. The DEGs were identified based on
the long-expression values obtained using the LIMMA pack-
age with Benjamini-Hochberg’s correction to limit the rate
of false discovery. Among the identified DEGs, the shared
DEGs among MM, DLBCL, and COVID-19 were identified
using DESEq2 in the R programming package (v 4.0.2) with
different testing options. The shared DEGs common among
the datasets GSE16558, GSE56315, and GSE152418 were
obtained using a VENN analysis tool named Jvenn [17].

2.3. Gene Ontology and Pathway Enrichment Analysis. Gene
set enrichment analysis (GSEA) defines the gene expression
data and reveals several common biological pathways [18].

EnrichR (http://amp.pharm.mssm.edu/Enricher), a web-
based platform for gene set enrichment, was used for per-
forming the gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses. The GO analysis
included three ontologies: biological process (BP), cellular
component (CC), and molecular functions (MF) [19]. Next,
the data from the KEGG analysis was used for identifying
the pathways involved in COVID-19 infection that were
common with MM and DLBCL. The P value of < 0.05 and
a count of ≥2 were used as significance and enrichment
thresholds, respectively, in the GO and KEGG analyses.

2.4. The Protein-Protein Interaction Network Analysis. The
PPI network of the common DEGs was constructed using
the Search Tool for the Retrieval of Interacting Genes
(String) database (https://string-db.org/; version 11.5) [20].
The PPI network was constructed using the relationship
pairs with a combined score of >0.4. Several topological
characteristics, including degree centrality (DC), eigenvector
centrality (EC), and closeness centrality (CC), of the nodes
(proteins) in the PPI network, were calculated using the
CytoNCA plugin provided in the Cytoscape software
[21](http://apps.cytoscape.org/apps/cytonca) to screen and
reveal the hub genes.

2.5. Identification of the Hub Genes. The constructed PPI
network included nodes, edges, and their connections, and
the most overlapped genes were regarded as hub genes.
CytoHubba (http://apps.cytoscape.org/apps/cytohubba), a
plugin provided in the Cytoscape software, was employed
to select the significant modules and the top-ranking genes.
The key clusters were obtained using the Molecular Com-
plex Detection (MCODE) application [22]. CytoHubba
comprises 12 featured algorithms, among which, one of the
finest is Maximal Clique Centrality (MCC) [23]. The MCC
algorithm was used in the present study to identify the top
five genes (hub genes) from the PPI network.

2.6. Constructing the miRNAs-Genes and Transcription
Factors-Gene Networks. The miRTarBase [24], StarBase
[25], and TargetScan [26] databases were used for the
prediction of the target miRNAs of the common DEGs. In
order to achieve better prediction accuracy, the miRNAs
predicted based on all three databases were used in the pre-
diction analysis. The Enrichr database (https://maayanlab
.cloud/Enrichr/) was then used for predicting the TFs
(transcription factors) that targeted the common DEGs.
P value ≤ 0.05 was selected as the threshold. Finally,
Cytoscape was employed to visualize the constructed
miRNA-TF-mRNA regulatory network.

2.7. Identification of Potential Drug Candidates. The predic-
tion of the protein-drug interaction (PDI) and the identifica-
tion of drug molecules was crucial for the present study. The
drug molecule was identified based on the common DEGs of
COVID-19, MM, and DLBCL using the Drug Signatures
database (DSigDB) in Enrichr. The drug target related to
these DEGs was identified using an online tool DSigDB
[27]. This database contained 22,527 gene sets and served
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as an efficient tool for accessing the DSigDB database via
Enrichr under Diseases/Drugs function.

2.8. Analysis of the Gene-Disease Associations. The DisGe-
NET database is concerned with gene-disease associations,
synchronizing connections of various origins featuring
diverse biomedical aspects of the disease. The database pro-
vides novel insights into human genetic diseases [28]. In the
present study, the gene-disease relationship was assessed
using DSigDB through NetworkAnalyst to reveal the disor-
ders associated with the identified common DEGs and their
chronic complications.

3. Results

3.1. Identification of the DEGs and Common DEGs among
MM, DLBCL, and COVID-19. In order to understand the
relationships and consequences of MM and DLBCL with
COVID-19, NCBI datasets comprising human RNA-seq
and microarray data were used for classifying the disordered
genes with sequences related to COVID-19, MM, and
DLBCL. These RNA-seq and microarray datasets were sub-
jected to the DESeq2 tool in the R package and also to the
Limma package with Benjamin-Hochberg correction to
reduce the false discovery rate. Initially, 16558 differential
genes were identified for COVID-19, which comprised 169
upregulated and 639 downregulated genes. These DEGs
were then subjected to statistical analysis of significant dif-
ferences to reveal the most significant DEGs common with
MM and DLBCL. This revealed 56315 DEGs (3767 upregu-
lated and 3745 downregulated) with the MM dataset and
152428 DEGs (2250 upregulated and 175 downregulated)
with the DLBCL dataset. Jvenn was employed for the Venn
analysis, followed by the cross-comparison analysis, which
together revealed the common DEGs among MM, DLBCL,
and SARS-CoV-2 databases. The three diseases are reported
to be interrelated based on one or more common genes in
previous studies as well [29]. Figure 1 presents the retrieved
common DEGs among the three datasets along with the
cumulative comparative evaluation.

3.2. Gene Ontology and Pathway Enrichment Analysis. The
gene ontology and pathway enrichment analyses were per-
formed using Enrichr to evaluate the biological significance
and the enriched pathways of the common DEGs identified
in the present study. Gene ontology considers the functions
and components of genes and also provides massive measur-
able knowledge resources. An ontology defines an informa-
tion body theoretically in a given context. Ontology and
annotation are used for implementing a complete biological
structure model, which assists in biological applications [30].
Gene ontology analysis is divided into three sections: biolog-
ical process, cellular component, and molecular function.
The GO database was selected as the annotation source in
the present study. Figure 2 illustrates the complete ontolog-
ical analysis linearly along with its three categories in the
form of a bar graph. The top 5 GO biological processes
revealed for the DEGs identified in the present study were
as follows: sequestering of the extracellular ligand iron recep-

tor, neutrophil degradation, neutrophil activation and immune
response, neutrophil-mediated immunity, and defense
response to the symbiont. These processes suggested that these
DEGs might have key roles in the regulation of neutrophil
activity and, therefore, in neutrophil-associated immunity.

Pathway analysis reveals the connections with different
diseases at the fundamental molecular or biological level
[31]. The pathway enrichment analysis conducted in the
present study for the identified DEGs common among
COVID-19, MM, and DLBCL revealed the pathways of
interest from the KEGG database. Figure 3 depicts the bar
graph representation of the results of the pathway enrich-
ment analysis. According to the KEGG analysis, the DEGs
were enriched the most in the PI3K-Akt pathway, p53 sig-
naling pathway, PPAR signaling pathway, and RAS pathway.
This highlighted the close association of these DEGs with
senescence and apoptosis.

3.3. Classification of Hub Proteins and the Submodule.
STRING was employed to examine the PPI network visual-
ized in Cytoscape in terms of anticipating the connections
and linked pathways of common DEGs. The majority of
the interconnected nodes in the PPI network were identified
as hub genes. The clusters were obtained using the MCODE
application. CytoHubba was employed to screen the signifi-
cant genes based on topological algorithms [23]. The PPI
enrichment P value was <1:0 × 10−16, which indicated that
these proteins exhibited at least partial bioconjugation as a
group, with interactions between these proteins stronger
than those formed with other random proteins. In total, 28
nodes were identified in the PPI network analysis using the
CytoHubba plugin in Cytoscape. Among these 28 nodes,
the top 5 (17.24%) DEGs were selected as the most signifi-
cant genes: CCNB1, HIST1H1B, HIST1H3I, HIST1H2AC,
and HIST1H2BD. These hub genes could be utilized as
biomarkers for disease prediction and may reveal novel
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Figure 1: Two microarray datasets and one RNA-seq dataset
containing the data of MM (GSE16558), DLBCL (GSE56315), and
SARS-CoV-2 (GSE152418) patients were used for revealing 29
common DEGs among SARS-CoV-2, CLL, and DLBCL.
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therapeutic targets for disease treatment. Figure 4 presents a
submodule network constructed using the CytoHubba plu-
gin. The expansion network with the interacting hub genes
identified from the PPI network is depicted in Figure 4.

3.4. Determination of the Regulatory Signatures. In order to
verify the substantial changes that occur at the transcrip-
tional level and better understand the regulatory molecules
or common DEGs related to the determined hub genes, a
network-based approach was adopted to predict the relevant
transcriptional factors (TFs) and posttranscriptional regula-
tory factors (miRNAs). The interactions among the TFs,
miRNA regulators, and common DEGs are illustrated in
Figure 5. Next, the interactions of the miRNA regulators

with the common DEGs are presented in Figure 6. Network
analysis was performed to assess the interaction between the
TFs and miRNAs of the genes, which revealed 54 TFs and 23
miRNA regulatory signatures involved in the regulation of
more than one common DEG, indicating a strong interac-
tion among them.

3.5. Identification of the Candidate Drugs. Evaluation of the
interaction between proteins and drugs is crucial for under-
standing the structural basis of receptor sensitivity [29, 32].
In the present study, 10 potential drug molecules were
selected from the DSigDB database in Enrichr based on the
transcriptome signatures as the potential drugs to target
the identified common DEGs among MM, DLBCL, and
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Figure 2: Gene ontology analysis of the common DEGs among SARS-CoV-2, MM, and DLBCL, performed using Enricher. The pink bars
indicate the biological processes (BP), the green bars represent the molecular functions (MF), and the blue bars indicate the cellular
components (CC).

Oocyte meiosis

MAPK signaling pathway

Cell cycle

NF-kappa B signaling pathway

Hematopoietic cell lineage

Ras signaling pathwayTe
rm

Human immunodefciency virus 1 infection

PPAR signaling pathway

p53 signaling pathway

PI3K-Akt signaling pathway

0.0 0.5 1.0 1.5
–Log10 (P value)

Category
KEGG

Figure 3: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the common DEGs among COVID-19, MM, and
DLBCL.
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COVID-19. The top 10 chemical compounds were selected
based on their P value and could serve as drugs for targeting
the common DEGs among the three diseases. Table 1 lists
the common DEGs along with their corresponding potential
effective drugs obtained from the DSigDB database.

3.6. Identification of Disease Association. Several disorders
may be connected via one or more common genes [29].
Identification of these connections between genes and dis-
eases would facilitate designing therapeutic strategies against
these diseases [33]. NetworkAnalyst was employed in the
present study to analyze the gene-disease associations.
Asthma, polycystic ovary, malignant neoplasm of the ovary,
cardiovascular diseases, adenocarcinoma, colorectal cancer,
kidney neoplasm, malignant neoplasm of the urinary blad-
der, thymus neoplasms, colorectal neoplasms, and leukemia
were revealed to be related to the hub genes among MM,
DLBCL, and COVID-19 identified in the present study.
Among these, the top 10 diseases were selected based on
the P value. The relationships between genes and diseases
are depicted in Figure 7.

4. Discussion

Multiple myeloma and diffuse large B-cell lymphoma are
hematological malignancies [7]. Patients with these two dis-
eases are more likely to be infected with COVID-19 and
reportedly suffer from a further severe disease because of
their reduced immune function, thereby presenting a signif-
icantly higher mortality rate [34]. The present study aimed
at investigating the genes expressed among MM, DLBCL,
and COVID-19 patients in the peripheral blood and accord-
ingly select representative molecular targets that could be
utilized as potential biomarkers of the risk of COVID-19 dis-
ease. In biomedical research, expression profiling using an
array of datasets is considered a valuable resource for identi-
fying biomarker candidates for various diseases [35]. In
order to demonstrate that the 29 common DEGs identified
in the present study have comparable expression patterns
in MM, DLBCL, and SARS-CoV-2, these DEGs were
analyzed using transcriptomics. The Gene Ontology (GO)

analysis was used for evaluating and screening the 29 com-
mon DEGs based on their functions and P values to further
understand their biological significance in the pathogenesis
of MM, DLBCL, and COVID-19.

GO analysis reflects gene regulation based on a generic
theoretical model that assists in identifying genes and their
interrelationships, thereby contributing to the biological
knowledge regarding gene activities and their regulation in
terms of different ontological categories [36]. The online tool
Enrichr used in the present study includes three ontologies
in the GO analysis—biological process (BF), cellular compo-
nent (CC), and molecular function (MF). The analysis was
performed using the GO database as the annotation source
for the ontological processes [37]. In the biological process,
negative regulation of the BMP signaling pathway was
revealed as a significant GO term. The BMP signaling path-
way stimulates the differentiation of mesenchymal stem cells
(MSCs) into osteoblasts in MM patients through the upreg-
ulation of EMX2. One of the reasons for bone deterioration
in MM is the severe impairment of osteoblast activity, which
provides a reasonable basis for clinical therapy against MM
[38]. In DLBCL patients, the BMP signaling pathway acti-
vates SMAD5, which plays a tumor-suppressive role in lym-
phoid neoplasms [39]. Interestingly, SARS-CoV-2 is also
related to the BMP signaling pathway [40]. Therefore, it
was speculated that this pathway could be used as a promis-
ing cotherapeutic target in the treatment of MM or DLBCL
patients with COVID-19 infection.

Pathway analysis is considered the best approach to
reflect the internal changes occurring during a biological
process. Therefore, the KEGG pathway of the 29 common
DEGs among MM, DLBCL, and COVID-19 was conducted
in the present study. Six important signaling pathways were
revealed in the analysis: MAPK, NF-κB, Ras, PPAR, P53,
and PI3K-Akt pathways. The MAPK signaling pathway is
crucial for the proliferation of B lymphocytes. The four
major branches of the MAPK pathway are ERK(Ras/Raf/
MEK/ERK), JNK, P38/MAPK, and ERK5. While JNK and
p38 share similar roles and are related to inflammation, apo-
ptosis, and proliferation, the ERK branch is primarily related
to the growth and differentiation of duct cells and is report-
edly activated by the well-recognized Ras/Raf protein [41].
SB203580, an inhibitor of p38, and U0126, an inhibitor of
ERK, were reported to substantially inhibit cell proliferation
and tumor growth in patients with DLBCL [42]. The use of
6-amino-4-quinazoline inhibitors was reported to success-
fully suppress the IL-6-induced MAPK pathway [43] and
is, therefore, considered an important method in MM ther-
apy. In SARS-COV-2 infection, inflammation is induced
via the p38 MAPK pathway. Therefore, blocking this path-
way could relieve COVID-19 infection, although additional
preclinical studies are warranted to verify this speculation
[44]. Therefore, the MAPK pathway is considered an impor-
tant link between patients with MM or DLBCL and COVID-
19 patients and could serve as a novel therapeutic route in
the treatment of these patients.

Furthermore, the NF-κB pathway is reported to induce
an antiapoptotic and proproliferative gene program [45].
The NF-κB pathway could, therefore, be inhibited to
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Figure 4: The hub genes identified from the PPI network using the
CytoHubba plugin in Cytoscape. The hub genes were obtained
through the latest MCC procedure of the CytoHubba plugin. The
green triangle presents the top 5 hub genes and their interactions
with other molecules.
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increase the survival rates in patients with MM and DLBCL,
while also serving as a target for alleviating disease severity
in COVID-19 patients [46]. The p53 pathway is involved
in apoptosis, and the downregulation of this pathway might
promote the replication of coronavirus [47]. The activator of
p53 could, therefore, be used in the therapy for COVID-19
in the future. The components of the p53 pathway include
MYC, RAS, ARF, MDM2, ATM, and TP53. TP53 deletions
and mutations are common in DLBCL patients, while
MYC additions are common in MM patients. Furthermore,
these two are inversely correlated with survival in MM and
DLBCL patients [48]. Therefore, studying the inhibitors of
the p53 pathway could reveal certain novel strategies for
the care of patients with MM or DLBCL who are infected

with COVID-19 in the future. The patients of COVID-19,
MM, and DLBCL may also be treated with specific inhibitors
of the PI3K/Akt/mTOR pathway [49, 50]. In summary, the
MAPK, NF-κB, P53, and PI3K-Akt pathways were revealed
to be associated with the patients of MM or DLBCL with
COVID-19 infection and could, therefore, be studied in future
research to reveal novel targets for COVID-19 therapy.

The PPI network constructed in the present study using
the identified DEGs revealed 5 hub proteins associated with
MM, DLBCL, and COVID-19: CCNB1, HIST1H2BD,
HIST1H1B, HIST1H2AC, and HIST1H3I. The protein
CCNB1 is involved in the cell cycle and mitosis and may
be utilized as a predictor of high-risk disorders and poor
prognosis of gene expression in MM patients [51, 52]. The

Figure 5: The DEG-TF regulatory interaction network obtained using NetworkAnalyst. The blue squares indicate the TFs, while the red
circles represent the interactions of the gene symbols with the TFs. Network Analyst was also employed to retrieve the coherent
regulatory interaction network of DEG-TFs. In this case, the TFs are indicated by blue square nodes, while the gene symbols are depicted
using red circular nodes.
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downregulation of cell cycle-related protein CCNB1 using
the drug Glaucocalyxin A (GLA) could inhibit cell prolifera-
tion while increasing the expression of p21 in MM cell lines.
Therefore, the use of this protein could serve as a potential
treatment method for MM patients [53]. Meanwhile, based
on the currently available data on COVID-19 patients,
CCNB1 may also be used as a potential biomarker of

COVID-19 in peripheral blood mononuclear cells (PBMCs),
thereby contributing to the development of drugs for the
treatment of COVID-19 disease [54]. The protein
HIST1H2BD is expressed in myeloma cells. The use of the
drug ixazomib reportedly inhibited myeloma cell growth
by significantly increasing HIST1H2BD expression and
reducing UBE2K expression [55]. The roles of most of the
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Figure 6: The interconnected regulatory interaction network of DEGs-miRNAs. The green triangles indicate the miRNAs, and the gene
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Table 1: Recommended drugs that are listed for COVID-19.

Name P value Chemical formula

Genistein CTD 00007324 5 46E − 08 C15H10O5

Trichostatin A CTD 00000660 1 126E − 06 C17H22N2O5

Epigallocatechin gallate CTD 00002033 2 63E 06 C2H18O11

Deferoxamine MCF7 DOWN 3 07E − 06 C25H48N6O8

LY-294002 HL60 UP 4 14E − 06 C19H17NO3

Dasatinib CTD 00004330 5 82E − 06 C22H26CIN7O2S
Isoprenaline HL60 UP 5 87E − 06 C11H17NO3

7646 79 9 CTD 00000928 5 96E 06 CI2CO
Resveratrol CTD 00002483 7 47E − 06 C14H12O3

Fenofibrate CTD 00006620 8 35E − 06 C20H21CIO4
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core gene-encoded proteins in DLBCL patients have not
been elucidated experimentally so far [56], and could, there-
fore, be a focus of future investigations in this regard. In con-
clusion, the hub genes identified in the present study could
be used as prognostic biomarkers and therapeutic targets
in the treatment of COVID-19 disease.

Furthermore, the TF-genes and miRNAs interactions
were also explored in the present study to reveal the tran-
scriptional and posttranscriptional regulators of the com-
mon DEGs for the three diseases studied. Knowledge of
TFs and miRNAs is important for understanding the devel-
opment of a disorder. The present study revealed several
such connections among the mutual DEGs, TFs, and miR-
NAs. For instance, the identified TFs, namely, MEF2A,
FOS, STAT1, STAT3, JUND, YY1, IRF2, ARID3A, SPIB,
TP53, RELA, E2F1, NFKB1, NR3C1, FOXO3, PRDM1,
NRF1, and ESR1 are related to various hematological dis-
eases. In addition, several of the miRNAs are related to
MM and DLBCL patients, such as the involvement of miR-
124-3p dysregulation in different kinds of cancers. Targeting
the LINC01234/miR-124-3p/GRB2 axis reportedly increased
the expression of miR-124-3p and inhibited the expression
of the GRB2 protein through the downregulation of

LINC01234, which ultimately decreased the proliferation of
the MM tumor cells [57]. Moreover, miR-215-3p acts as a
tumor suppressor in MM, inhibiting cell proliferation and
promoting apoptosis in MM cells by targeting RUNX1 and
deactivating the PI3K/AKT/mTOR pathway [58]. These
findings could provide a novel direction to the research on
developing targeted therapies for patients with MM in the
future. Another miRNA named miR-665 could be used as
an antitumor agent in DLBCL. The overexpression of miR-
665 inhibits cell proliferation and invasion while promoting
DLBCL apoptosis via two target sites, MYC and LASP1.
MYC is, therefore, a target gene of miR-665 and could be
utilized as an indicator of the prognosis of DLBCL. In
addition, miR-665 may prevent the progression of DLBCL
through the downregulation of LASP1 and MYC [59]. The
molecular mechanism underlying the impact of miR-665
on DLBCL could, therefore, be another focus of future
research. The present study revealed certain genes that were
significantly associated with MM and DLBCL, such as those
encoding miR-152-3p, miR-128-3p, miR-335-5p, miR-340-
5p, miR-101-3p, smiR-17-5p, miR-455-3p, miR-9-5p, miR-
155-5p, miR-21-5p, and miR-375. The majority of these
miRNAs are related to cancer tissues and cause various
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Figure 7: The gene-disease association network illustrates the disorders related to the common DEGs. The diseases are indicated by red
circles, and the corresponding genetic symbols are indicated by green triangles.
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types of cancers in humans, particularly hematological
malignancies.

A gene-disease (GD) relationship analysis was also con-
ducted in the present study to predict the associations of the
significant DEGs with various disorders. The experimental
results revealed a variety of disorders that developed in
COVID-19, including those of the lung, kidney, colorectal,
thymus, ovary, cardiac, and various types of leukemias. Two
examples of respiratory diseases are pneumonia and acute
respiratory distress, which are the primary complications of
COVID-19 [60]. The relationship between the severity of
COVID-19 disease and allergic diseases, including asthma,
remains to be elucidated so far [61]. When the COVID-19
virus infects the lungs, it could reach the kidney via blood cir-
culation, causing kidney tubular injury as another primary
manifestation of SARS-CoV-2 infection. The major diagnostic
symptom of this renal involvement is proteinuria [62]. The
most common cardiac abnormality observed so far in
COVID-19 infection is acute heart injury, which accounts
for approximately 8% of all cases [63]. The primary transmis-
sion route for the COVID-19 virus is respiratory droplet trans-
mission, while the fecal-oral transmission route is also
observed in certain cases. Patients presenting initially with
gastrointestinal symptoms are, therefore, considered potential
spreaders of infection. In addition to the vulnerability of the
digestive tract to COVID-19 infection, up to 60% of the
infected people also develop liver disease [64].

Formerly, a variety of chemicals and drugs were used in
the treatment of COVID-19 disease. For instance, Baicalein
was used for enhancing respiratory function, preventing pul-
monary inflammatory cell infiltration, and reducing the
levels of IL-1β and TNF-α in the serum. Baicalein is consid-
ered a promising medicine for COVID-19 [65]. In addition,
Trichostatin A could limit SARS-COV-2 replication and
enhance the antiviral activity when used in combination
with other drugs [66]. Green tea polyphenols have also
exhibited beneficial effects in several pathological disorders,
such as cancer, diabetes, and cardiovascular disorders. These
are used for alleviating blood pressure, blood fat, cholesterol
levels, and blood sugar levels to prevent atherosclerosis and
protect from cardiovascular disorders [67]. Desferrioxamine
reportedly increases the ferritin levels in the acute phase of
SARS-COV-2 infection and decreases liver injury complica-
tions [68]. Another drug named LY-294002 inhibits the
PI3K/AKT signaling pathway and is used for treating vari-
ous forms of cancer, particularly liver cancer, gastric cancer,
and leukemia [69–71]. Moreover, both imatinib and dasati-
nib are inhibitors of the tyrosine kinase signaling pathways,
specifically the ABL1 pathway. The ABL1 pathway is related
to cell differentiation, cell adhesion, and cell stress. Overacti-
vation of the ABL1 pathway leads to cancer development.
Imatinib and dasatinib are used for the treatment of leuke-
mias and the effective suppression of MERS-CoV and
SARS-CoV [72, 73]. CoCl2 is used for the therapy of anemia
in patients with renal failure [74]. Another drug named
fenofibrate is used for reducing dyslipidemia and downgrad-
ing COVID-19 infections via two molecular routes—block-
age of the virus metabolism and replication and inhibition
of the ACE2 receptor-binding domain [75]. Besides hemato-

logical malignancies, a wide variety of diseases, such as kid-
ney diseases, respiratory diseases, cardiac disorders [76, 77],
brain conditions, and different types of cancers, are related
to COVID-19 infection [78]. Consequently, the above-
stated medications are effective in treating COVID-19 infec-
tions as well.

5. Conclusions

The present study revealed the relationships among MM,
DLBCL, and COVID-19 genes based on a transcriptional
analysis. The three datasets corresponding to the three dis-
eases were used for identifying the DEGs, among which
the common DEGs for the three diseases were retrieved to
understand the disease responses based on immune cells in
MM, DLBCL, and COVID-19. The bioinformatics approach
revealed that patients with MM and DLBCL have a high risk
of SARS-CoV-2 infection. A total of 29 common interrelated
genes were retrieved from these datasets in the present
study. Next, a PPI network was constructed to identify the
common genes and select the 5 most critical hub genes. Sev-
eral drug molecules and drug-target linkages with these hub
genes were revealed through a search of the DSigDB data-
base. This approach of analyzing the association of
COVID-19 with MM and DLBCL could be used for predict-
ing COVID-19 infection and disease severity in patients with
MM and DLBCL, thereby facilitating a reduction in the risk
of SARS-CoV-2 infection in these patients. So far, the litera-
ture on the risk of and the disease factors associated with the
novel COVID-19 disease is scarce. The present study, there-
fore, provides the above-described approach to analyzing
COVID-19. Currently, a few vaccines are available for the
prevention of COVID-19 disease. However, these vaccines
may not be entirely effective, particularly against different
variants of SARS-CoV-2 that keep emerging. Therefore, fur-
ther effective COVID-19 vaccines are required, which could
be facilitated by transcriptome analysis. A revelation of the
common pathways and molecular indicators among MM,
DLBCL, and COVID-19 would assist in understanding the
relationship between SARS-CoV-2, MM, and DLBCL. In
this context, five relevant hub genes for these diseases were
identified in the present study. In addition, the TFs and miR-
NAs identified in the present study were associated with var-
ious forms of hematological disorders. Therefore, based on
the genes identified in the present study, a novel therapeutic
target could be identified to develop an improved COVID-
19 vaccine. In summary, the present study highlighted the
potential therapeutic targets for developing future treat-
ments for the three diseases. In addition, the identified hub
genes could be useful in developing novel, efficient vaccines
against COVID-19 disease.
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