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Objective. To compare restricted mean survival time- (RMST-) based methods with traditional survival methods when multiple
covariates are of interest. Methods. 4405 osteosarcomas were captured from Surveillance, Epidemiology, and End Results
Program Database. RMST-based methods included group comparison using Kaplan-Meier (KM) method, pseudovalue (PV)
regression, and inverse probability of censoring probability (IPCW) regressions with group-specific and individual weights.
Log-rank test, Wilcoxon test, Cox regression, and its extension with time-dependent variables were selected as traditional
methods. Proportional hazard (PH) assumption and homogeneity of censoring mechanism assumption were assessed. We
estimated hazard ratio (HR) and difference in RMST and explored their relationships. Results. When covariate violated PH
assumption, time-varying HR was inconvenient to report as a single value but PH assumption-free RMST allowed to report a
single value of difference in RMST. In univariable analyses, using the difference in RMST calculated by KM method as
reference, PV regressions (slope = 1:02 and R2 = 0:98) and IPCW regressions with group-specific weights (slope = 0:98 and
R2 = 0:99) gave more consistent estimation than IPCW with individual weights (slope = 0:31 and R2 = 0:06), moreover, PV
regressions presented more robust statistical power than IPCW regressions with group-specific weights. In multivariable
analyses, IPCW regression with group-specific weights was limited when multiple covariates violated homogeneity of
censoring mechanism assumption. For covariates met PH assumption, well-fitted logarithmic relationships between HR and
difference in RMST estimated by PV regression were observed in both univariable and multivariable analyses (R2 = 0:97
and R2 = 0:94, respectively), which supported the robustness of PV regression and possible conversion between the two effect
measures. Conclusions. Difference in RMST is more interpretable than time-varying HR. The performance supports KM method
and PV regression to be the preferred ones in RMST-based methods. IPCW regression can be an alternative sensitivity analysis.
We encourage adoption of both traditional methods and RMST-based methods to present effects of covariates comprehensively.

1. Background

In oncological studies, survival data, involving survival time
(until the occurrence of an event of interest) and status
(event or censor), are frequently adopted [1]. Features of
censoring make survival analyses different and common
form of censoring is right censoring. Generally, survival
analysis starts from data description and exploration by
plotting Kaplan-Meier (KM) curves, and then compares

survival curves; finally, univariable and multivariable regres-
sions are performed to obtain effects of one or more factors
[2]. When only one factor is of interest (such as intervention
group), unadjusted and adjusted effect measure of the factor
are reported. When focusing on multiple factors (such as
risk factors), unadjusted and adjusted effect measures of
each factor are of interest.

Hazard ratio (HR) from Cox proportional hazard regres-
sion (referred as Cox regression) is routinely considered as a
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preferred effect measure, but interpretation of HR may be
challenging since it is not an intuitively and clinically sum-
mary statistic. Note that a key assumption for Cox regression
is the proportional hazards (PH) assumption which requires
a constant HR over time [3]. If PH assumption is not satis-
fied, estimated HR with single value from Cox regression is
invalid and incorrect conclusion may be made [4]. Restricted
mean survival time (RMST), the area under the survival
curve between 0 and a prespecific time (τ), has been pro-
moted as an alternative and a better summary statistic for
survival data, it is not limited to the PH assumption [5, 6].
RMST can be interpreted in a clinically meaningful perspec-
tive. Difference in RMST as an absolute effect presents the
length of average gain or lost in life expectancy within pre-
specific time (τ), negative difference means survival time lost
(STL) and positive difference means survival time gain
(STG). Meanwhile, in consolidated standards of reporting
trials (CONSORT) and strengthening the reporting of obser-
vational studies in epidemiology (STROBE), relative and
absolute effect size are encouraged to be reported together
to present a broad picture of effects of covariates [7, 8].
Reporting both HR and difference in RMST in oncological
study can be an attractive move.

Simplicity and clinical intuition of RMST promotes
development of RMST-based methods. When only one cat-
egorical covariate is of interest, unadjusted difference in
RMST can be estimated based on Kaplan-Meier curve, and
adjusted one is estimated by standardized survival curves.
When focusing on multiple factors, RMST based regressions
make it feasible to explore independent effects of multiple
covariates on RMST. Three regressions had been proposed,
pseudovalue (PV) regression and inverse probability censor-
ing weighting (IPCW) regression with group-specified
weights and IPCW with individual weights [9, 10]. Homoge-
neity of censoring mechanism assumption determines the
selection.

A large number of survival methods may hinder
researchers and lay people from choosing the appropriate
method conveniently and effectively. Understanding their
performance in a real research and relationship between the
two effect measures can facilitate researchers to report. In this
study, to explore performance of different methods, we
conducted traditional survival methods and RMST-based
methods on an oncological data, summarized and compared
the results, and explored relationship between HR and differ-
ence in RMST. Finally, we summarized these methods and
drew a flowchart.

2. Methods

2.1. Oncological Data. The Surveillance, Epidemiology, and
End Results (SEER) Program Database was accessed and
Osteosarcoma cases with complete data on status and sur-
vival time from 1970s to 2000s was captured. Cases of
those who died or censored at time 0 were excluded from
the analysis because of different processing strategies in
general statistical software.

Patients’ demographic covariates included age, sex, the
year of diagnosis, and race. Age was categorized into >60

years and≤60 years, and race were classified as white and
others. Data on tumor included tumor size, extension of
disease, and American Joint Committee on Cancer for stag-
ing (AJCC). Tumor size was categorized into >100mm,
<100 nm, and “UNKNOWN”. Data on treatment included
surgery, chemotherapy, and radiation, all of which were
“yes” and “no”. Overall survival was the outcome of interest,
including survival status (dead for all causes or alive) and
survival time in months.

2.2. Statistical Methods

2.2.1. Data Description. Characteristics of participants were
descripted for categorical variables (frequencies and percent-
ages) and continuous variables (means with SD or medians
with interquartile range). Median of follow-up months and
number of death were calculated.

2.2.2. Assumption Assessment. PH assumption and Homoge-
neity of censoring mechanism assumption were appraised.
Three methods existed for PH assumption assessment: (1)
graphical assessment (KM curves and ln (-ln(S(t))) vs. ln(t)
Curves); (2) significance test for the interaction of covariate
∗log(t); and (3) global good of fitness by plotting and testing
association between ranked survival time and Schoenfeld
residuals [11]. In this study, large sample size made P values
sensitive to little departure from PH assumption, graphics
assessment was selected. The homogeneity of censoring
mechanism assumption was evaluated by KM curve or log-
rank test, in which the censoring parameter was specified
as 1 instead of 0 (0 indicating a censored time and the value
1 indicating an event time). A substantially separated KM
curves or a small P value from log-rank test supported the
violation of the homogeneity of censoring mechanism.

2.2.3. Traditional Survival Methods. Log-rank test is the most
powerful under PH assumption. Non-PH patterns required
alternative methods, including Wilcoxon test (Breslow test),
Tarone-Ware test, and combination tests. In this study, log-
rank test, Wilcoxon test, and Cox regressions, considered as
traditional methods, were performed to estimate P value
and HRs. All covariates were of interest. When included
covariates violated the PH assumption, we conducted
extended Cox regression with time-dependent variable
(covariate × loge ðtimeÞ) instead of stratified Cox regression.

2.2.4. RMST-Based Methods. In RMST based methods, dif-
ference in RMST was selected as effect measure. Group com-
parison based on KM method and 2 kinds of RMST-based
regressions were conducted. Coefficients estimated from
RMST-based regressions were the difference in RMST. τ
specified in group comparison was the smallest value of
the longest follow-up time across groups minus 5 months.
τ specified in univariable regression was same as that
obtained from group comparison. In multivariable analyses,
τ was fixed at 480 months (24years) for clinical comparison.

RMST-based regressions consisted of PV and IPCW
regressions, which use generalized linear modeling tech-
niques to directly model the RMST. In PV regression, jack-
knife leave-one-out estimation is employed to generate
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pseudovalues [12]. Firstly, the area under the Kaplan-Meier

curve up to time τ is estimated as bθ on the complete data with
n subjects, then remove i-th subject and repeat the above esti-

mation to get leave-one-out estimator as cθ−i . Finally, the i-th

pseudovalues of bθi can be calculated based on the difference
between the complete sample and the leave-one-out estima-

tor: bθi = nbθ − ðn − 1Þcθ−i . Calculated pseudovalue for each
subject is used to as dependent variable to model effects of
covariates on RMST [10]. In IPCW regression, conditional
probability of remaining uncensored until time t is calculated
as weight for each participant and inverse of estimated
weights are included into iterative estimation of coefficients
of IPCW regression [9]. Kaplan-Meier method is used to
determine censoring distribution (modeling censoring mech-
anism). It assumes that all participants share the same
censoring distribution, namely homogeneity of censoring
mechanism assumption. IPCW regression is extended into
IPCW regression with individual weights and IPCW regres-
sion with group-specified weights. When a categorical covar-
iate is of interest and censoring distribution in each level are
not the same, it is appropriate to use group-specific weights
where censoring mechanism keep homogenous in each
group and weights were estimated separately for each group.
In multivariable analysis, IPCW regression with group-
specified weights was not chosen since only one categorical
covariate was allowed to be specified to stratify censoring
distribution.

2.2.5. Relationship Exploration. To test consistency in differ-
ence in RMST estimated by 4 methods, scatter plots with
fitted lines were created, using Kaplan-Meier method as a
golden reference. Relationship between HR and difference
in RMST was visualized for covariates holding PH assump-
tion. Since HR was a ratio while difference in RMST was a
difference, a log transformed nonlinear regression was con-
sidered when fitting the relationship (difference in RMST ~
loge(HR)).

All analyses were carried out using the SAS software for
windows, version 9.4 TS1M6 (SAS Institute Inc, Cary, NC)
with a 2-sided significance threshold of P < :05. Data visual-
ization were conducted in Microsoft PowerPoint 2016 and R
4.03 (Vienna, Austria) with ggplot2 package.

3. Results

4505 patients were extracted from SEER database. 100
patients with 0 survival time were excluded from final anal-
yses. Of 4405, 2389 (54.23%) deaths were documented at the
end of the study during a median follow-up of 35 months.
The 2 assumptions were assessed (Table 1). Age, year of
diagnosis, extend of disease, surgery, and radiation held
PH assumption. Age, sex, race, and radiation met homoge-
neity of censoring mechanism assumption. More details in
graphical assessment were collected in supplementary mate-
rial (available here) (Graphic assessment of Proportional
hazard assumption).

The median age of patients was 30 years old, and 19.09%
of them were older than 60 years, more than half of patients

underwent surgery (77.80%) and chemotherapy (67.17%),
while few cases (14.10%) underwent radiation (Table 2). In
group comparison, P values of the covariates from log-
rank test, Wilcoxon test, and unadjusted difference in RMST
were similar, except for sex and race. Sex and Race did not
satisfy PH assumption, Wilcoxon tests were more appropri-
ate. Survival curves showed no statistical difference between
males and females (P = 0:058) but statistical difference
between white and others (P = 0:004). However, difference
in RMST showed opposite conclusion, males lived shorter
by 24.31 months than females (P = 0:004), and no significant
difference exist between white and others (P = 0:21). Dichot-
omous age was used as an example to explain HR and
RMST. Compared with patients younger than 60 years, haz-
ard rate of patients older than 60 years increased by 282%
(HR = 3:82, P < 0:001), while their RMST decreased by
146.64 months (P < 0:001).

Unadjusted differences in RMST from four methods
were summarized into Table 2, and their relationship was
visualized in Figure 1. Using difference in RMST based on
Kaplan-Meier method as reference, PV regression and
IPCW regression with group-specified weights exhibited
strongly consistent results (slope = 1:02 and R2 = 0:98,
slope = 0:98 and R2 = 0:99, respectively), but IPCW regres-
sion with individual weights showed inconsistent result
(slope = 0:31 and R2 = 0:06). Even though dichotomous
age, sex, race, and radiation that met the homogeneity of
censoring mechanism assumption, IPCW regression with
individual weights gave less consistent estimates than IPCW
regression with group-specified weights. But, IPCW regres-
sions with group-specific weights showed that P values for
sex, tumor size, and chemotherapy turned to be insignifi-
cant, its statistical power decreased.

Table 1: Assessment for proportional hazard assumption and
homogeneity of censoring mechanism assumption.

Covariates

Proportional hazard
assumption

Homogeneity of
censoring mechanism

KM
curves

Ln (-ln(S(t))) vs.
ln(t) curves

Graphical
analysis

Log-rank
test

Age
(continuous)

— — — —

Age (binary) ✓ ✓ ✓ ✓

Sex × × ✓ ✓

Year of
diagnosis

✓ ✓ × ×

Race × × ✓ ✓

Tumor size × × × ×
Extend of
disease

✓ ✓ × ×

AJCC ✓ × × ×
Surgery ✓ ✓ × ×
Radiation ✓ ✓ ✓ ✓

Chemotherapy × × × ×
KM, Kaplan-Meier. AJCC, American Joint Committee on Cancer for
staging.
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In multivariable regressions, IPCW regression with
group-specified weights could not be conducted when multi-
ple covariates violated homogeneity of censoring mechanism
assumption. We performed IPCW regression with individ-
ual weights instead with biased weights. Compared with
coefficients and P values from PV regression, IPCW regres-
sion with individual weights presented great differences. For
example, difference in RMST of radiation therapy was -45.76
(95% CI -67.87 to -31.99, P < 0:001) in PV regression and
-6.52 (95% CI -58.84 to 45.80, P = 0:807) in IPCW regres-
sion with individual weights (Table 3).

In Cox regressions, estimated HR of covariate violating the
PH assumption is a function of time eðβ1+β2∗tÞ instead of a sin-
gle value, so it was presented as “time-varying” instead of value
in tables (Tables 2 and 3). For covariates met PH assumption,
a stable and well-fitted logarithmic relationships between HR
and difference in RMST estimated by PV regression were
observed in both univariable and multivariable regressions,
difference in RMST = −110:89∗ logeðHRÞ + 2:50 and R2 =
0:97, difference in RMST = −124:35∗ logeðHRÞ − 14:70 and
R2 = 0:94, respectively. However, it presented a less-fitted rela-
tionship between HR and difference in RMST estimated by
IPCW regression with individual weights (R2 = 0:35 in uni-
variable regression and R2 = 0:03 in multivariable regres-
sion). The decrease in R2 from 0.35 to 0.03 resulted from
simultaneous inclusion of multiple covariates that violated

assumption into multivariable IPCW regression with indi-
vidual weights (Figure 2).

4. Discussion

When multiple covariates were of interest but violated PH
assumption, time varying HRs were inconvenient to report.
PH assumption-free RMST allowed reporting of effect mea-
sure for each covariate. Reporting results from both tradi-
tional survival methods and RMST-based methods could
provide a comprehensive picture of effect. In RMST-based
regressions, estimation from PV regression was more reli-
able and accurate than that from IPCW regression and had
no limitation of homogeneity of censoring mechanism. In
addition, including covariates that violate homogeneity of
censoring mechanism assumption into IPCW regression
would further reduce the accuracy of estimated RMST and
statistical power. Robust and consistent negative logarithmic
linear relationships between HRs and differences in RMST
from PV regression supports the recommendation of PV
regression and possible conversion between the two effect
measures.

Clinical interpretation of HR may not be straightforward
for clinicians [13]. If nonproportional hazards appear, a sin-
gle HR value was biased because it was inconstant over time.
RMST was supported to be an obligatory end point in
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Figure 1: Difference in restricted mean survival time estimated from 4 methods in univariable analyses.
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oncological study [14]. RMST and difference (or ratio) in
RMST showed several clinical and inferential advantages.
Meanwhile, RMST could be converted to restricted mean
survival lost, namely average of lost year from start to time
point τ. RMST has been an appealing alternative to the
HR. In a randomized controlled trial, to reflect the conve-
nience of Internet-accessed sexually transmitted infection
testing, difference in RMST was tested to assess difference
in time to test [15]. A cohort study exploring the relation-
ship between midlife cardiorespiratory fitness and chronic
obstructive pulmonary disease performed both Cox models
and RMST-based analysis, which increased the reliability
and understandability of its conclusion [16]. In addition,
RMST and difference in RMST had been considered as effect
measures in meta-analysis [17, 18]. In RMST-based analysis,
particular time τ specified would determine magnitude of
difference or ratio in RMST and whether the difference or
ratio is statistically significant or not. Fortunately, a step by
step tutorial about study design, sample size estimation,
and the determination of τ with RMST has been illustrated
in details [19].

Trinquart et al. reconstructed individual patient data
based on survival curves from 54 randomized controlled tri-
als, and reestimated HRs, ratios of RMST, and differences in

RMST [20]. In most trials, agreements regarding statistical
significance of the three effect measures and direction of
treatment effect were observed. However, the authors did
not fit the relationship between HR and difference in RMST,
and they were unable to validate the relationship among
adjusted effect measures. In this study, a negative, well-fitted,
and robust logarithmic relationship between HR and differ-
ence in RMST (unadjusted and adjusted) was observed for
covariates meeting PH assumption. The relationship implied
possibility of constructing function for conversion between
difference in RMST and HR, which could play a vital role
in meta-analysis.

Existence of confounders may distort true relationship
between exposure and outcome, confounders-adjusted dif-
ference in RMST is essential. Furthermore, precision and
statistical power could be improved after adjusting prognos-
tic covariates when compared to RMST [21]. An approach
developed by Zucker can estimate covariates-adjusted RMST
effect based on Cox regression [22]. But, it was limited to
calculate RMST effect of a binary variable of interest (such
as experimental group and control group) adjusted for con-
founders. When the variable of interest has two or more two
groups, standardized survival curves can be an alternative
way [23]. This method has two steps: (1) defining a reference

Table 3: Multivariable analysis based on cox proportional hazard regression and restricted mean survival time based regression.

Parameter
Cox regression Pseudovalue regression IPCW regression (individual weights)

HR (95% CI) p Difference in RSMT (95% CI) p Difference in RSMT (95% CI) p

Age (continuous) 1.03(1.03,1.03) <0.001 -3.89(-4.22,-3.55) <0.001 -2.65(-3.18,-2.11) <0.001
Sex, male Time-varying -24.85(-38.64,-11.06) <0.001 -18.38(-46.87,10.11) 0.206

Year of diagnosis

1970s~1980s 1.41(1.25,1.59) <0.001 -28.38(-2.68,-54.07) 0.03 -195.11(-224.25,-165.96) <0.001
1990s~2000s Reference Reference Reference

Race

White and black Time-varying -10.73(-26.64,5.19) 0.186 -27.61(-52.66,-2.55) 0.031

Other Reference Reference Reference

Tumor size

>100mm Time-varying -49.38(-84.87,-13.89) 0.006 -15.53(-30.21,-0.85) 0.038

Unknown Time-varying -11.82(-38.20,14.55) 0.38 -5.90(-20.14,8.35) 0.417

<100mm Reference Reference Reference

EOD

Metastasis 4.44(3.46,5.69) <0.001 -202.21(-237.34,-167.08) <0.001 -20.45(-43.36,2.46) 0.08

Local invasion 1.65(1.32,2.05) <0.001 -89.90(-121.74,-58.06) <0.001 1.68(-12.77,16.13) 0.82

Unknown 1.79(1.41,2.27) <0.001 -113.04(-147.17,-78.91) <0.001 38.85(23.92,53.78) <0.001
Confined Reference Reference Reference

AJCC staging

III + IV Time-varying -168.85(-196.05,-141.65) <0.001 25.66(-4.16,55.47) 0.092

II Time-varying -61.40(-86.12,-36.68) <0.001 19.42(-4.98,43.81) 0.119

Unknown Time-varying -88.88(-114.01,-63.75) <0.001 73.84(54.56,93.12) <0.001
I Reference Reference Reference

Surgery, yes 0.58(0.53,0.64) <0.001 36.22(19.23,53.21) <0.001 53.01(17.35,88.67) 0.004

Radiation, yes 1.44(1.30,1.60) <0.001 -45.76(-63.27,-28.25) <0.001 -6.52(-58.84,45.80) 0.807

Chemotherapy, yes Time-varying -49.93(-67.87,-31.99) <0.001 -58.58(-97.25,-19.91) 0.003

RMST, restricted mean survival time. IPCW, inverse probability of censored weighting. AJCC, American Joint Committee on Cancer for staging.
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population for the confounders; (2) estimating adjusted
curves for that population. The definition of reference popu-
lation was a critical step which determines the generalization
of adjusted survival curve. Two approaches had been pro-
posed: marginal analysis (balance data on all confounders
using reweighting before modeling) and conditional analysis
(modeling a comprehensive overall model and getting aver-
age predicted curves from a series of predicted survival
curves for any combination of confounders).

Both Zucker’s method and standardized survival curves
must make a clear division of covariates into variable of
interest and confounders, and adjusted difference in RMST
can be estimated only for categorical variable of interest. In
addition, PH assumption was assumed to be hold as utiliza-
tion of Cox regression in Zucker’s method. Likewise, if Cox
regression was adopted in modeling part of standardized
survival curves, meeting PH assumption was also required.
Complex programming and difficulty in extension limited

PV method
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Figure 2: Relationships between log-transformed hazard ratios from Cox PH regressions and differences in RMST from RMST based
regressions in both univariable and multivariable regressions.
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Figure 3: A flowchart combined traditional survival methods and restricted mean survival time based methods.
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their friendly applications. RMST-based regressions, using
generalized linear modeling technique, can study effects of
single factors or multiple factor on RMST without limitation
on variable type and distinction between key variable and
confounding variables. Model-based inference and predic-
tion can be practiced. Moreover, varied regression-based
methods were allowed, such as nonlinear fitting and interac-
tion effect.

In IPCW regression, weights estimation was the key step
based on a correctly specified censoring distribution. When a
categorical covariate of interest presented, individual weights
or group-specified weights should be determined based on
result of testing on homogeneity of censoring mechanism
assumption [24]. IPCW regression with group-specified
weights was the correct selection when the covariate broke
the assumption. When a categorical covariate satisfied the
assumption, parameters of censoring distribution in each
subgroup were similar to those in a complete data. Mean-
while, a group-specified weight could also be used to obtain
accurate estimation. In this study, group-specified weights
gave more accurate estimates than individual weights for
both categorical covariates that met assumption and those
that did not meet. However, in a multivariable regression, if
more than one categorical covariates of interest violated the
assumption, it was hard to specify multiple stratums when
performing IPCW with group-specific weights. In this study,
forced adoption of IPCW with individual weights presented
biased and misleading difference in RMST. In addition,
inverse probability might create extreme weight when the
probability is close to 0, and small sample size might make
inverse probability instable [25]. With such restrictions on
IPCW regression, PV regression should be a preferred
method when exploring effects of multiple covariates of
interest. Codes for pseudovalue method have been developed
in three main platforms (SAS, R, and Stata) [12, 26, 27].

4.1. A Comprehensive Flowchart for Application. To compre-
hensively present these methods, we drew a flowchart with
two parts, (1) description and group comparison; (2) regres-
sions (see Figure 3). RMST-based methods were presented
with blue background.

In part 1, statistical description for survival data includes
summary measures (such as number of event, median sur-
vival time, and RMST) and graphic description (such as
KM curves). When a categorical covariate is of interest,
group comparison should be performed for difference in
survival rates and RMST. When you want to estimate differ-
ence or ratio in RMST between groups, a truncation time τ
need to be prespecified. Unadjusted difference or ratio in
RSMT can be estimated by KM curve directly, adjusted
one can be estimated by standardized KM curve or Zucker’s
method. In part 2, both categorical and continuous covari-
ates are allowed. Unadjusted and adjusted HR, survival time
ratio (acceleration factor) and difference (or ratio) in RMST
can be estimated as target effect measures. In general, HR
greater than 1 implies that exposure is harmful to survival,
acceleration factor and ratio in RMST implies that exposure
benefits survival. If PH assumption is not satisfied, HR can
be estimated by Cox regression with time-dependent covar-

iates or stratified Cox regression with different baseline haz-
ard rate in each stratification. Ratio of survival times
(acceleration factor) can be estimated in acceleration failure
time (AFT) models, which require to prespecify distribution
of survival time and check AFT assumption, such as Weibull
distribution. Lastly, PV regression and IPCW regressions are
used to assess difference (or ratio) in RMST, and the τ need
to be prespecified.

4.2. Limitation. This study had some limitations. Firstly, τ
specified in RMST-based analysis determined the magnitude
of difference in RMST and whether the difference was statis-
tically significant or not, a general strategy to select τ was
applied but influence of changeable τ was not studied. Sec-
ondly, the estimated coefficients in nonlinear relationship
between HR and difference in RMST was not generalized
for conversion in other study, a general conversion function
was expected to be developed. Lastly, not all survival analyses
for right-censored data were integrated into the flowchart,
survival analyses on left-censored data, interval-censored
data, recurrent event ,and competing risk were not discussed.

5. Conclusion

HR and difference in RMST should be reported with equal
consideration to present effects comprehensively and to
improve the communication of clinical evidence. When
more than one covariates were of interest, KM method and
PV regression could be the preferred ones in RMST-based
methods. The flowchart that incorporates traditional sur-
vival methods and RMST-based methods can help clinicians
and layperson to select appropriate methods.
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