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Drug-disease correlations play an important role in revealing the mechanism of disease, finding new indications of available drugs,
or drug repositioning. A variety of computational approaches were proposed to find drug-disease correlations and achieve good
performances. However, these methods used a variety of network information, but integrated networks were rarely used. In
addition, the role of known drug-disease association data has not been fully played. In this work, we designed a combination
algorithm of random walk and supervised learning to find the drug-disease correlations. We used an integrated network to
update the model and selected a gene set as the start of random walk based on the known drug-disease correlations data. The
experimental results show that the proposed method can effectively find the correlation between drugs and diseases, and the
prediction accuracy is 82.7%. We found that there are 8 pairs of drug-disease relationships that have not yet been reported,
and 5 of them have pharmacodynamic effects on Parkinson’s disease. We also found that a key linkage between Parkinson’s
disease and phenylhexol, a drug for the treatment of Parkinson’s disease α-synuclein and tau protein, provides a useful
exploration for the effectiveness of the treatment of Parkinson’s disease.

1. Introduction

With the prevalence of complex diseases, the existing drugs
are far from meeting the needs of human beings to fight
against diseases. At the same time, due to the rising cost of
drug research and development, long research and develop-
ment cycle, large difference in research and development
success rate, and high loss rate of new drugs, the research
and development of innovative drugs has become a major
challenge in the medical field.

At present, reusing compounds that have reduced risk to
treat common or rare diseases has become a popular means
of drug research and development. This strategy is called
drug repositioning or drug reuse. This method not only
reduces the overall development cost but also shortens a
large amount of research and development time [1–3].
Through drug repositioning, pharmaceutical companies
have achieved many successes, such as Pfizer’s Viagra for
erectile dysfunction [4] and Celgene’s thalidomide for severe
nodular leprosy erythema [5].

With the rapid expansion of large-scale genome, tran-
scriptome and proteome data, computational drug reposi-
tioning study has emerged as one of the leading methods.
Huang et al. developed a new drug repositioning pipeline
to analyze four lung cancer microarray datasets, enrich bio-
logical processes, potential therapeutic drugs, and target
genes for the treatment of non-small-cell lung cancer
(NSCLC) [6]. They integrated two methods: machine learn-
ing algorithm and classification based on topological param-
eters. Zheng et al. designed a weighted ensemble similarity
(WES) algorithm which provides a new perspective for drug
repositioning and discovery [7]. Wang et al. integrated two
drug transfer methods and proposed a new method for drug
repositioning [8]. Cheng et al. [9] integrated the integration
of chemical, gene, and disease networks, inferred the chem-
ical hazard profile, studied the exposure data gap, and fully
considered the gene and disease network in the chemical
safety assessment [10]. A large number of genetic and
molecular biology studies have shown that diseases reflect
the interaction of multiple molecular components on a
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certain level [11–14]. Therefore, drug repositioning study
should consider the interaction between different disease-
related genes [15–18]. Luo et al. found the potential indica-
tions of a given drug based on some comprehensive similar-
ity measures and Bi-Random walk (BiRW) [19]. Yu et al.
inferred the correlation between drugs and diseases by
studying the characteristics of known protein complexes
[20]. PREDICT (PREdicting Drug IndiCaTions) considers
that similar drugs are suitable for similar diseases; the pre-
diction task is achieved by designing similarity measures
between multiple drugs and diseases [21].

The above method was successfully applied to drug-
disease association study and achieved good performance.
However, these methods have used a variety of network
information, but the integrated network is still less used.
With the increase of the related data of known drug diseases,
a supervised learning method should be designed to further
improve the drug-disease association research by using the
related data of known drug diseases. In this paper, we used
an integrated network consisting of HPRD, BioGRID,
STRING, and other databases. Unlike previous network-
based studies, which used the random walk method with
restart on the network, we updated the model using the
known data of the relationship between drugs and diseases
and selected a gene set as the starting point of random walk,
thus realizing the supervised learning of random walk with
restart method. We also evaluated the performance of the
proposed methods in various diseases and analyzed their
GO and KEGG function enrichment.

2. Datasets and Methods

2.1. Protein–Protein Interaction (PPI) Network. Human pro-
tein–protein interaction (PPI) network is selected, which has
been compiled by Jörg et al. that contained experimentally
documented human physical interactions from TRANSFAC,
IntAct39, MINT40, BioGRID41, HPRD42, KEGG43,
BIGG44, CORUM45, PhosphoSitePlus46, and a large scale
signaling network47. We used the largest connected compo-
nent of the interaction in our analysis, consisting of 141,150
interactions between 13,329 proteins. Entrez Gene IDs were
used to map disease-associated genes to the corresponding
proteins in the interaction. The interaction and disease-
gene association data is provided as a supplementary data
set in Menche et al. [22]

2.2. Disease and Disease-Gene Data. Medical Subject Head-
ings (MeSH) is an authoritative thesaurus compiled by the
National Medical Library of the United States [23]. The dis-
ease subject words in the vocabulary provided by MeSH
have perfect vocabulary classification. Our disease data and
drug data are derived from Menche et al. [22], which inte-
grate some genetic disease-related genes from the human
Mendelian inheritance in man (OMIM: Online Mendelian
Inheritance in Man) and trait gene association data from
GWAS central. Through the medical topic title Ontology
(MeSH) [24], the disease names of different disease nomen-
clature are combined into one name.

We screened diseases containing at least 20 disease-
related genes from 1489 diseases in MeSH. In this paper,
we considered at least 20 disease-related genes in order to
understand the role of related genes in the interaction net-
work, rather than the occurrence of disease due to the muta-
tion of a gene. Finally, 299 diseases and their 3173 genes
were obtained. In the process of disease screening, we
required at least one drug for each disease. By searching
the DrugBank database, the drug information that can treat
79 diseases corresponding to FDA approval is obtained, and
Metab2Mesh is used for text mining [25]. If the text mining
results indicate that there is a strong correlation between dis-
ease and drug, we added the relationship between the drug
and disease into the known data set.

2.3. Drug and Drug-Target Data. DrugBank is a comprehen-
sive drug information database, which not only includes the
information of drug structure, drug target, and drug action
mechanism but also integrates the information of drug
experiment and clinical research. DrugBank has strong
retrievable ability, coupled with its convenient web visualiza-
tion function, which provides researchers with powerful
convenience in drug research and development, drug mech-
anism exploration, and so on. DrugBank 5.0 contains infor-
mation about 10971 drugs and 4900 protein targets,
including 2391 FDA approved small molecule drugs, 934
approved biotechnology drugs, 109 nutritional drugs, and
more than 5090 experimental drugs. We collected the drug
and drug-target information certified by the FDA from
DrugBank, and then searched for the strong literature evi-
dence of drug-early-warning-disease association through
Metab2Mesh, and finally obtained 238 drugs that can treat
corresponding diseases.

2.4. Random Walk with Restart Method. PPI network can be
expressed as G = ðV , EÞ, where V denotes protein and E
stands for protein–protein interaction. The n ∗ n adjacency
matrix A is used to represent the PPI network, where n is
the total number of the proteins. If there is interaction
between protein i and protein j, A½i,j� is 1, otherwise it is 0.
We then normalized the adjacency matrix A:

A i,j½ �′ =
A i,j½ �

∑n
k=1A k,j½ �

: ð1Þ

Random walk is used to find potential gene association
data of diseases or drugs. When the random walk converges,
the probability of a disease or drug at each point of the PPI
network can be obtained. The relationship between drugs
and diseases can be calculated based on the correlation
between the probability distribution of diseases and drugs.

Random walk starts with a set of seed genes. The initial
vector of seed genes is defined as follows:

P0 = ψ1, ψ2,⋯,ψn½ �T : ð2Þ

For a disease, we listed all the drugs that can treat it,
incorporate all the genes of these drugs into the relevant
genes of the disease, and took the combined gene set as the
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seed gene of the disease. Among them, the genes directly
related to the disease are defined as

Pdisdir = ψdisdir1
, ψdisdir2

,⋯,ψdisdirn

h i
,T ð3Þ

where the disease-related genes ψdisdiri
will be set to 1, other-

wise it will be set to 0. Then Pdisdir is normalized as

P‘
disdirk

=
Pdisdirk

∑n
k=1Pdisdirk

: ð4Þ

Suppose there are m drugs that can treat the same
disease, they are represented as Pdisdrug1

, Pdisdrug2
, ⋯, and

Pdisdrugm

Pdisdrugm
= ψdisdrugm1

, ψdisdrugm2
,⋯,ψdisdrugmn

h iT
: ð5Þ

Sum all drugs for a disease:

Pdisdrug = 〠
m

k=1
Pdisdrugk

: ð6Þ

Then we normalized Pdisdrug as

P‘
disdrugk

=
Pdisdrugk

∑n
k=1Pdisdrugk

: ð7Þ

Finally we got its seed gene for a given disease,

Pdisease = tP‘
disdir + 1 − tð ÞP‘

disdrug , ð8Þ

where t is 0.5.
We also got the seed gene Pdrug of a given drug following

the same method. Start random walk and randomly access
adjacent genes in each time scale ðt⟶ t + 1Þ, the state
probability Pt+1 at time t + 1is

Pt+1 = 1 − rð ÞA′Pt + rP0, ð9Þ

where P0 is the initial vector, Pt is the probabilities at time t,
and r is the restart probability. If the difference between Pt
and Pt+1 is less than 1e − 6, it is considered that the process
will reach a stable state. After reaching the stable state, the
correlation between drugs and diseases, drugs and drugs,
and diseases and diseases is calculated according to the
probability of drugs and diseases accessing each node on
the network.

2.5. Supervised Learning. Cross-validation is a frequently
used model validation technology. It divides the known data
into two subsets, adds the data of one subset to the model
training, and verifies the model with the remaining subset
to evaluate the performance of the model in unknown data.
For example, when using k-fold cross validation, the known

data set needs to be randomly divided into k parts. In each
cross-validation, k-1 data is selected to be added to the
model training, and the remaining data is used for valida-
tion. Repeat for k times and select one piece of data for ver-
ification each time until each piece of data is tested.

The goal of cross-validation is to test the prediction ability
of the model in new data, and it can also reflect the problem of
overfitting or selection bias. In this paper, the idea of this
method is used for supervised learning of random walk. For
a certain disease, all drugs that can treat the disease in the data
set are listed, and the genes associated with these drugs are
incorporated into the relevant genes of the disease, and the
combined gene set is used as the start of randomwalk. Needles
are treated in the same way as drugs. In this paper, 403 known
drug-disease associations between 78 diseases and 238 drugs
were randomly divided into 10 parts. Nine of the disease and
drug association data were selected to update the model, and
the updated model was used to process the other data, so as
to achieve the effect of supervised learning.

2.6. Evaluation Method. Receiver operating characteristic
(ROC) curve is a curve based on the true positive rate (TPR)
and false positive ratio (FPR) under various threshold settings.
Area under the curve of ROC, also known as AUC value, can
well reflect the performance of the classifier. The value of AUC
varies between 0 and 1. When the AUC value is equal to 0.5, it
means that the classifier cannot work. The larger the AUC
value, the better the performance of the classifier. When the
AUC value is 1, the classifier can produce perfect results.

3. Results

3.1. Performance Evaluation of the Random Walk with
Restart Method Based on Supervised Learning. In order to
evaluate the effectiveness of the proposed method, we first
took the known drug-disease association as an independent
validation data set. According to the relevant genes of 78 dis-
eases and the drug targets of 238 drugs, the correlation infor-
mation between diseases and drugs was obtained through
restart random walk on PPI network. According to the rank-
ing of drug-disease information pair by correlation, the AUC
value was calculated. Three PPI networks BioGrid, HPRD,
and STRING were independently verified, and their AUC
results were 0.64, 0.52, and 0.66.

In order to further explore the efficiency of methods in
different diseases, MeSH was used to classify all diseases.
There are also some diseases in the classification that belong
to a variety of disease types, such as colorectal tumors, which
belong to C04 tumor diseases and C06 digestive system dis-
eases. For the above case, we only calculated the average
AUC value according to one of them. The AUC value was
calculated on the basis of PPI network and optimal parame-
ters. The classification results of various diseases are shown
in Table 1.

From Table 1, it is easy to note that the performance of
the random walk with the restart method is different among
various diseases. It achieves good performance in the dis-
eases of blood and lymphatic system C15, endocrine system
diseases C19, eye diseases C11, and Male genitourinary
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system C12, with AUC values above 0.8. The highest is blood
and lymphatic system C15, with an AUC value of 0.877. The
AUC value of nervous system diseases is low, only 0.62.

In order to further verify the efficiency of the random
walk with the restart method and supervised learning, we
randomly divided all known drug-disease relationships into
ten parts, nine pieces of data are used as the training set
and the other is used to calculate AUC. For a certain disease,
we listed all the drugs that can treat the disease in the known
training set, and then integrated all the related genes of these
drugs into the related genes of the disease, and took the com-
bined gene set as the start of random walk [26]. For drugs,
the same method is used; that is, the relevant genes of dis-
eases that can be treated by a drug in the training set were
combined into the target information of the drug. Ten
AUC values were obtained for each experiment. In order
to reduce random interference, the above experiment was
repeated 10 times, and a total of 100 AUC values were
obtained, as shown in Figure 1.

The results show that the average value of 100 AUC
values is 0.827, indicating that the proposed method found
the relationship between drugs and diseases. With the help
of the training data of the known network relationship
between drugs and diseases, the prediction sensitivity of
drugs and diseases was further improved. Adding the target
information of drugs that can treat a disease to the disease-
gene information will indirectly add some potential
disease-gene information, making the disease-gene informa-
tion more abundant. Similarly, adding the genes of all
diseases that can be treated by a drug to the target informa-
tion of drugs can also enrich the information of drug-action
targets and make the relationship between drugs and dis-

eases more discovered, thus improving the prediction of
drug sensitivity.

3.2. Analysis of the Relationship between Drugs and Diseases.
In this work, disease-related genes were taken as the starting
point of random walk on one side, and the target genes of
drugs were taken as the starting point of random walk on
the other side. Through the restart random walk on the
whole PPI network, the relationship between each disease
and each drug on the PPI network was obtained, and their
correlation coefficient was further calculated. We got 18564
group correlations of 78 diseases and 238 drugs. According
to their correlation coefficients, 61 pairs of disease drugs
with a correlation degree of more than 0.8 are found, of
which 53 diseases and drugs have been confirmed by
research, and 8 pairs belong to unknown drug-disease rela-
tionship. The relevant information of 8 pairs of diseases
and drugs is shown in Table 2.

Methylprednisolone (DB00959) can treat autoimmune
diseases, but we found that methylprednisolone is strongly
associated with hematological diseases. According to the defi-
nition of MeSH, blood diseases include blood tumors, bone
marrow diseases, and other diseases. Methylprednisolone is a
biological macromolecular drug, a steroid derivative, and also
a glucocorticoid. It can affect the expression of some genes
through the cell membrane, thus interfering with the inflam-
matory response, inhibiting humoral immune response, and
has a strong anti-inflammatory effect. Bowen et al. found that
high-dose methylprednisolone has a certain effect on patients
with recurrent chronic lymphoblastic leukemia [27]. Yao et al.
found that methylprednisolone inhibited Wnt signaling path-
way by downregulating the expression of LEF-1 protein, and
Wnt signaling pathway is highly related to recurrent chronic
lymphoblastic leukemia [28].

Mitoxantrone (DB01204) is associated with non-
Hodgkin’s lymphoma (NHL) and multiple sclerosis (MS).
We found that it is also strongly correlated with lymphoid
leukemia [29, 30]. Mitoxantrone has significant benefits for
tumor control and overall survival in patients with recurrent
acute lymphoblastic leukemia.

Prednisolone (DB00860) is a typical steroid drug, which
can treat a variety of diseases, including rheumatoid arthri-
tis, asthma, allergies, psoriasis, and multiple sclerosis [31].
However, these diseases are all autoimmune diseases. There-
fore, we also found that prednisolone has a strong connec-
tion with autoimmune diseases.

We also found that apomorphine (DB00714), cabergo-
line (DB00248), bromocriptine (DB01200), and rotigotine
(DB05271) are related to Parkinson’s disease. After querying
DrugBank, we knew that these four drugs have therapeutic
effects on Parkinson’s disease, but they are not included in
the known data set.

3.3. GO Function Enrichment Analysis. Eight reusable drugs
were found in this work, five of which have pharmacody-
namic effects on Parkinson’s diseases. We further performed
GO function enrichment analysis on disease-related genes of
the disease before drug action. The results are shown in
Figure 2(a). It is easy to note that genes are mainly enriched

Table 1: Average AUC value of various diseases based on the
random walk with restart method and three PPI networks
BioGrid, HPRD, and STRING.

Disease classification based on
MeSH

Number of
diseases

Average
AUC

Viral diseases C02 2 0.70467

Tumor C04 16 0.764632

Musculoskeletal diseases C05 5 0.748488

Digestive system diseases C06 9 0.760698

Respiratory diseases C08 2 0.68288

Nervous system diseases C10 9 0.62232

Eye diseases C11 2 0.83772

Male genitourinary system C12 1 0.81407

Cardiovascular disease C14 11 0.66685

Blood and lymphatic system C15 4 0.876637

Skin and connective tissue
diseases C17

5 0.675556

Nutritional and metabolic
diseases C18

6 0.734407

Endocrine system diseases C19 2 0.87446

Immune system diseases C20 4 0.62869
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in functional modules such as chromosome breakage (GO:
0031052), upregulated cell migration (GO:0030335), and
chain replacement (GO:0000732).

We then analyzed the related genes of Parkinson’s dis-
eases after drug action. The results are shown in
Figure 2(b). The results show that the gene is enriched in
the following functional modules, such as the regulation of
exercise (GO:0040012), dopamine binding (GO:0035240),
and serotonin binding (GO:0051378).

Before and after random walk, the GO enrichment mod-
ule of Parkinson’s disease has changed significantly. Before
random walk, the main enrichment module of Parkinson’s
syndrome is related to gene expression and cell movement
in cells, which may be related to the pathogenesis of Parkin-
son’s disease. After random walk, the relevant genes of Par-
kinson’s syndrome are mainly enriched in some neural
transmission modules, which are closely related to the treat-
ment of Parkinson’s syndrome.

3.4. KEGG Pathway Analysis. We further analyzed the genes
related to Parkinson’s disease by KEGG pathway. The results
are shown in Figure 3. Figure 3(a) shows that genes are
mainly enriched in pancreatic secretion (hsa04972), PI3K
Akt signaling pathway (hsa04151), and other pathways.
After adding drug information and random walk, we
conducted KEGG pathway analysis on relevant genes. The
results show that the genes are mainly enriched in neural
active ligand receptor interaction (hsa04080), calcium sig-
naling pathway (hsa04020), serotonin receptor synapse
(hsa04726), and dopamine receptor synapse (hsa04728).

Before and after random walk, the KEGG pathway
enrichment module of Parkinson’s disease has changed sig-
nificantly. The approximate change is similar to the result
of GO enrichment analysis. Before random walk, the main
enrichment pathways of Parkinson’s syndrome are related
to intracellular signaling pathways. After random walk, the
relevant genes of Parkinson’s syndrome are mainly enriched
in some neural transmission pathways, which are closely
related to the treatment of Parkinson’s syndrome.

3.5. Key Gene Analysis. In order to further study key genes of
Parkinson’s disease, we studied the local relationship
between Parkinson’s disease and trihexyphenidyl, a drug
that can treat Parkinson’s disease and their related genes
on the network (Figure 4). It can be seen from Figure 4 that
the key genes of Parkinson’s disease are α-synuclein (Gene
ID: 6622) and tau protein (Gene ID:4137). α-Synuclein
mainly exists at the synapse of the nerve cells and plays a
key role in the transmission of neurotransmitters. Tau pro-
tein is a microtubule-associated protein that mainly exists
in nerve cells. These two proteins are closely related to the
pathogenesis of Parkinson’s disease.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6 

0.7

0.8

0.9

1

Experiment time

AU
C 

va
lu

e

Figure 1: The AUC distribution of the random walk with restart method and supervised learning.

Table 2: The relevant information of eight diseases and eight
drugs.

Disease Drug Pearson

Parkinsonian disorders Apomorphine 0.876

Parkinsonian disorders Cabergoline 0.876

Bone diseases metabolic Calcitriol 0.841

Parkinsonian disorders Bromocriptine 0.840

Leukemia lymphoid Mitoxantrone 0.834

Hematologic diseases Methylprednisolone 0.811

Parkinsonian disorders Rotigotine 0.806

Autoimmune diseases Prednisolone 0.806
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Figure 2: The distribution of the related genes of Parkinson’s diseases. (a) GO function enrichment on the disease-related genes of
Parkinson’s disease before drug action; (b) GO function enrichment on disease-related genes of Parkinson’s disease after drug action.
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Figure 3: KEGG pathway of the related genes of Parkinson’s diseases. (a) KEGG pathway on the disease-related genes of Parkinson’s disease
before drug action; (b) KEGG pathway on disease-related genes of Parkinson’s disease after drug action.
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4. Conclusion

With the prevalence of complex diseases, the existing drugs
are far from meeting the needs of human beings to fight dis-
eases. At the same time, due to the rising cost of drug
research and development and the long research and devel-
opment cycle, the research and development means of inno-
vative drugs have become a major challenge in the medical
field. In recent years, with the continuous enrichment of dis-
ease and drug databases, researchers have realized drug
reuse through the correlation analysis of disease-related
genes, drugs, and drug-target data. This is a new research

and development idea in the field of pharmaceutical research
and development, which reduces the research and develop-
ment cost of innovative drugs and saves resources. Because
most diseases are not single gene defects, they often involve
the destruction of the coordination function between genes
[32]. Therefore, we explored the relationship between drugs
and diseases based on the biological function network. Using
HPRD, BioGRID, STRING, and other databases; the pro-
tein–protein interaction (PPI) network was constructed.
We designed a combination algorithm of random walk and
supervised learning to predict the sensitivity of drugs. The
accuracy of sensitivity prediction is 82.7%.
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Figure 4: The gene network between Parkinson’s disease and trihexyphenidyl.
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With the help of the proposed method, we found that 8
pairs of drug-disease relationships have not been reported,
and 5 of them have pharmacodynamic effects on Parkinson’s
diseases. For Parkinson’s disease, we found the changes of its
functional modules by adding drug information and com-
paring before and after random walk, combined with the
results of GO and KEGG function enrichment analysis.
Using the network diagram of disease and drug-related
genes after random walk, we found the key linkage between
Parkinson’s disease and phenylhexol, a drug for the treat-
ment of Parkinson’s disease α-synuclein and tau protein,
which provide a useful exploration for the effectiveness of
the treatment of Parkinson’s disease.
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