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Small cell lung cancer (SCLC) is a highly invasive and fatal malignancy. Research at the present stage implied that the expression of
immune-related genes is associated with the prognosis in SCLC. Accordingly, it is essential to explore effective immune-related
molecular markers to judge prognosis and treat SCLC. Our research obtained SCLC dataset from Gene Expression Omnibus
(GEO) and subjected mRNAs in it to differential expression analysis. Differentially expressed mRNAs (DEmRNAs) were
intersected with immune-related genes to yield immune-related differentially expressed genes (DEGs). The functions of these
DEGs were revealed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses.
Thereafter, we categorized 3 subtypes of immune-related DEGs via K-means clustering. Kaplan-Meier curves analyzed the effects
of 3 subtypes on SCLC patients’ survival. Single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE validated that the
activation of different immune gene subtypes differed significantly. Finally, an immune-related-7-gene assessment model was
constructed by univariate-Lasso-multiple Cox regression analyses. Riskscores, Kaplan-Meier curves, receiver operating
characteristic (ROC) curves, and independent prognostic analyses validated the prognostic value of the immune-related-7-gene
assessment model. As suggested by GSEA, there was a prominent difference in cytokine-related pathways between high- and low-
risk groups. As the analysis went further, we discovered a statistically significant difference in the expression of human leukocyte
antigen (HLA) proteins and costimulatory molecules expressed on the surface of CD274, CD152, and T lymphocytes in different
groups. In a word, we started with immune-related genes to construct the prognostic model for SCLC, which could effectively
evaluate the clinical outcomes and offer guidance for the treatment and prognosis of SCLC patients.

1. Introduction

Small cell lung cancer (SCLC) represents 15% of all lung cancer
(LC) cases. 60%-65% of SCLC patients had metastasis at diag-
nosis [1, 2]. SCLC grows fast with high invasiveness, which
results in the poor prognosis of patients [3]. Presently, the com-
bination of radiotherapy and chemotherapy is the standard to
treat SCLC patients [3]. Nevertheless, over recent years, works
have revealed that only some patients with limited-stage SCLC
benefit from such a treatment pattern (41% and 16% for the 2-
and 5-year survival, respectively), but this pattern does not
work well for patients at extensive-stage (distant metastasis of
cancer), with 6.4% of overall response rate after treatment [4].

The emergence of targeted therapy has improved the prognoses
of lung cancer patients but has only limited effects on patients
with SCLC. To take an example, the epidermal growth factor
receptor (EGFR) inhibitor erlotinib is successful in treating
non-small cell lung cancer (NSCLC) but is less effective in
treating SCLC [5]. The reason is that EGFR is not an effective
target due to the extremely low mutation frequency in SCLC.
Imatinib, a KIT gene-targeted drug, can effectively improve
the prognoses of NSCLC patients but is not effective on SCLC
patients [6, 7]. Imatinib cannot be an effective drug for SCLC
because KITmutation rarely exists in SCLC [6, 7]. Accordingly,
the results are less satisfactory in SCLC patients’ prognoses by
using present treatment methods. Now, it is essential to seek
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prognostic targets at the molecular level for clinicians to pre-
cisely assess the prognosis and guide the treatment of SCLC
patients, thereby improving the poor prognoses of SCLCpatients.

As reported, the malignancy of cancer is associated with the
immune-infiltrating microenvironment apart from the regula-
tion of tumor cells [8]. A report analyzed the connection
between T-cells and clinical outcomes of tumor patients, reveal-
ing that the infiltration of lymph cells, mainly cytotoxicity T
cells and memory T cells, are positively linked to favorable clin-
ical outcomes in patients withmalignancy [9]. At the same time,
there are accumulating works proving that immune-related
genes can either facilitate or suppress cancer by affecting the
immune microenvironment in cancer. It is of great significance
to find out immune-related markers at the molecular level. For
instance, lncRNA KCNQ1OT1/CD155 axis facilitates antitu-
mor immune response by regulating T-cell depletion status in
colorectal cancer; and lncRNAKCNQ1OT1 level is an indicator
of patients’ prognoses by reflecting the immune status of tumor
tissue [10]. Immune-related gene PDK1 is able to manipulate
PD-L1 level in tumor tissue by mTOR signaling, and further
affects the immune escape of tumor [11]. The tumor progres-
sion can effectively slow down by downregulating tumor
immune escape via PDK1 [11]. Besides, traditional immune
markers like PD-1/PD-L1/CTLA4 play a marked role in indi-
cating cancer progression and drug guidance [12]. Given that,
we posited that there was a connection between immune-
related genes, immune infiltrating microenvironment in tumor
tissue, and prognoses of patients withmalignancies. And poten-
tial targets can be revealed for improving the clinical outcomes
of these patients by investigating such a connection. To investi-
gate, the immune-related regulation can effectively help with
the development of clinical drugs and medication guidance.

We constructed a 7-gene model for assessment of the
prognoses of SCLC patients based on immune-related genes
in the GSE60052 dataset and ImmPort Shared Data (Imm-
Port). We divided samples into high- and low-risk groups
based on their Riskscores. Differences in the expression of
the immune-related proteins, human leukocyte antigen
(HLA), and the immune checkpoint gene between SCLC
high- and low-risk groups were revealed by Wilcox test to
reveal the underlying function of the prognostic model in
predicting the immune mode of samples. The biomarkers
we herein revealed and the risk assessment model can be
positive tools for SCLC patients’ prognoses.

2. Materials and Methods

2.1. Data Resource. mRNA and clinical data from GSE60052
(platform: GPL11154) of SCLC were downloaded from the
GEO database (Home-GEO-NCBI (http://nih.gov)), contain-
ing 7 healthy samples and 79 tumor samples. Gene data closely
correlating cellular immune function were from the ImmPort.

2.2. Screening of Differentially Expressed Genes (DEGs) Related
to Immune Regulatory Functions in Cells. The mRNA data of
healthy and tumor samples in GSE60052 were differentially
analyzed using the R package “limma” [13], and DEGs with j
logFCj > 1:0 and FDR < 0:05 were retained. Immune-related
DEGs were sieved by taking an intersection of DEGs and genes

associated with immune regulation function in ImmPort. The
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed on immune-
related DEGs using the R package “clusterProfiler” [14]
(p value < 0:05).

2.3. Consensus Clustering and Subtype Assessment Based on
Immune-Related DEGs. To identify the immune subtype of
SCLC, K-means clustering algorithm [15] was performed on
immune-related DEGs using the R package “ConsensusCluster-
Plus”. The overall level of immune infiltration in subtype groups
was assessed using the R package “ESTIMATE” (https://
bioinformatics.mdanderson.org/estimate/rpackage.html). The
immune score, matrix score, ESTIMATE score, and tumor
purity calculated were subject to Wilcox analysis to plot violin
plots in different subtypes. The activation of immune-related
gene sets in different immune subtypes was assessed using R
package “GSVA” [16] based on single-sample gene set enrich-
ment analysis (ssGSEA) method.

2.4. Construction and Validation of Prognostic Models
Related to Immune Regulatory Functions in Cells. Using the
R package “survival” (survival: Survival Analysis (http://r-
project.org)), univariate Cox regression analysis was
performed on immune-related DEGs and those with p
value < 0:05 were selected as the candidate genes. To prevent
model overfitting, Lasso regression analysis of candidate
genes was performed using the R package “glmnet” [17],
and cross-validation was used to choose penalty parameter
λ to remove genes with strong correlation to reduce model
complexity. R package “survival” (survival: Survival Analysis
(http://r-project.org)) was utilized to construct a multivari-
ate Cox regression model for candidate genes screened by
Lasso regression analysis. Based on the following formula,
the obtained characteristic genes and Riskscore were subject
to cumulative weighting to generate the prognostic model:

Riskscore = 〠
n

i=1
expi ∗ βi, ð1Þ

Where n is the number of genes related to immune char-
acteristics and patient’s prognosis, expi is the expression
level of each gene, and βi is the risk coefficient calculated
by multivariate Cox analysis.

The risk score of the patients was calculated according to
the expression and risk coefficient of each gene in the prognos-
tic model, and the samples were divided into high- and low-
risk groups using the median Riskscore. By using R package
“survival” (survival: Survival Analysis (http://r-project.org)),
we plotted the survival curves of the high- and low-risk groups
based on the Riskscore. R package “timeROC” plotted the
ROC curves [18].

2.5. GSEA. KEGG pathway enrichment analysis was per-
formed on high- and low-risk groups using GSEA software.

2.6. Analysis of Levels of Immune-Regulating Molecules in
Tumor. Box plots were prepared by Wilcox analysis in each
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sample to count the expression of HLA proteins, immune
checkpoints PD-L1, PD-1, CDLA4, and CD28.

2.7. Assessment of the Independence of the Prognostic Model.
Univariate and multivariate regression analyses were per-
formed on GSE60052 samples by combining patients’ clini-
cal information such as age, gender, stage, pathological
stages (T and N), and prognostic Riskscores to draw the cor-
responding forest plot [19].

3. Results

3.1. Screening and Enrichment Analysis of Immune-Related
DEGs. Differentially expression analysis between normal and
tumor groups in GEO data set yielded 3,022 DEGs in SCLC,
including 1,301 highly expressed genes and 1,721 lowly expressed
ones in tumor tissue (Figure 1(a)). Immune-related genes were
searched from the ImmPort database. DEGs and immune-
related genes were intersected to obtain 228 immune-related
DEGs (Figure 1(b), Table S1). GO analysis suggested that these
immune-related DEGs were mainly enriched in biological
functions of positive regulation of cytokine production, positive
regulation of response to external stimulus, and leukocyte
migration (Figure 1(c)). KEGG analysis suggested that these
DEGs were mainly enriched in PI3K-Akt signaling pathway,
MAPK signaling pathway, and human T-cell leukemia virus 1
infection (Figure 1(d)).

3.2. Construction and Evaluation of SCLC Subtypes Based on
Immune-Related DEGs. Consensus clustering analysis was
conducted on 228 immune-related DEG loci to identify
molecular subsets of different immune-related DEGs. Clus-
tering results were visualized using cumulative distribution
function (CDF) plots and CDF incremental area plots, where
k represents the number of groups (Figures 2(a) and 2(b)).
The results of undifferentiated clustering analysis showed
that the internal consistency of the clusters was high, and
the clustering effect was best when k = 3 (Figure 2(c)), so
the samples could be categorized into three subtypes. Sur-
vival curves were plotted by grouping the subtypes and com-
bining clinical information for survival analysis, showing
that subtype 3 had a higher survival rate than subtypes 2
and 1 (Figure 2(d)). Among them, the activation levels of
immune function-related gene sets of subtype 2 and subtype
3 were higher than those of subtype 1 (Figure 2(e)). Further
evaluation of the immune microenvironment of these three
subtypes indicated that there were differences in the tumor
microenvironment scores among the three subtypes. Of
which, the subtype 3 with the best overall survival status
had the highest stromal score, immune score, and ESTI-
MATE score and the lowest tumor purity, while the subtype
1 presented opposite results to that of subtype 3 (Figures 2(f
)–2(i)). The above results indicated that the immune-related
DEGs selected in this study can distinguish SCLC samples
based on immune status and that there were marked differ-
ences in the prognosis among the three immune subtypes,
indicating the feasibility of constructing prognostic model
with these genes.

3.3. Prognostic Modeling and Validation of DEGs Associated
with Immune Regulatory Functions in Tumor. Univariate Cox
regression analysis was performed on DEGs associated with
immune function to obtain 20 candidate genes with prominent
association with survival (Table S2). Lasso regression analysis
of these 20 candidate genes filtered out high-fit immune
function-related DEGs. As depicted in Figure 3(b), the
smaller the partial-likelihood deviance value, the more stable
the model was. When the log (λ) was 2.5, the model was
relatively more stable, and thus, the log (λ) value was
considered to be the optimal penalty coefficient. As plotted in
Figure 3(a), the regression coefficients varied with log (λ). A
multivariate regression model was established for these 7
signature genes associated with prognosis, and the final
modeling was completed based on the risk score coefficient of
each gene: Riskscore = −0:24923 × CXCL2 − 0:43238 × ENG
− 0:41932 × ARRB1 − 0:06037 × BMP1 − 0:94496 × IRF1 −
0:33634 × CCL5 + 0:14949 × LCP2 (Figure 3(c)).

ROC curves for assessing the 1-, 3-, and 5-year overall
survival of patients’ prognosis were plotted based on the
Riskscores obtained from this model, and their AUC values
were 0.82, 0.9, and 0.95, respectively (Figure 3(d)). The sur-
vival curves were plotted by grouping the samples into high-
and low-risk groups according to the median value of the
Riskscore, and patients in the high-risk group were found
to have lower survival (Figure 3(e)). Combined with Risk-
score distribution and survival time, it was found that the
increase of Riskscore was associated with the increased num-
ber of deaths and the decreased survival time of patients
(Figures 3(f) and 3(g)). And there was a difference in the
level of the 7 genes (Figure 3(h)). In sum, our work gener-
ated a 7-signature gene risk assessment model to predict
the prognosis of SCLC patients, with good predictive ability.

3.4. KEGG Analysis of High- and Low-Risk Groups. KEGG
analysis of both groups using GSEA software revealed that
the low-risk group was markedly enriched in immune-
related pathways, including chemokine signaling pathway,
FC gamma Rmediated phagocytosis, nod-like receptor signal-
ing pathway, T cell receptor signaling pathway, systemic lupus
erythematosus, and B cell receptor signaling pathway
(Figures 4(a)–4(f)). Most of the above pathways belong to
cytokine-related pathways, which are closely related to tumor
immunity and antitumor killing effect, supporting the differ-
ence in immune pattern between groups, and also implying
that the difference in prognoses of patients in high- and low-
risk groups in this studymay be associated with these signaling
pathways, but it still needs subsequent validation.

3.5. Analysis of Immune Characteristics in Tumor Based on the
Risk Assessment Model. Given that the GSEA elucidated the
differences in immune signaling-related pathways between
the high- and low-risk groups, we worked to further elucidate
the differences in immune patterns between groups, HLA
expression in the high- and low-risk groups. The results
indicated significantly higher expression of HLA series antigen
molecules in the low-risk group (Figure 5(a)). Immune-related
checkpoint molecules or targeted inhibitory molecules of
immunotherapy, PD-L1 (Figure 5(b)), CTLA4 (Figure 5(d)),
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Figure 1: The screening and functional enrichment of immune-related DEGs. (a) Volcano plot of DEGs in SCLC samples and healthy
samples in GEO dataset. Red represents significantly upregulated genes and green represents significantly downregulated genes. (b) Venn
diagram of DEGs and immune-related genes. (c) GO and (d) KEGG analyses of immune-related DEGs.
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and CD28 (Figure 5(e)) manifested statistically significant dif-
ferences of high levels in the low-risk group. While the targeted
inhibitory molecule PD-1 showed no significant difference in
the low-risk group (Figure 5(c)). The above models validated

the differences in immune patterns between high- and low-
risk groups, and the differences in patient outcomes between
both groupsmay be driven by differences in these immune pro-
teins or checkpoints.
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Figure 2: Construction and assessment of SCLC subtypes based on immune-related DEGs. (a) Diagram of consensus cumulative
distribution function (CDF). (b) Plot of the relative area under the CDF curve. (c) K-means cluster analysis of SCLC samples. (d)
Survival analysis of different immune subtypes. (e) Heatmap of tumor microenvironment in different subtypes. (f) Stromal score
(red = subtype-1, blue = subtype-2, and green = subtype-3), (g) immune scores (red = subtype-1, blue = subtype-2, and green = subtype-3),
(h) ESTIMATE scores (red = subtype-1, blue = subtype-2, and green = subtype-3), and (i) Tumor purity scores for different subtypes
(red = subtype-1, blue = subtype-2, and green = subtype-3). ns: not significant; ∗∗P < 0:01; ∗∗∗P < 0:001.
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Figure 3: Construction of a prognostic risk assessment model for SCLC patient. (a) Trajectory plot of the gene coefficients with the
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Figure 4: GSEA for high- and low-risk groups.

14 Computational and Mathematical Methods in Medicine



Gene expression
5.0 7.50.0

HLA-E

2.5 10.0

ns
ns
ns

ns
⁎⁎

⁎⁎

⁎⁎

⁎⁎
⁎⁎

⁎

ns

ns

ns

⁎

⁎

⁎
⁎⁎

⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎

Subtype

High

Low

HLA-DPB2
HLA-C
HLA-J

HLA-DQB1
HLA-DQB2
HLA-DQA2
HLA-DQA1

HLA-A
HLA-DMA
HLA-DOB

HLA-DRB1
HLA-H
HLA-B

HLA-DRB5
HLA-DOA
HLA-DPB1
HLA-DRA

HLA-DRB6
HLA-L
HLA-F
HLA-G

HLA-DMB
HLA-DPA1

(a)

Subtype
Low

0

2

High

Subtype

High

Low

4

PD
-L

1 
ex

pr
es

sio
n

6

Wilcoxon, p = 0.0035

(b)

Figure 5: Continued.

15Computational and Mathematical Methods in Medicine



Wilcoxon, p = 2e–04

Subtype
Low

0

2

High

4

PD
-1

 ex
pr

es
sio

n

6

Subtype

High

Low

(c)

Subtype
Low

0

2

High

4

CT
LA

4 
ex

pr
es

sio
n

6

Wilcoxon, p = 0.0011

Subtype

High

Low

(d)

Figure 5: Continued.

16 Computational and Mathematical Methods in Medicine



Wilcoxon, p = 0.00034

Subtype
Low

0

2

High

4
CD

28
 ex

pr
es

sio
n

6

(e)

Figure 5: Analysis of tumor immune characteristics in high- and low-risk groups. Box plots of (a) HLA, (b) PD-L1, (c) PD-1, (d) CTLA4,
and (e) CD28 in high- (red) and low-risk (blue) groups. ns: not significant; ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001.
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Figure 6: Correlation analysis between Riskscore and clinical factors in SCLC patients. (a) Forest plot of univariate and (b) multivariate Cox
regression analyses based on clinical information, Riskscore, and overall survival.
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3.6. Evaluation of Clinical Value of the Prognostic Model. Uni-
variate regression analysis on Riskscore and clinical information
revealed significance between tumor clinical stages, pathological
stages (T and N) and Riskscore (p value < 0:05) (Figure 6(a)).
Subsequent multivariate regression analysis revealed that signif-
icance only lay in Riskscore (Figure 6(b)). The prognostic score
model constructed from these 7 signature genes could therefore
be used as an independent prognostic factor.

4. Discussion

Tumor immune-related genes are important for revealing the
prognosis of LC patients. CD133 is a key biomarker closely
related to the prognosis of patients, and the use of this marker
for tumor screening in SCLC can detect the presence of tumors
earlier and reduce the risk of disease in patients [20]. At pres-
ent, the use of bioinformatics approach to mine public data-
bases and select effective therapeutic targets or biomarkers is
currently the most advanced research method. As proposed
by Wu et al. [21], a TME risk model constructed with the
tumor immune infiltration-related genes SERPINE1, CX3CR1,
CD200R1, GBP1, IRF1, STAP1, LOX, and OR7E47P based on
public databases can be used to predict the prognostic survival
of LC patients. Our study focused on exploring the correlation
between SCLC immune-related genes and prognosis while dis-
tinguishing SCLC immune subtypes, revealing differences in
immune-related molecular indicators between these subtypes,
and validating the effectiveness of related models. Most impor-
tantly, this study constructed a risk assessment model based on
immune-related DEGs that can be used to assess the prognoses
of SCLC patients, which provided a basis for SCLC diagnosis
and treatment.

In this study, we identified 7 genes that can be used to con-
struct a prognostic model for SCLC patients via bioinformatics
approach, of which CXCL2, ENG, ARRB1, BMP1, IRF1, and
CCL5 were prognostic protective factors and LCP2 was the
only prognostic risk factor. Among them, CXCL2 is a tradi-
tional inflammatory chemokine, which can mediate the
recruitment of neutrophils to lung tissue [22]. This may pro-
vide a reference for CXCL2 as a prognostic risk factor in this
paper; the recruitment of neutrophils by CXCL2 may facilitate
antitumor immune responses. ENG (CD105) is a coreceptor of
TGF-β, which is essential for angiogenesis/vascular develop-
ment. The expression of this gene can impel angiogenesis in
tumor tissue and further cause malignant progression of
tumors, which has been always considered as an excellent ther-
apeutic target [23]. There was a mice experiment indicating
that anti-ENGmonoclonal antibody in treatment can suppress
tumor progression [24]. The possible effect of ARRB1 on
tumor development is still controversial, and ARRB1 is associ-
ated with the prognosis of patients with tumors in a variety of
cancers [25–27]. In our study, data models suggested that
ARRB1 may improve the prognosis of patients with SCLC.
BMP1 is considered to be a key factor in promoting tumor
growth and metastasis of LC, and BMP1 facilitates NSCLC
metastasis by inhibiting TGF-β activity in NSCLC [28]. Inter-
estingly, it was found in the present study that BMP1 may
improve the prognoses of SCLC patients, and the reasons for
this need to be further elucidated. The expression of IRF1 in

NSCLC tissue was generally lower than that in normal lung tis-
sue, which is cancer-suppressive by regulating KPNA2 [29].
We found that IRF1 could be used as a prognostic protective
factor in SCLC, consistent with the previous study. CCL5 acts
as a chemokine ligand, which is supposed to propel the cyto-
toxicity of tissue-resident T and NK cells and strengthen anti-
tumor immune responses [30]. LCP2, the only prognostic
risk factor among the 7 genes of our prognostic model, is
thought to be related to the infiltrating level of toxic lympho-
cytes and plays a regulatory role in antitumor immunity.
Unfortunately, its role in SCLC remains unknown [31, 32]. In
addition, in the study of LC, it has been exhibited that this gene
is positively correlated with PD-L1 level in lung adenocarci-
noma tissue, and we speculated that it may further affect the
disease progression of SCLC by affecting the immune escape
mechanism in cancer [33]. In short, the prognosis-related
marker molecules associated with immune regulatory function
obtained in this paper were generally involved in the regulation
of tumor growth and immunity. These molecules can serve as
biomarkers to predict the prognosis of patients and potential
targets for SCLC treatment.

After establishing a prognostic model, we divided SCLC
samples into high- and low-risk groups based on the median
value of the risk score of the risk assessment model, and the
results implied that the HLAs, especially HLA-DPA1, HLA-
DPB1, HLA-DMB, and HLA-DOA, were remarkably upregu-
lated in the low-risk group. HLA is the expression product of
the major histocompatibility complex (MHC) in humans, and
the HLA system is the most complex polymorphic system in
the human body known so far. Given that this family is often
dysregulated in the tissue of patients receiving immunother-
apy, recent studies put their focus on the immune-regulatory
effects of this family [34]. To take an example, HLA-
DPA1and HLA-DPB1, dysregulated in our low-risk group,
have been manifested to be associated with the maintenance
of long-term immune efficacy after HBV vaccination [35]. In
the field of cancer, HLA-DPA1 activates chemokines and
toll-like receptor signaling pathways to regulate hepatocellular
carcinoma progression [36]. HLA-DPB1 can be an antitumor
factor to recruit NK cells, CD8+ T cells, and tumor-infiltrating
lymphocytes such as Th1 and Tfh into breast cancer [37]. Both
HLA-DPA1 and HLA-DPB1 play an antitumor role by acti-
vating immune cell infiltration, which well explained their
downregulation in the high-risk group of this study. HLA-
DMB is an essential component of MHC complex synthesis,
and the expression of this gene is prominently positively
correlated with the level of infiltration of tumor-infiltrating
CD8+ T cells [38]. Similarly, HLA-DOA regulates the level
of B cell infiltration in tissue and ensures the stable expression
of MHC in cancer tissue, balancing their biological functions
[39]. It can be seen that, similar to HLA-DPPA1 and HLA-
DPB1, HLA-DMB, and HLA-DOA are also associated with
the upregulation of tumor-infiltrating immune cells, consis-
tent with the results predicted by our study. The immune-
regulatory effect of HLA family validated the effectiveness of
the construction based on the prognostic model of immune-
related genes and also confirmed the rationality of this risk
assessment model in predicting tumor immune patterns. In
addition to leukocyte antigens, we observed notable
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differential expression of immune checkpoint genes PD-L1,
CTLA4, and CD28 in high- and low-risk groups. Activated
T cells often express PD-1 on their surface and can act as
immune checkpoint receptors, while PD-L1 produced on the
surface of many cancer cells acts as a PD-1 ligand and the
combination of the two leads to tumor immunosuppression
[40]. CTLA4 is an immune checkpoint protein expressed on
activated T cells to downregulate the activation of T cells
[41]. CD28 is a cell surface glycoprotein receptor expressed
primarily on activated T cells and belongs to the immunoglob-
ulin (Ig) superfamily [42]. This molecule has been manifested
to negatively regulate T cell antitumor responses and is widely
involved in tumor immune escape [42].

In summary, in this study, based on bioinformatics analy-
sis, immune-related DEGs in the GSE60052 dataset were
screened and classified into three subtypes that could represent
different immune patterns to assess the rationality of immune-
related genes. At the same time, the 7-gene prognostic model
established by bioinformatics analysis based on immune-
related DEGs could evaluate the prognoses of SCLC patients
more accurately. The GSE60052 dataset was divided into high-
and low-risk groups according to the median Riskscore, reveal-
ing the differences in the expression of immune checkpoint
genes and antigen molecules, and confirming the rationality
of the model in predicting tumor immune patterns. This study
is conducive to deepening the understanding of immune-
related genes in SCLCwhile providing a powerful tool for prog-
nostic evaluation and immunotherapy of SCLC patients. Of
course, this study has some limitations; the data of this study
were derived from open databases, there were certain system-
atic errors, and the accuracy of model prediction needs to be
subsequently verified in more clinical samples. Additionally,
wet experiments were not conducted to validate the con-
structed model. Relevant cellular experiments and molecular
experiments are therefore warranted to verify the model.
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