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The exploration of suitable models for modeling censored medical datasets is of great importance. There are numerous studies
dealing with modeling the censored medical datasets. However, majority of the earlier contributions have utilized the
conventional models for modeling the said datasets. Unfortunately, the conventional models are not capable of capturing the
behavior of the heterogeneous datasets involving the mixture of two or more subpopulations. In addition, the earlier
contributions have considered conventional censoring schemes by replacing all the censored items with the largest failed item.
This paper is aimed at proposing the analysis of right-censored mixture medical datasets. The mixture of the generalized
exponential distribution has been proposed to model the right-censored heterogeneous medical datasets. In converse to
conventional censoring schemes, we have proposed censoring schemes which replace the censored items with conditional
expectation (CE) of the random variable. In addition, the Bayesian methods have been proposed to estimate the model
parameters. The performance and sensitivity of the proposed estimators have been evaluated using a detailed simulation study.
The detailed simulation study suggests that censoring schemes based on CE provide improved estimation as compared to
conventional censoring schemes. The suitability of the model in modeling heterogeneous datasets has been verified by
modeling two real right-censored medical datasets. The comparison of the proposed model with existing mixture model under
Bayesian methods advocated the improved performance of the proposed model.

1. Introduction

The exploration of suitable models for modeling censored
medical datasets is of great importance. There are numerous
studies dealing with modeling the censored medical datasets.
However, majority of the earlier contributions have utilized
the conventional models for modeling the said datasets.
Unfortunately, the conventional models are not capable of

capturing the behavior of the heterogeneous datasets involv-
ing the mixture of two or more subpopulations. Some
researchers have considered mixture models for analysis of
medical datasets. Hanson [1] proposed mixture of Gamma
distributions to model the survival times of the lung cancer
patients. Noor et al. [2] considered the mixture of exponen-
tial models to analyze the data regarding incidents of mortal-
ity due the different types of the cancer. Bussy et al. [3]
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introduced a supervised learning mixed model for modeling
censored mixture data. The estimation of the model param-
eters was carried out using Expectation Maximization (EM)
algorithm. The applicability of the proposed model was illus-
trated using three real datasets relating to genetic cancer.
Mahmud et al. [4] proposed a mixture of log-skew-normal
distributions for analysis of data from a Diary of Asthma
and Viral Infectious Study conducted during 2004. Geissen
et al. [5] presented multiexperiment mixture model that
enables the researchers to simultaneously model censored
and uncensored data. Cheung et al. [6] proposed a family
of mixture models for undiagnosed prevalent disease with
interval-censored incidents. Xiang et al. [7] proposed a mix-
ture cure model for analysis of the survival data with a cure
fraction. The estimation under the proposed model was car-
ried out using EM algorithm. However, earlier contributions
regarding analysis of censored mixture medical data have
utilized the classical method of estimation, such as maxi-
mum likelihood estimation and EM algorithm. Recently,
Noor et al. [2] proposed Bayesian methods for analysis of
heterogeneous medical datasets. However, the model pro-
posed by Noor et al. [2] was less flexible as it has no shape
parameters. Resultantly, the corresponding analysis was
quite straight forward. In addition, all of the above contribu-
tions have considered conventional censoring environment
which replaces the censored items either by test termination
time (for type-I censoring) or by the largest observed value
(for type-II censoring). In other words, the censored items
have been simply replaced by a common predetermined
value. Statistical properties of estimates based on such cen-
soring environment can be unclear [8]. Steiner and Mackay
[9] addressed this issue by proposing the use of conditional
expectation (CE) of random variable as a replacement for
the censored items. However, the said proposal was for the
single models. A careful review of literature suggests that
the use of CE has never been considered for the censored
mixture models.

The generalized exponential distribution (GED) is very
important lifetime distribution. It has more features as com-
pared to exponential and Rayleigh distribution as it has the
shape parameter. The utilization of GED is convenient as
compared to lognormal and gamma distribution as it has
closed form expressions for cumulative distribution function
and the hazard rate function. Few studies have also con-
cluded that the performance of GED is better as compared
to Weibull distribution in modeling censored data [10].
The mixture of GED (MGED) has been introduced more
recently. The analysis of MGED under progressive censoring
was considered by Wang et al. [11]. Teng and Zhang [12]
showed that the Gaussian mixture and Laplacian mixture
can be obtained as special cases of MGED. The estimation
of model parameters was considered using EM algorithm.
The superiority of MGED over Weibull distribution was
explored by Ateya [13], and the industrial applications of
MGED were reported by Ali et al. [14]. Mohamed et al.
[15] introduced the methodology to obtain the Bayesian pre-
dictions using MGED. Kazmi and Aslam [16] considered the
Bayesian analysis for right censored using MGED assuming
shape parameters to be known. The above discussion sug-

gests that the MGED is very relevant distribution in model-
ing the censored datasets. However, the suitability of MGED
in modeling right-censored mixture datasets from medical
fields using Bayesian methods is still to be explored.

We have considered the Bayesian estimation of two-
component MGED (2CMGED) when samples are right cen-
sored. The applicability of the proposed model in modeling
right-censored heterogeneous datasets from medical sci-
ences has been explored using real datasets. The main fea-
ture of the paper is the introduction of censoring
environment in which the censored items are replaced by
the CE of the random variable. We have compared the pro-
posed censoring environment with the existing censoring
environment in which the censored items are replaced by
the largest observed value. The Bayesian estimation has been
carried out assuming noninformative (NIP) and informative
priors (IP). Four loss functions, namely, squared error loss
function (SELF), precautionary loss function (PLF), entropy
loss function (ELF) and, LINEX loss function (LLF) have
been used for the analysis. Since the Bayesian estimates
(BEs) were unavailable in closed form, the Bayesian approx-
imate methods, namely, Lindley’s approximation (LA) and
importance sampling (IS) were used for the numerical com-
putations. The performance of the proposed model was
compared with two-component mixture of exponential dis-
tribution (2CMED). The said comparison advocated the
superiority of the 2CMGED over 2CMED. In addition, the
results based on proposed CE censoring environment pro-
vided improved estimation as compared to conventional
censoring environment.

2. Materials and Methods

The probability density function (PDF) of the generalized
exponential distribution is

f j xj ; λj, θj
À Á

= λjθj 1 − e−θ jx j
� �λ j−1

e−θ jx j , 0 < xj <∞, λj, θj > 0, j = 1, 2,

ð1Þ

where Xj is random variable and λj and θj are the parame-
ters of the distribution.

The CDF of the generalized exponential distribution is

Fj xj ; λj, θj
À Á

= 1 − e−θ jx j
� �λ j , 0 < xj <∞, λj, θ j > 0, j = 1, 2:

ð2Þ

The two-component mixture of generalized exponential
distributions (2CMGED) with mixing weights (π1
,π2 = 1 − π1) is

f x ;Ωð Þ = 〠
2

u=1
πuλuθu 1 − e−θuxu

� �λu−1
e−θuxu , 0 < xu <∞,

ð3Þ

where Ω = ðλ1, λ2, θ1, θ2, π1Þ; 0 < π1 < 1; λu, θu > 0.
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The cumulative distribution function for the 2CMGED is

F x ;Ωð Þ = 〠
2

u=1
πu 1 − e−θux
� �λu , 0 < xu <∞: ð4Þ

2.1. Bayesian Estimation under Right-Censored Samples. In
this section, the right-censored samples have been used to esti-
mate the parameters of 2CMGED. Unfortunately, the pro-
posed BEs do not exist in the explicit form; hence the
approximate Bayesian methods have been used for the
estimation.

2.1.1. The Likelihood Function under Right-Censored
Samples. Consider a sample of size ‘n’ from 2CMGED from
which n1 = π1n and n2 = ð1 − π1Þn number of observation
are assumed to come from component-I and component-II
of the mixture. Suppose r1 and r2 number of failed items
observed from component-I and component-II, respectively.
The remaining n1 − r1 and n2 − r2 items have been assumed
to be censored from each component. Then the likelihood
function for such right-censored mixture data can be written as

l Ω ; xð Þ∝
Yr1
i=1

π1 f1 x1ið Þ
Yr2
i=1

1 − π1ð Þf2 x2ið Þ 1 − F xrð Þ½ �n−r ,

ð5Þ

where r = r1 + r2, xr =max ðxr1, xr2Þ is an order statistic.
Putting the results in Equation (5), we have

l Ω xjð Þ = πr1
1 1 − π1ð Þr2λr11 θr11 λr22 θr22

exp λ1 − 1ð Þ〠
r1

i=1
log 1 − e−θ1x1i
� �( )

exp λ2 − 1ð Þ〠
r2

i=1
log 1 − e−θ2x2i
� �( )

× e
−θ1 〠

r1

i=1
x1i

e
−θ2 〠

r2

i=1
x2i

1 − π1 1 − e−θ1t
� �λ1

− 1 − π1ð Þ 1 − e−θ1t
� �λ2� �n−r

:

ð6Þ

The conventional censoring schemes replace the censored
items by the largest observed value. This assumption is not suit-
able because the censoring items are surely greater than the larg-
est observed value. The appropriate solution to this issue is to
replace the censored items with CE of the random variable.
The conditional distribution for model given in Equation (1) is

f X j X j > xj
��À Á

=
λjθj 1 − e−θ jx j

� �λ j−1
e−θ jx j

1 − 1 − e−θ jx j
� �λ j

: ð7Þ

The CE for Equation (1) is

Ε Xj Xj > xr
��À Á

= λjθj

ð∞
xr

xj 1 − e−θ jx j
� �λ j−1

e−θ jx jdxj: ð8Þ

Since the analytical solutions for CE are not possible. The
values for CE have been obtained numerically using numerical
integrations.

So, the resulting dataset is of the form

Xij =
xij for observed items
CE for censored items

(
: ð9Þ

2.1.2. Priors and Posterior Distributions. We have proposed
two sets of priors for the parameters of the 2CMGED. One
set contains the NIP, while the other set is the combination
of IPs. The description of each set of priors is presented in
the followings.

The combined NIP for the parametric set Ω is

h1 Ωð Þ∝ 1, λ1, λ2, θ1, θ2 > 0, 0 < π1 < 1, ð10Þ

where the model parameters have uniform priors over the
rage ð0, 1Þ.

Based on NIP given in Equation (10), the posterior dis-
tribution for Ω is

g1 Ω xjð Þ∝ πr1
1 1 − π1ð Þr2

Y2
u=1

λruu θ
ru
u exp λu − 1ð Þ〠

ru

i=1
log 1 − e−θuxui
� �( )

× e
−θu 〠

ru

i=1
xui

1 − π1 1 − e−θ1t
� �λ1

− 1 − π1ð Þ 1 − e−θ1t
� �λ2� �n−r

:

ð11Þ

Again, let π1 ∼ Betaða1, b1Þ, λu ∼Gammaða1u, b1uÞ, and
θu ∼Gammaða2u, b2uÞ, where

a1, b1, a1u, b1u, a2u, b2u > 0, u = 1, 2 are the
hyperparameters.

Then, the combined prior distribution for Ωis

h2 Ωð Þ∝ πa1−1
1 1 − π1ð Þb1−1

Y2
u=1

λa2u−1u

exp −b2uλuð Þθa3u−1u exp −b3uθuð Þ, 0 < π1 < 1, λu, βu > 0:
ð12Þ

The posterior distribution under Equation (12) is

g2 Ω xjð Þ∝ πr1+a1−1
1 1 − π1ð Þr2+b1−1

Y2
u=1

λru+a1u−1u θru+a2u−1u

exp λu − 1ð Þ〠
ru

i=1
log 1 − e−θuxui
� �

− λub1u

( )

× e
−θu 〠

ru

i=1
xui+b2u

 !
1 − π1 1 − e−θ1t

� �λ1
− 1 − π1ð Þ 1 − e−θ1t

� �λ2� �n−r

:

ð13Þ

As the posterior distributions under both priors do not
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provide closed form estimators, we have proposed approxi-
mate estimation in the coming sections.

2.1.3. Lindley’s Approximation (LA). This section considers
the LA for approximate solution of the model parameters.
If sample size is sufficiently large, then according to Lindley,
any ratio of the integrals of the form

I Ωð Þ = Ε w Ωð Þ½ � =
Ð
Ωw Ωð Þ exp L Ω ; xð Þ +H Ωð Þf gdΩÐ

Ω exp L Ω ; xð Þ +H Ωð Þf gdΩ ,

ð14Þ

where wðΩÞ is any function of λ1, λ2, θ1, θ2, π1, LðΩjxÞ is the
log-likelihood function and HðΩÞ is the logarithmic of joint

Table 1: Bayes estimation for the right-censored 2CMGED under SELF and NIP.

n Technique
True parametric values

λ1 = 0:50 θ1 = 1:20 λ2 = 0:75 θ2 = 1:50 π1 = 0:45

20

LA
0.7076 1.6842 0.9767 2.3174 0.5895

(0.0232) (0.0609) (0.0511) (0.1813) (0.0242)

IS
0.7207 1.5813 1.0186 2.4312 0.6680

(0.0050) (0.0726) (0.0094) (0.1714) (0.0051)

50

LA
0.6394 1.5216 0.8828 2.0937 0.5328

(0.0165) (0.0434) (0.0367) (0.1289) (0.0173)

IS
0.6535 1.4298 0.9236 2.1984 0.6056

(0.0035) (0.0519) (0.0068) (0.1233) (0.0037)

100

LA
0.5748 1.3933 0.7663 1.8764 0.4790

(0.0137) (0.0373) (0.0297) (0.1084) (0.0144)

IS
0.5852 1.3066 0.7986 1.9662 0.5425

(0.0030) (0.0447) (0.0054) (0.1030) (0.0030)

200

LA
0.5067 1.3588 0.7489 1.8483 0.4631

(0.0085) (0.0210) (0.0161) (0.0769) (0.0075)

IS
0.5194 1.2966 0.7770 1.8482 0.5227

(0.0018) (0.0265) (0.0031) (0.0845) (0.0019)

Table 2: Bayes estimation for the right-censored 2CMGED under PLF and NIP.

n Technique
True parametric values

λ1 = 0:50 θ1 = 1:20 λ2 = 0:75 θ2 = 1:50 π1 = 0:45

20

LA
0.7143 1.7041 0.9880 2.3252 0.5915

(0.0409) (0.1167) (0.0982) (0.1659) (0.0360)

IS
0.7276 1.5998 1.0304 2.4398 0.6702

(0.0088) (0.1400) (0.0181) (0.1583) (0.0076)

50

LA
0.6455 1.5394 0.8931 2.1008 0.5346

(0.0294) (0.0838) (0.0699) (0.1192) (0.0257)

IS
0.6595 1.4465 0.9342 2.2060 0.6076

(0.0063) (0.1003) (0.0128) (0.1131) (0.0054)

100

LA
0.5802 1.4098 0.7749 1.8827 0.4806

(0.0246) (0.0714) (0.0566) (0.0995) (0.0214)

IS
0.5907 1.3218 0.8078 1.9730 0.5443

(0.0053) (0.0859) (0.0104) (0.0946) (0.0046)

200

LA
0.5105 1.3645 0.7538 1.8768 0.4670

(0.0180) (0.0471) (0.0308) (0.0507) (0.0128)

IS
0.5234 1.3019 0.7820 1.8764 0.5271

(0.0037) (0.0594) (0.0055) (0.0556) (0.0033)
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prior for the parametric set Ω, can be evaluated as

I Ωð Þ =w bΩ� �
+ g1d1 + g2d2 + g3d3 + g4d4 + g5d5 + d6 + d7ð Þ

+ 1
2 A1B1 + A2B2 + A3B3 + A4B4 + A5B5ð Þ,

ð15Þ

where bΩ is the maximum likelihood estimator (MLE) of the

parametric set Ω.

Bi = g1σi1 + g2σi2 + g3σi3 + g4σi4 + g5σi5, ð16Þ

Ai = σ11L11i + σ22L22i + σ33L33i + σ44L44i + σ55L55i
+ 2σ12L12i + 2σ13L13i + 2σ14L14i + 2σ15L15i

+2σ23L23i + 2σ24L24i + 2σ25L25i + 2σ34L34i + 2σ35L35i + 2σ45L45i,
ð17Þ

Table 3: Bayes estimation for the right-censored 2CMGED under LLF and NIP.

n Technique
True parametric values

λ1 = 0:50 θ1 = 1:20 λ2 = 0:75 θ2 = 1:50 π1 = 0:45

20

LA
0.6838 1.6215 0.9382 2.2382 0.5736

(0.0180) (0.0484) (0.0406) (0.1486) (0.0194)

IS
0.6945 1.5215 0.9889 2.3601 0.6432

(0.0038) (0.0562) (0.0076) (0.1371) (0.0041)

50

LA
0.6182 1.4634 0.8579 2.0170 0.5160

(0.0132) (0.0338) (0.0294) (0.0993) (0.0139)

IS
0.6297 1.3915 0.8954 2.1316 0.5860

(0.0028) (0.0406) (0.0054) (0.0958) (0.0029)

100

LA
0.5560 1.3422 0.7410 1.8267 0.4628

(0.0108) (0.0280) (0.0236) (0.0871) (0.0112)

IS
0.5664 1.2580 0.7741 1.9011 0.5254

(0.0023) (0.0362) (0.0041) (0.0831) (0.0024)

200

LA
0.4901 1.3212 0.7227 1.8004 0.4454

(0.0066) (0.0169) (0.0130) (0.0628) (0.0060)

IS
0.5033 1.2638 0.7549 1.7859 0.5087

(0.0015) (0.0207) (0.0024) (0.0678) (0.0015)

Table 4: Bayes estimation for the right-censored 2CMGED under ELF and NIP.

n Technique
True parametric values

λ1 = 0:50 θ1 = 1:20 λ2 = 0:75 θ2 = 1:50 π1 = 0:45

20

LA
0.6904 1.6353 0.9522 2.2791 0.5739

(0.0216) (0.0575) (0.0471) (0.1676) (0.0228)

IS
0.7095 1.5349 0.9903 2.3689 0.6501

(0.0046) (0.0683) (0.0088) (0.1584) (0.0048)

50

LA
0.6262 1.4935 0.8624 2.0479 0.5233

(0.0153) (0.0403) (0.0343) (0.1221) (0.0164)

IS
0.6387 1.3940 0.8995 2.1403 0.5900

(0.0032) (0.0482) (0.0064) (0.1129) (0.0035)

100

LA
0.5617 1.3659 0.7532 1.8235 0.4668

(0.0127) (0.0347) (0.0280) (0.1011) (0.0133)

IS
0.5730 1.2798 0.7788 1.9146 0.5333

(0.0028) (0.0410) (0.0051) (0.0964) (0.0028)

200

LA
0.4926 1.3308 0.7351 1.8197 0.4524

(0.0079) (0.0199) (0.0147) (0.0727) (0.0070)

IS
0.5115 1.2749 0.7653 1.8161 0.5132

(0.0016) (0.0250) (0.0028) (0.0784) (0.0018)
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di = P1σi1 + P2σi2 + P3σi3 + P4σi4 + P5σi5, i = 1, 2, 3, 4, 5,
ð18Þ

d6 = g12σ12 + g13σ13 + g14σ14 + g15σ15 + g23σ23
+ g24σ24 + g25σ25 + g34σ34 + g35σ35 + g45σ45,

ð19Þ

d7 =
1
2 g11σ11 + g22σ22 + g33σ33 + g44σ44 + g55σ55ð Þ,

ð20Þ

Pi =
∂H Ωð Þ
∂Ωi

, i = 1, 2, 3, 4, 5, gij =
∂2w Ωð Þ
∂Ωi∂Ωj

, Lij

= ∂2L Ω xjð Þ
∂Ωi∂Ωj

, i, j = 1, 2, 3, 4, 5,
ð21Þ

Lijk =
∂3L11 Ω11 xjð Þ

∂Ω11i∂Ω11 j∂Ω11k
, i, j, k = 1, 2, 3, 4, 5, ð22Þ

where Sijis the ði, jÞth element of the inverse of the matrix
fLijg, all evaluated at the MLEs of the parameters.

Table 5: Bayes estimation for the right-censored 2CMGED under SELF and IP.

n Technique
True parametric values

λ1 = 0:50 θ1 = 1:20 λ2 = 0:75 θ2 = 1:50 π1 = 0:45

20

LA
0.6837 1.6264 0.9439 2.2377 0.5697

(0.0211) (0.1433) (0.0473) (0.1693) (0.0222)

IS
0.6970 1.5291 0.9848 2.3509 0.6459

(0.0045) (0.1713) (0.0087) (0.1601) (0.0047)

50

LA
0.6189 1.4717 0.8542 2.0248 0.5155

(0.0152) (0.1024) (0.0336) (0.1207) (0.0159)

IS
0.6345 1.3859 0.8968 2.1310 0.5880

(0.0033) (0.1226) (0.0060) (0.1145) (0.0033)

100

LA
0.5591 1.4467 0.7985 1.8314 0.4659

(0.0125) (0.0847) (0.0269) (0.1010) (0.0131)

IS
0.5695 1.3579 0.8326 1.9211 0.5279

(0.0028) (0.1016) (0.0049) (0.0960) (0.0029)

200

LA
0.4936 1.3577 0.7482 1.8083 0.4615

(0.0078) (0.0474) (0.0149) (0.0714) (0.0068)

IS
0.5067 1.2957 0.7852 1.8086 0.5217

(0.0016) (0.0608) (0.0027) (0.0781) (0.0019)

Table 6: Bayes estimation for the right-censored 2CMGED under PLF and IP.

n Technique
True parametric values

λ1 = 0:50 θ1 = 1:20 λ2 = 0:75 θ2 = 1:50 π1 = 0:45

20

LA
0.6903 1.6456 0.9549 2.2454 0.5716

(0.0378) (0.1073) (0.0904) (0.1522) (0.0332)

IS
0.7036 1.5470 0.9962 2.3592 0.6482

(0.0081) (0.1287) (0.0165) (0.1448) (0.0070)

50

LA
0.6246 1.4891 0.8641 2.0319 0.5172

(0.0271) (0.0768) (0.0644) (0.1096) (0.0236)

IS
0.6405 1.4022 0.9072 2.1382 0.5901

(0.0057) (0.0920) (0.0118) (0.1034) (0.0050)

100

LA
0.5645 1.4346 0.7808 1.8377 0.4675

(0.0224) (0.0653) (0.0517) (0.0911) (0.0196)

IS
0.5748 1.3463 0.8142 1.9276 0.5296

(0.0048) (0.0779) (0.0094) (0.0867) (0.0041)

200

LA
0.4973 1.3632 0.7525 1.8359 0.4549

(0.0163) (0.0429) (0.0277) (0.0462) (0.0118)

IS
0.5106 1.2848 0.7903 1.8361 0.5143

(0.0033) (0.0539) (0.0051) (0.0508) (0.0031)
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The log-likelihood function from Equation (6) is

L Ω ; xð Þ = r1 log π1 + r2 log 1 − π1ð Þ + r1 log λ1 + r2 log λ2 + r1 log θ1 + r2 log θ2

−θ1 〠
r1

i=1
x1i − θ2 〠

r2

i=1
x2i + λ1 − 1ð Þ〠

r1

i=1
log 1 − e−θ1x1i
� �

+ λ2 − 1ð Þ〠
r2

i=1
log 1 − e−θ2x2i
� �

+ n − rð Þ log 1 − π1 1 − e−θ1t
� �λ1

− 1 − π1ð Þ 1 − e−θ1t
� �λ2� �

:

ð23Þ

The MLEs of the parameters are obtained by iterative

solution of the following:

r1
λ1

−
n − rð Þπ1 1 − e−θ1t

À Áλ1 log 1 − e−θ1t
À Á

F t ;Ω13ð Þ + 〠
r1

i=1
log 1 − e−θ1x1i
� �

= 0,

ð24Þ

r2
λ2

−
n − rð Þ 1 − π1ð Þ 1 − e−θ2t

À Áλ2 log 1 − e−θ2t
À Á

F t ;Ω13ð Þ + 〠
r2

i=1
log 1 − e−θ2x2i
� �

= 0,

ð25Þ

Table 7: Bayes estimation for the right-censored 2CMGED under LLF and IP.

n Technique
True parametric values

λ1 = 0:50 θ1 = 1:20 λ2 = 0:75 θ2 = 1:50 π1 = 0:45

20

LA
0.6607 1.5658 0.9067 2.1613 0.5544

(0.0164) (0.1138) (0.0376) (0.1388) (0.0178)

IS
0.6717 1.4713 0.9561 2.2821 0.6219

(0.0034) (0.1326) (0.0071) (0.1281) (0.0037)

50

LA
0.5984 1.4154 0.8301 1.9506 0.4993

(0.0121) (0.0798) (0.0269) (0.0929) (0.0128)

IS
0.6113 1.3488 0.8694 2.0662 0.5690

(0.0027) (0.0960) (0.0047) (0.0890) (0.0026)

100

LA
0.5408 1.3937 0.7721 1.7829 0.4502

(0.0098) (0.0636) (0.0213) (0.0812) (0.0102)

IS
0.5512 1.3074 0.8070 1.8575 0.5113

(0.0022) (0.0823) (0.0037) (0.0774) (0.0024)

200

LA
0.4774 1.3202 0.7220 1.7615 0.4439

(0.0061) (0.0381) (0.0120) (0.0583) (0.0054)

IS
0.4910 1.2629 0.7628 1.7477 0.5078

(0.0013) (0.0474) (0.0021) (0.0627) (0.0015)

Table 8: Bayes estimation for the right-censored 2CMGED under ELF and IP.

n Technique
True parametric values

λ1 = 0:50 θ1 = 1:20 λ2 = 0:75 θ2 = 1:50 π1 = 0:45

20

LA
0.6671 1.5792 0.9202 2.2008 0.5546

(0.0196) (0.1352) (0.0436) (0.1565) (0.0209)

IS
0.6861 1.4842 0.9574 2.2906 0.6286

(0.0041) (0.1612) (0.0081) (0.1480) (0.0045)

50

LA
0.6061 1.4445 0.8345 1.9805 0.5063

(0.0141) (0.0950) (0.0314) (0.1143) (0.0150)

IS
0.6201 1.3512 0.8734 2.0747 0.5728

(0.0030) (0.1138) (0.0057) (0.1048) (0.0031)

100

LA
0.5464 1.4183 0.7849 1.7798 0.4540

(0.0116) (0.0788) (0.0254) (0.0942) (0.0121)

IS
0.5576 1.3301 0.8119 1.8707 0.5190

(0.0026) (0.0931) (0.0046) (0.0898) (0.0027)

200

LA
0.4798 1.3298 0.7344 1.7804 0.4508

(0.0073) (0.0449) (0.0136) (0.0675) (0.0063)

IS
0.4990 1.2740 0.7733 1.7772 0.5123

(0.0015) (0.0573) (0.0025) (0.0725) (0.0018)
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r1
θ1

−
n − rð Þπ1λ1te

−θ1t 1 − e−θ1t
À Áλ1−1

F t ;Ω13ð Þ

− 〠
r1

i=1
x1i + λ1 − 1ð Þ〠

r1

i=1

x1ie
−θ1x1i

1 − e−θ1x1i
= 0,

ð26Þ

r2
θ2

−
n − rð Þ 1 − π1ð Þλ2te−θ2t 1 − e−θ2t

À Áλ2−1
F t ;Ω13ð Þ

− 〠
r2

i=1
x2i + λ2 − 1ð Þ〠

r2

i=1

x2ie
−θ2x2i

1 − e−θ2x2i
= 0,

ð27Þ

r1
π1

−
r2

1 − π1
−

n − rð Þ 1 − e−θ2t
À Áλ2 − 1 − e−θ1t

À Áλ1n o
F t ;Ω13ð Þ = 0:

ð28Þ

The MLEs for the parametric set Ω is denoted by bΩ = ð

bλ1, bλ2, bθ1, bθ2, bπ1Þ. As mentioned in the previous sections,
the second order and third order derivatives from the Equa-
tion ((13) have not been presented here. Based on the second
order derivatives, the elements of the matrix fLijg−1 are
obtained and denoted by σij, where i, j = 1, 2, 3, 4, 5.

Using LA, the BEs for Ω, under SELF and NIP, are given
in the following:

θ1,SELF = bθ1 +
1
2 A1σ11 + A2σ21 + A3σ31 + A4σ41 + A5σ51ð Þ,

ð29Þ

θ2,SELF = bθ2 +
1
2 A1σ12 + A2σ22 + A3σ32 + A4σ42 + A5σ52ð Þ,

ð30Þ

λ1,SELF = bλ1 +
1
2 A1σ13 + A2σ23 + A3σ33 + A4σ43 + A5σ53ð Þ,

ð31Þ

λ2,SELF = bλ2 +
1
2 A1σ14 + A2σ24 + A3σ34 + A4σ44 + A5σ54ð Þ,

ð32Þ

π1,SELF = bπ1 +
1
2 A1σ15 + A2σ25 + A3σ35 + A4σ45 + A5σ55ð Þ:

ð33Þ
Similarly considering LA, the BEs for Ω, under SELF and

NIP are

θ1,PLF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibθ21 + 1

2 2bθ1σ11 + A1σ11 + A2σ21 + A3σ31 + A4σ41 + A5σ51
� �r

,

ð34Þ

θ2,PLF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibθ22 + 1

2 2bθ2σ22 + A1σ12 + A2σ22 + A3σ32 + A4σ42 + A5σ52
� �r

,

ð35Þ

λ1,PLF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibλ2
1 +

1
2 2bλ1σ33 + A1σ13 + A2σ23 + A3σ33 + A4σ43 + A5σ53
� �r

,

ð36Þ

λ2,PLF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibλ2
2 +

1
2 2bλ2σ44 + A1σ14 + A2σ24 + A3σ34 + A4σ44 + A5σ54
� �r

,

ð37Þ

π1,PLF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibπ2

1 +
1
2 2bπ1σ55 + A1σ15 + A2σ25 + A3σ35 + A4σ45 + A5σ55ð Þ

r
:

ð38Þ
The BEs for the model parameters under ELF using NIP

are

θ1,ELF = bθ−1
1 + 1

2 −bθ−2
1 σ11 +A1σ11 +A2σ21 +A3σ31 + A4σ41 + A5σ51

� �� �−1
,

ð39Þ

Table 9: Effect of mixing parameter on the estimation of right-
censored 2CMGED using LLF and IP.

π Technique
Estimated values of the parameters

λ1 θ1 λ2 θ2 π1

0.25

LA
0.6067 1.5648 0.7738 1.7655 0.2303

(0.0131) (0.0905) (0.0246) (0.0923) (0.0056)

IS
0.6264 1.4839 0.7905 1.8121 0.2641

(0.0029) (0.1055) (0.0046) (0.0877) (0.0012)

0.50

LA
0.5398 1.4013 0.7912 1.7940 0.4858

(0.0115) (0.0779) (0.0256) (0.0949) (0.0129)

IS
0.5509 1.3141 0.8184 1.8857 0.5553

(0.0026) (0.0920) (0.0047) (0.0905) (0.0029)

0.75

LA
0.5213 1.3841 0.8468 1.9666 0.7150

(0.0108) (0.0730) (0.0299) (0.1082) (0.0190)

IS
0.5385 1.2865 0.8851 2.0706 0.8089

(0.0024) (0.0860) (0.0054) (0.1036) (0.0043)

Table 10: Effect of censoring rates on the estimation of right-
censored 2CMGED using LLF and IP.

CR Technique
Estimated values of the parameters

λ1 θ1 λ2 θ2 π1

10%

LA
0.5326 1.3940 0.7829 1.7484 0.4496

(0.0114) (0.0751) (0.0245) (0.0908) (0.0116)

IS
0.5473 1.3130 0.8079 1.8345 0.5170

(0.0024) (0.0904) (0.0045) (0.0860) (0.0026)

20%

LA
0.5464 1.4183 0.7849 1.7798 0.4540

(0.0116) (0.0788) (0.0254) (0.0942) (0.0121)

IS
0.5576 1.3301 0.8119 1.8707 0.5190

(0.0026) (0.0931) (0.0046) (0.0898) (0.0027)

30%

LA
0.5671 1.5033 0.8289 1.8724 0.4788

(0.0132) (0.0902) (0.0289) (0.1061) (0.0135)

IS
0.5851 1.4212 0.8476 1.9704 0.5546

(0.0029) (0.1055) (0.0052) (0.1012) (0.0030)
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Table 11: Effect of true parametric values on the estimation using LLF and IP.

(λ1, θ1, λ2, θ2, π1) Technique
Estimated values of the parameters

λ1 θ1 λ2 θ2 π1

(0.50, 1.20, 0.75, 1.50, 0.45)

LA
0.5464 1.4183 0.7849 1.7798 0.4540

(0.0116) (0.0788) (0.0254) (0.0942) (0.0121)

IS
0.5576 1.3301 0.8119 1.8707 0.5190

(0.0026) (0.0931) (0.0046) (0.0898) (0.0027)

(0.50, 1.20, 1.50, 3.00, 0.45)

LA
0.5501 1.3929 1.5196 3.4386 0.4515

(0.0130) (0.0904) (0.0674) (0.3010) (0.0126)

IS
0.5505 1.3244 1.6161 3.5367 0.5115

(0.0029) (0.1065) (0.0246) (0.3395) (0.0026)

(1.00, 2.40, 0.75, 1.50, 0.45)

LA
1.0401 2.7969 0.7727 1.7948 0.4625

(0.0284) (0.2511) (0.0273) (0.0977) (0.0126)

IS
1.0420 2.5988 0.8432 1.8419 0.5294

(0.0063) (0.3002) (0.0049) (0.0946) (0.0024)

Table 12: BEs for RCs of the right-censored 2CMGED.

n Loss function
NIP IP

R tð Þ HR tð Þ RHR tð Þ R tð Þ HR tð Þ RHR tð Þ

20

SELF
0.1118 2.0554 0.3418 0.1148 2.0439 0.3303

(0.0209) (0.3815) (0.0278) (0.0193) (0.3510) (0.0257)

PLF
0.1128 2.0669 0.3429 0.1160 2.0554 0.3315

(0.0266) (0.2943) (0.0345) (0.0245) (0.2708) (0.0318)

ELF
0.1091 1.9957 0.3332 0.1129 1.9899 0.3223

(0.0194) (0.3599) (0.0256) (0.0178) (0.3312) (0.0240)

LLF
0.1090 1.9899 0.3294 0.1120 2.0001 0.3201

(0.0206) (0.2337) (0.0274) (0.0201) (0.2175) (0.0254)

50

SELF
0.1198 1.9375 0.3247 0.1207 1.9272 0.3141

(0.0136) (0.2106) (0.0252) (0.0125) (0.1930) (0.0232)

PLF
0.1211 1.9486 0.3258 0.1230 1.9382 0.3153

(0.0172) (0.1603) (0.0309) (0.0156) (0.1469) (0.0283)

ELF
0.1179 1.8806 0.3157 0.1176 1.8756 0.3062

(0.0125) (0.1981) (0.0236) (0.0116) (0.1831) (0.0217)

LLF
0.1171 1.8741 0.3166 0.1185 1.8772 0.3047

(0.0137) (0.1249) (0.0247) (0.0120) (0.1181) (0.0224)

100

SELF
0.1391 1.6396 0.3164 0.1427 1.6168 0.3065

(0.0088) (0.1157) (0.0228) (0.0078) (0.1059) (0.0209)

PLF
0.1463 1.6606 0.3303 0.1500 1.6428 0.3201

(0.0130) (0.0975) (0.0264) (0.0120) (0.0892) (0.0242)

ELF
0.1362 1.6093 0.3091 0.1396 1.5881 0.3002

(0.0082) (0.1074) (0.0213) (0.0074) (0.1002) (0.0196)

LLF
0.1415 1.5997 0.3194 0.1460 1.5873 0.3097

(0.0102) (0.0732) (0.0209) (0.0096) (0.0693) (0.0189)

200

SELF
0.1578 1.4922 0.3067 0.1618 1.4867 0.2944

(0.0063) (0.0879) (0.0210) (0.0058) (0.0801) (0.0188)

PLF
0.1609 1.4984 0.3056 0.1630 1.4928 0.2934

(0.0079) (0.0667) (0.0254) (0.0073) (0.0607) (0.0228)

ELF
0.1554 1.4673 0.3021 0.1590 1.4598 0.2895

(0.0058) (0.0828) (0.0193) (0.0054) (0.0747) (0.0174)

LLF
0.1559 1.4605 0.2969 0.1575 1.4529 0.2849

(0.0064) (0.0520) (0.0195) (0.0059) (0.0490) (0.0181)
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θ2,ELF = bθ−1
2 + 1

2 −bθ−22 σ22 + A1σ12 + A2σ22
��

+ A3σ32 + A4σ42 + A5σ52

��−1
,

ð40Þ

λ1,ELF = bλ−1
1 + 1

2 −bλ−2
1 σ33 + A1σ13 + A2σ23

��
+ A3σ33 + A4σ43 + A5σ53

��−1
,

ð41Þ

λ2,ELF = bλ−1
2 + 1

2 −bλ−2
2 σ44 + A1σ14 + A2σ24

��
+ A3σ34 + A4σ44 + A5σ54

��−1
,

ð42Þ

π1,ELF = bπ−1
1 + 1

2 −bπ−2
1 σ55 + A1σ15 + A2σ25

��
+ A3σ35 + A4σ45 + A5σ55

��−1
:

ð43Þ

Finally, the BEs for the model parameters under LLF

BE
s
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Figure 1: Graph for BEs using SELF NIP, and LA.
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Figure 2: Graph for BEs using SELF, NIP, and IS.
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Figure 3: Graph for PRs using SELF, NIP, and LA.
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Figure 4: Graph for PRs using SELF, NP, and IS.
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using NIP are

θ1,LLF = − ln exp −bθ1
� �

+ 1
2 −exp −bθ1

� �
σ11 + A1σ11

��
+ A2σ21 + A3σ31 + A4σ41 + A5σ51

��
,

ð44Þ

θ2,LLF = − ln exp −bθ2
� �

+ 1
2 −exp −bθ2� �

σ22
��

+ A1σ12 + A2σ22 + A3σ32 + A4σ42 + A5σ52

��
,

ð45Þ

λ1,LLF = − ln exp −bλ1
� �

+ 1
2 −exp −bλ1

� �
σ33

��
+ A1σ13 + A2σ23 + A3σ33 + A4σ43 + A5σ53

��
,

ð46Þ

λ2,LLF = − ln exp −bλ2
� �

+ 1
2 −exp −bλ2

� �
σ44 + A1σ14

��
+ A2σ24 + A3σ34 + A4σ44 + A5σ54

��
,

ð47Þ
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Figure 5: Comparison of BEs under IS and LA using NIF.
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Figure 7: Comparison of Priors using SELF and IS.
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Figure 8: Effect on increase in CRs using ELF, IP, and IS.
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π1,LLF = − ln exp −bπ1ð Þ + 1
2 −exp −bπ1ð Þσ55 + A1σ15ð

�
+ A2σ25 + A3σ35 + A4σ45 + A5σ55

��
:

ð48Þ
Similarly, for rest of the cases, the BEs for the parameters

and RCs of the 2CMGED under right-censored samples can
be obtained.

2.1.4. Importance Sampling (IS). In this section, the BEs for
the parameters of 2CMGED have been considered using
IS. For importance sampling, the first step is to identify the
marginal and conditional densities from the posterior distri-

bution. Interestingly in Equation (11), the parameter π1 fol-
lows beta distribution with parameters r1 + 1 andr2 + 1. On
the other hand, the parameters θj have gamma distribution

with parameters r j + 1 andκ1jðxjiÞ =∑
r j
i=1xji. Similarly, the

conditional distributions of λjjθj are again gamma densities

with parameters r j + 1 and χ1jðxjiÞ = −∑
r j
i=1 log ð1 − e−θ jx jiÞ,

where j = 1, 2.Let

h14 π1, θj, λj xj
À Á

= 1 − π1 1 − e−θ1t
� �λ1

− 1 − π1ð Þ 1 − e−θ1t
� �λ2� �n−r

× exp −〠
r1

i=1
log 1 − e−θ1x1i
� �( )

exp −〠
r2

i=1
log 1 − e−θ2x2i
� �( )Y2

j=1
κ1j xji
À ÁÈ É−r j−1 χ1j xji

À Án o−r j−1
:

ð49Þ

Now, the posterior distribution given in Equation (49)
can be partitioned as follows:

g1 Ω xjð Þ∝ h11 π1 xjð Þh12 θj xj
À Á

h13 λj θj, x
��À Á

h14 π1, λj, θj xj
À Á

,
ð50Þ

where π1 ∼ Betaðr1 + 1, r2 + 1Þ, θj ∼Gammaðr j + 1, κ1jðxjiÞÞ,
λjjθj ∼Gammaðrj + 1, χ1jðxjiÞÞ, and h14ðπ1, θj, λjjxÞ are

given in Equation (49).
Based on IS, the BEs for the parametric set Ω, under NIP

using SELF, are

π1,SELF =
Ε′ π1h14 π1, θj, λj xj

À ÁÂ Ã
Ε′ h14 π1, θj, λj xj

À ÁÂ Ã , θj,SELF

=
Ε′ θjh14 π1, θj, λj xj

À ÁÂ Ã
Ε′ h14 π1, θj, λj xj

À ÁÂ Ã , λj,SELF

=
Ε′ λjh14 π1, θ j, λj xj

À ÁÂ Ã
Ε′ h14 π1, θj, λj xj

À ÁÂ Ã :

ð51Þ

For remaining cases, the similar methodology can be
used for the estimation using IS.

3. Results and Discussions

In this subsection, the right-censored data have been gener-
ated from the 2CMGED for analysis. Based on these simu-
lated data, the comparison among different estimators has
been made with respect to various factors such as samples
sizes, priors, LFs, and Bayesian approximation methods.

The steps for numerical simulations have been given in
the followings:

Step 1. Generate a random sample of size ‘n’ from the
proposed model.

Step 2. Next generate uniformly distributed random
number (u) corresponding to each value of the sample.
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Figure 9: Effect on increase in Pi using ELF, IP, and IS.
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Figure 10: Effect of change in true parametric values.
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Step 3. The values of sample for u ≤ π1 have been consid-
ered to come from component-1 and the rest from compo-
nent-2.

Step 4. Determine the censoring rate (Ri).
Step 5. The starting n—n × Ri values have been observed

and remaining values have been assumed to be censored.
Step 6. Use the observed values for analysis.
Step 7. Repeat Step 1 to Step 6 10,000 times, and obtain

the BEs using either LA or IS given in Subsections 2.1.3
and 2.1.4, respectively.

Step 8. Obtain the BEs by average of the results com-
puted in Step 7.

Tables 1–12 and in Figures 1–10 contain the numerical
and graphical results, respectively. The BEs for the parame-
ters of the 2CMGED, under right-censored samples, have

been presented in Tables 1–8. The performance of the poste-
rior estimators has been investigated via amounts of associ-
ated PRs. From the results, it can be observed that larger
samples sizes produced improved estimation for the model
parameters. IPs and LLF come up with better estimation as
compared to their counter parts. On the other hand, the esti-
mates under IS seem better than those under LA with few
exceptions. These trends are also observable from
Figures 1–6.

Table 9 and Figure 9 capture the impact of change in
mixing parameter (π1) on the estimation of 2CMGED. The
samples of size 100 with 20% right censoring with λ1 =
0:50, θ1 = 1:20, λ2 = 0:75, θ2 = 1:50, and IP have been used
for the estimation. The larger values of the mixing parameter
improve the estimation for the first component of the

Table 13: Comparison of estimates under conventional and CE censoring using ELF, IP, and IS.

n Technique
True parametric values KS

Statistic
P value

λ1 = 0:50 θ1 = 1:20 λ2 = 0:75 θ2 = 1:50 π1 = 0:45

20

Conventional
0.6861 1.4842 0.9574 2.2906 0.6286

0.1689 0.7631
(0.0041) (0.1612) (0.0081) (0.1480) (0.0045)

CE
0.6450 1.4337 0.9283 2.1584 0.6018

0.1579 0.7926
(0.0036) (0.1401) (0.0072) (0.1334) (0.0040)

50

Conventional
0.6201 1.3512 0.8734 2.0747 0.5728

0.1518 0.8065
(0.0030) (0.1138) (0.0057) (0.1048) (0.0031)

CE
0.5812 1.3305 0.8641 1.9455 0.5399

0.1402 0.8627
(0.0027) (0.1012) (0.0051) (0.0913) (0.0028)

100

Conventional
0.5576 1.3301 0.8119 1.8707 0.5190

0.1331 0.8886
(0.0026) (0.0931) (0.0046) (0.0898) (0.0027)

CE
0.5203 1.3041 0.7917 1.7090 0.4970

0.1326 0.9141
(0.0023) (0.0807) (0.0041) (0.0776) (0.0024)

200

Conventional
0.4990 1.2740 0.7733 1.7772 0.5123

0.0864 0.9370
(0.0015) (0.0573) (0.0025) (0.0725) (0.0018)

CE
0.5028 1.2124 0.7508 1.5878 0.4915

0.0624 0.9684
(0.0014) (0.0494) (0.0021) (0.0634) (0.0016)

Table 14: Effect of mixing parameter on the estimation based on
CE-censored samples using LLF and IP.

π Technique
Estimated values of the parameters

λ1 θ1 λ2 θ2 π1

0.25

LA
0.5917 1.5295 0.7558 1.7140 0.2435

(0.0109) (0.0792) (0.0203) (0.0757) (0.0049)

IS
0.6096 1.4510 0.7684 1.7752 0.2579

(0.0024) (0.0927) (0.0038) (0.0717) (0.0011)

0.50

LA
0.5280 1.3676 0.7709 1.7448 0.4906

(0.0096) (0.0684) (0.0212) (0.0779) (0.0113)

IS
0.5353 1.2789 0.7945 1.8342 0.5441

(0.0022) (0.0806) (0.0039) (0.0741) (0.0026)

0.75

LA
0.5074 1.3492 0.8227 1.9146 0.7204

(0.0090) (0.0643) (0.0247) (0.0887) (0.0166)

IS
0.5253 1.2591 0.8618 2.0108 0.7927

(0.0020) (0.0752) (0.0045) (0.0852) (0.0038)

Table 15: Effect of censoring rates on the estimation CE-censored
samples using LLF and IP.

CR Technique
Estimated values of the parameters

λ1 θ1 λ2 θ2 π1

10%

LA
0.5194 1.3597 0.7629 1.7084 0.4387

(0.0094) (0.0658) (0.0203) (0.0742) (0.0102)

IS
0.5317 1.2862 0.7914 1.7962 0.5061

(0.0020) (0.0791) (0.0037) (0.0703) (0.0023)

20%

LA
0.5342 1.3874 0.7637 1.7414 0.4404

(0.0096) (0.0689) (0.0210) (0.0774) (0.0106)

IS
0.5434 1.2976 0.7888 1.8146 0.5045

(0.0022) (0.0819) (0.0038) (0.0739) (0.0024)

30%

LA
0.5543 1.4677 0.8060 1.8331 0.4677

(0.0110) (0.0794) (0.0240) (0.0869) (0.0118)

IS
0.5700 1.3871 0.8272 1.9276 0.5415

(0.0024) (0.0924) (0.0043) (0.0827) (0.0026)
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2CMGED with still reasonably good estimation for the sec-
ond component of the 2CMGED. The effect of different cen-
soring rates on the performance of the estimation from
2CMGED has been observed in Table 10 and in Figure 8.
For estimation, we assumed λ1 = 0:50, θ1 = 1:20, λ2 = 0:75,
θ2 = 1:50, π1 = 0:45, n = 100, LLF, and IP. As per expecta-
tions, the lower censoring rates provide the better estimation
for the parameters of the 2CMGED. The results for different
sets of the parametric values regarding right-censored
2CMGED have been reported in Table 11 and in
Figure 10. The IP and LLF with 20% right-censored samples
have been considered for this purpose. The smaller choices
of the true parametric values from one component of
2CMGED result in improved estimation for the other com-
ponent of the 2CMGED.

The estimation of the RCs from the right-censored
2CMGED has been given in Table 12. The estimation has
been considered under 20% right-censored samples using
λ1 = 0:50, θ1 = 1:20, λ2 = 0:75, θ2 = 1:50, π1 = 0:45, and t =
1:00 with RðtÞ = 0:1687, HRðtÞ = 1:4483, and RHRðtÞ =
0:2939. These RCs have been estimated using LA under dif-
ferent situations. The better estimation of the RCs has been
observed for larger sample sizes. The advantage of using
the IP with LLF has been seen in majority of cases.

Table 13 contains the comparison of results based on
conventional censoring schemes and censoring schemes
based on CE. From the results, it can be assessed that results
based on CE-censored samples are superior to those under
conventional censoring schemes. Similarly, Table 14 reports
the impact of mixing parameter under CE-censored samples.

The results in Table 14 are better than those under conven-
tional censoring schemes given in Table 9. Further, compar-
ing results reported in Table 10 (for conventional censoring
schemes) and Table 15 (for CE based censoring schemes),
the results under CE based censoring schemes were better
irrespective of the choice of censoring rate. The results under
conventional censoring schemes and CE based censoring
schemes have also been compared for various choices of
the true parametric values. The corresponding results have
been reported in Table 11 and Table 16, respectively. These
results elucidate that the CE-based censored samples provide
improved estimation for the model parameters for different
choices of the true parametric values.

3.1. Real Life Examples. In this section, two datasets regard-
ing survival times for the cancer patients have been used to
evaluate the applicability of the proposed model. The
dataset-1 is about the survival times (in months) of 121
breast cancer patients. This dataset has been reported by
Lawless. The (∗) denotes the censored times. The observa-
tions for the dataset-1 are as follows: 0.3, 0.3∗, 4.0∗, 5.0,
5.6, 6.2, 6.3, 6.6, 6.8, 7.4∗, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8,
12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5∗, 15.7, 16.2, 16.3,
16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0,
21.1, 23.0, 23.4∗, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30, 31,
31, 32, 35, 35, 37∗, 37∗, 37∗, 38, 38∗, 38∗, 39∗, 39∗, 40, 40∗,
40∗, 41, 41, 41∗, 42, 43∗, 43∗, 43∗, 44 45∗, 45∗, 46∗, 46∗,
47∗, 48, 49∗, 51, 51, 51∗, 52, 54, 55∗, 56, 57∗, 58∗, 59∗, 60,
60, 60∗, 61∗, 62∗, 65∗, 65∗, 67∗, 67∗, 68∗, 69∗, 78, 80, 83∗,
88∗, 89, 90, 93∗, 96∗, 103, 105∗, 109∗, 109∗, 111∗, 115∗,

Table 16: Effect of true parametric values on estimation based on CE-censored samples using LLF and IP.

(λ1, θ1, λ2, θ2, π1) Technique
Estimated values of the parameters

λ1 θ1 λ2 θ2 π1

(0.50, 1.20, 0.75, 1.50, 0.45)

LA
0.5317 1.3838 0.7690 1.7322 0.4601

(0.0097) (0.0692) (0.0211) (0.0772) (0.0107)

IS
0.5437 1.3032 0.7923 1.8199 0.5061

(0.0021) (0.0814) (0.0038) (0.0732) (0.0024)

(0.50, 1.20, 1.50, 3.00, 0.45)

LA
0.5376 1.3617 1.4876 3.3375 0.4560

(0.0108) (0.0797) (0.0561) (0.2473) (0.0111)

IS
0.5385 1.2868 1.5829 3.4357 0.5009

(0.0024) (0.0939) (0.0204) (0.2786) (0.0023)

(1.00, 2.40, 0.75, 1.50, 0.45)

LA
1.0189 2.7294 0.7550 1.7482 0.4516

(0.0235) (0.2214) (0.0225) (0.0800) (0.0111)

IS
1.0144 2.5426 0.8226 1.7980 0.5158

(0.0052) (0.2626) (0.0041) (0.0775) (0.0021)

Table 17: Descriptive statistics for real datasets.

Data Mean Median Variance Standard deviation Skewness Kurtosis

Dataset-1 32.30 22.05 772.21 27.79 1.68 5.66

Dataset-2 (group-I) 280.17 160.00 91884.73 303.12 2.32 8.10

Dataset-2 (group-II) 304.90 176.00 116532.10 341.37 2.94 12.66
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Figure 11: Plots for empirical and theoretical densities and CDFs.

Table 18: Goodness of fit statistics for real datasets.

Dataset Model AIC BIC CM statistic AD statistic KS statistic
P value

(KS statistic)

Dataset-1
2CMGED 563.5029 574.3748 0.0684 0.4470 0.0883 0.9835

2CMED 570.6215 577.1447 0.4232 2.5252 0.1564 0.8286

Dataset-2
2CMGED 276.0819 287.2524 0.0220 0.1781 0.0405 0.9241

2CMED 294.1407 300.8430 0.3717 2.1951 0.1570 0.6124
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117∗, 125∗, 126, 127, 129∗, 129∗, 139∗, and 154∗. Out of 121
survival times, 56 are right censored. Therefore, the ratio of
censoring in dataset-1 is around 46%.

The dataset-2 also reported by Lawless, contains the sur-
vival times (in days) of two groups of cancer patients. The
first group contains 51 patients with head and neck cancer
(HNC). This group was treated with radiotherapy (RT).
The second group is comprised of 45 HNC patients treated
with RT and chemotherapy (CT). The observations of both
of these groups are as follows.

Group-I: 7, 34, 42, 63, 64, 74∗, 83, 84, 91, 108, 112, 129,
133, 133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165,
173, 176, 185∗, 218, 225, 241, 248, 273, 277, 279∗, 297,
319∗, 405, 417, 420, 440, 523, 523∗, 583, 594, 1101, 1116∗,
1146, 1226∗, 1349∗, 1412∗, and 1417.

Group-II: 37, 84, 92, 94, 110, 112, 119, 127, 130, 133, 140,
146, 155, 159, 169∗, 173, 179, 194, 195, 209, 249, 281, 319,
339, 432, 469, 519, 528∗, 547∗, 613∗, 633, 725, 759∗, 817,
1092∗, 1245∗, 1331∗, 1557∗, 1642∗, 1771∗, 1776, 1897∗,
2023∗, 2146∗, and 2297∗.

Out of 51 observations in group-I, 7 observations are
right censored. So, in group-I, approximately 14% of the
observations are right censored. On the other hand, in
group-II, 15 out of 45 observations are right censored with
censoring rate 33%. On the whole, for dataset-2, out of 96
observations 22 are right censored. Hence, for dataset-2,
the censoring rate is approximately 23%. The descriptive sta-
tistics for dataset-1 and dataset-2 have been reported in
Table 17. The results in Table 17 suggest that the real data-
sets used in the study are positively skewed and leptokurtic.

These data have been used to illustrate the applicability
of the proposed model. The graphical display of goodness
of fit for 2CMGED and 2CMED using dataset-1 and
dataset-2 has been given in Figure 11. In particular,
Figure 11(a) shows the comparison of empirical and theoret-
ical densities for the competing models using dataset-1. Sim-
ilarly, Figure 11(b) presents the comparison of empirical and
theoretical CDFs for the competing models using dataset-1.
On the other hand, Figure 11(c) and Figure 11(d) show the
comparison of empirical and theoretical densities and CDFs
for dataset-2, respectively. On the whole, Figure 11 suggests
that the 2CMGED has better able to represent the behavior
of both datasets as compared to 2CMED.

The modeling capabilities of the proposed model have
been further evaluated using different goodness of fit criteria
such as Akaike information criteria (AIC), Bayesian infor-
mation criteria (BIC), Cramer-von Mises (CM) statistic,
Anderson-Darling (AD) statistic, and Kolmogorov-
Smirnov (KS) statistic. The results have been reported in
Table 18. The results in Table 18 simply indicate that the
results for all the goodness of fit statistics are smaller in case
of 2CMGED and compared those for 2CMED. So, the per-
formance of the 2CMGED is better as compared to 2CMED.

4. Conclusion

The study has been conducted to explore the suitability of
2CMGED to model the right-censored medical datasets hav-
ing mixture behavior. In addition, the estimation of model

parameters using CE-based censored samples has been
introduced. The comparison of the results based on conven-
tional and CE-based censored samples has also been
reported. The Bayesian methods have been proposed to esti-
mate the model parameters. In the first phase of the study, a
detailed simulation study has been carried out to evaluate
the performance of the proposed estimators. The numerical
simulations have been carried out using R software. The
results from the simulation study confirm the consistency
property of the proposed estimators. The estimates based
on IS, IP, and LLF were found superior to their counterparts.
The results from the simulated study also advocate that the
estimation using CE-based censored samples was superior
to that under conventionally censored samples. The suprem-
acy of CE-based censored samples was witnessed for differ-
ent choices of sample size, true parametric values, mixing
weights, and censoring rates. In second phase of the study,
two real datasets relating to survival times of the cancer
patients have been used to illustrate the applicability of the
proposed model in medical field of study. In addition, the
performance of the proposed 2CMGED was compared with
2CMED in molding said datasets. Based on various good-
ness of fit statistics such as AIC, BIC, CM statistic, AD statis-
tic, and KS statistic, 2CMGED was found superior to
2CMED. Hence, 2CMGED was explored to be a very prom-
ising candidate for modeling survival times of the patients
suffering from cancer.

Since the medical datasets can be left censored and dou-
bly censored in some cases, the study can further be
extended for the said censoring schemes. The study can also
be extended for using lifetime models with bathtub shape
hazard rates, because such models have been shown to fit
the medical datasets efficiently.

Abbreviations

2CMED: Two-component mixture of exponential
distribution

2CMGED: Two-component mixture of generalized expo-
nential distribution

AD: Anderson-Darling
AIC: Akaike information criteria
BEs: Bayes estimates
BIC: Bayesian information criteria
CDF: Cumulative distribution function
CE: Conditional expectations
CM: Cramer-von Mises
CT: Chemotherapy
ECDF: Empirical cumulative distribution function
ELF: Entropy loss function
HNC: Head and neck cancer
IP: Informative prior
IS: Importance sampling
KS: Kolmogorov-Smirnov
LA: Lindley’s approximation
LLF: LINEX loss function
NIP: Noninformative prior
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RCs: Reliability characteristics
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