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Aiming at arrhythmia heartbeats classification, a novel multifeature fusion deep learning-based method is proposed. The
stationary wavelet transforms (SWT) and RR interval features are firstly extracted. Based on the traditional one-dimensional
convolutional neural network (1D-CNN), a parallel multibranch convolutional network is designed for training. The subband
of SWT is input into the multiscale 1D-CNN separately. The output fused with RR interval features are fed to the fully
connected layer for classification. To achieve the lightweight network while maintaining the powerful inference capability of
the multibranch structure, the redundant branches of the network are removed by reparameterization. Experimental results
and analysis show that it outperforms existing methods by many in arrhythmic heartbeat classification.

1. Introduction

The heart is a muscle that contracts in a rhythmic way to
pump blood throughout the body. The activity of the heart
generates electric currents on the surface of the body, which
cause changes in the electrical potential of the skin [1]. Elec-
trocardiograph (ECG), a medical technology widely used in
clinical medicine, can noninvasively detects the electrical
potential changes on the skin caused by cardiac activity.
Doctors can diagnose cardiovascular diseases by observing
the ECG. However, only relying on doctors to analyze
ECG is not only inefficient but also prone to visual fatigue
when working for long hours. To reduce the burden on
doctors, the computer aided diagnosis (CAD) system is a
reliable solution. It utilize machine learning (ML) or deep
learning (DL) methods to diagnose cardiovascular diseases
by monitoring ECGs, which can help doctors determine
the right treatment plan and save valuable treatment time.
Therefore, the automatic classification system of electrocar-

diogram is of great significance to improve medical effi-
ciency, reduce medical cost and prevent heart disease [2].

The arrhythmia heartbeats classification work is mainly
divided into four stages: preprocessing, heartbeat segmenta-
tion, feature extraction, and classification. The main work of
preprocessing is to denoise the ECG signal to improve the
signal-to-noise ratio (SNR). Common methods such as
wavelet transform (WT) [3], empirical mode decomposition
(EMD) [4], and denoising autoencoder [5]. The heartbeat
segmentation is used to get the segmentation reference
points of the ECG recording to facilitate the subsequent sig-
nal processing, through detected R peaks or QRS complexes
[1]. In the feature extraction step, some useful features
related to arrhythmia heartbeats are extracted from ECGs,
such as RR intervals [6], wavelets [7], and local binary pat-
tern (LBP) [8]. In the classification stage, the result of
arrhythmia heartbeats can be identified by the ML and DL
algorithm. For the ML algorithm, the classification results
usually depend on whether the extracted features are
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accurate and suitable. While the DL algorithm is different, it
can automatically extract abstract features from the input
data and has stronger generalization than ML algorithms.
Our proposed scheme fused multifeatures and reparameter-
ized the designed parallel multibranch convolutional net-
work. It is not only has a lightweight architecture but also
achieves comparable performance to other DL methods.
The main contributions of this paper are as follows.

(i) A multifeature fusion method for arrhythmia heart-
beats classification was proposed. The SWT feature
reflects the characteristics of the time and frequency
domains, and the RR interval feature relates a single
beat to other surrounding beats. The combination
of SWT and RR interval features can effectively
improve classification performance

(ii) The reparameterization technology was utilized to
lightweight the designed multibranch convolutional
neural network structure. It maintains the model
classification ability and eliminates the disadvantage
of the high computational cost of the multibranch

(iii) Experimental results and analysis illustrate the pro-
posed method can achieve good performance. The
average overall accuracy is 99.43% while keeping
the designed network lightweight

The rest of the paper is organized as follows: the related
works are introduced in Section 2. The proposed arrhythmia
heartbeats classification scheme is described in Section 3.
Experimental results and analysis are provided in Section
4. Finally, some conclusions are drawn in Section 5.

2. Related Work

Some researchers used traditional ML-based methods to real-
ize arrhythmia heartbeats classification. Mondéjar-Guerra
et al. [8] extracted wavelets, LBP, higher-order statistics
(HOS), and their Morphological Descriptor features from
denoised signals and obtained the classification results by
support vector machines (SVMs). Tuncer et al. [9] used
neighborhood component analysis (NCA) to reduce the
dimensionality of extracted discrete wavelet transform
(DWT) and 1-dimensional hexadecimal local pattern (1D-
HBP) features, and used the K-nearest neighbor classification
algorithm (KNN) for classification. Jha et al. [10] classify the
arrhythmia heartbeats by tunable Q-wavelet transform
(TQWT) from denoised the ECG signals.

In recent years, DL has been booming and involved in
several fields, such as object detection [11], natural language
processing [12], and image restoration [13]. In the field of
heartbeat classification, more and more works are using
DL algorithms. It also exhibits a strong ability to classify
heartbeats. Mousavi and Afghah [14] used a synthetic
minority oversampling technique (SMOTE) to solve the
problem of sample imbalance, and then used a sequence-
to-sequence with CNN model for classification. Yildirim
et al. [15, 16] directly fed 10 s-long ECG segments into a
16-layer deep convolutional neural network to complete

the classification efficiently. After that, they classified the
original and compressed signals by long short-term memory
(LSTM) network. The classification accuracy is 99.23% and
99.11%, respectively. Oh et al. [17] combined CNN and
LSTM for heartbeats classification. Kiranyaz et al. [18] used
1D-CNN for heartbeats classification with good perfor-
mance and low computational cost.

Furthermore, some researchers combined the traditional
feature extraction method used in ML and DL methods for
heartbeats classification. The traditional features reflected
the differences between different categories of heartbeats,
which can facilitate the DL model learning meaningfully
semantic features. Shoughi and Dowlatshahi [19] used
DWT and SMOTE oversampling algorithms for preprocess-
ing and fed them into CNN and BLSTM networks. Nur-
maini et al. [20] used stacked denoising autoencoders
(DAEs), autoencoders (AEs), and deep neural networks
(DNNs) for feature extraction and classification. El Bouny
et al. [21] fed the original ECG signals and the extracted
SWT features into a multiscale 1D-CNN, and the overall
accuracy is 99.11%. Subsequently, they [22] used more
SWT wavelet subbands, the maximum and connection
schemes are used to fuse the output of multiscale 1D-
CNN, and the overall accuracy rises to 99.58%. Ullah et al.
[23] extracted Fourier features and input them into a CNN
networks. Jun et al. [24] directly transformed the one-
dimensional ECG signal into a two-dimensional image and
used CNN to classify them. Allam et al. [25] used Stockwell
transform and 2-dimensional residual network (2D-ResNet).
Training the model with a small dataset achieves good clas-
sification results with good generalization. Rajput et al. [26]
performed wavelet and short-time Fourier transform on the
preprocessed signal and used dense neural network for clas-
sification. Liu et al. [27] used wavelet scattering transform
and extracted time windows, which were downscaled and
fed into a neural network, probabilistic neural network,
and KNN classifiers for classification, respectively. Wang
et al. [28] used CNN to extract features from the continuous
wavelet transform signal of ECGs, and combined it with the
RR interval features to classify the heartbeat by the fully con-
nected layers. The classification results on supraventricular
ectopic beats and ventricular ectopic beats outperform many
existing schemes. Although the current DL-based heartbeats
classification method can achieve good performance, their
models have a huge number of parameters. It is not conve-
nient to deploy these models on ECG machines with small
storage space and slow computation speed.

To maintain a lightweight model, we first designed an
original CNN-based heartbeats classification model. It fused
the RR interval features and a multiscale 1D-CNN to extract
features of three subbands of SWT. And then, the parallel
convolutional layers are fused into a single convolutional
layer by a reparameterization technique, which can greatly
reduce the model’s parameters.

3. Proposed Method

The proposed heartbeat classification framework contains
four parts: SWT feature extraction module, RR interval

2 Computational and Mathematical Methods in Medicine



feature extraction module, multibranch CNN module, and
classifier module. For an input ECG signal, the SWT feature
and RR interval feature are first extracted. After that, three
subbands of SWT are fed to the multibranch CNN, which
consisted of three reparameterization multiscale 1D-CNNs.
Finally, the fusion features are used as the input of a multi-
dense layer classifier, and then the 5 types of heartbeats are
classified. The framework of the proposed scheme is shown
in Figure 1.

3.1. SWT Feature Extraction. Wavelet transform is a com-
monly used transform in the field of ECG signal processing.
It has an excellent ability to analyze nonstationary signals.
For example, DWT [3, 8] is often used in the preprocessing
and feature extraction stages, while it does not have the char-
acteristics of transformation invariance. Therefore, we trans-
fer to another wavelet transform, namely SWT. Same as
DWT, SWT feeds the signal into a series of low-pass and
high-pass filters, but instead of filtered downsampling,
upsampling is implemented by zero-interpolation [29]. The
low-pass filter gives the approximate coefficients and the
high-pass filter gives the detail coefficients. The wavelet coef-
ficients of the jth level can be expressed as

Dj =Hj ∗ Aj−1,

Aj = Lj ∗ Aj−1,
ð1Þ

where Hj and Lj represent the jth stage high-pass and low-
pass filters, and Dj and Aj represent the detail and approxi-
mation coefficients of the jth stage. The 5-level SWT decom-
position process is shown in Figure 2.

In this work, we used a five-level SWT and wavelet “db1”
with a 1 × 2 filter. Table 1 shows the frequency range of the
five-level SWT subbands on the data sampled at 360Hz in
the MIT-BIH arrhythmia database while the main energy
of the ECG signal is mainly concentrated in the frequency
range of 3–40Hz [30]. Therefore, the main energy of the
ECG signal is contained in D3, D4,D5, and A5. Although
the A5 subband has the signal energy of the ECG, the base-
line wander noise is also in it. Considering that the network
is as lightweight as possible, it is discarded. Therefore, only
three subbands of SWT (D3, D4, and D5) are considered in
our proposed scheme. The detail coefficients of D3, D4, and
D5 obtained by S class ECG segments SWT were shown in
Figure 3.

3.2. RR Interval Feature Extraction. Considering the signifi-
cant difference in the heartbeat intervals of arrhythmias
compared to normal ones, the RR interval features are also
taken into account in our scheme. Inspired by previous work
[26], four RR interval features were considered. There are
previous-RR, post-RR, ratio-RR, and local-RR features.
Previous-RR is the R peak interval between the current
heartbeat and the previous heartbeat. Post-RR is the interval
between the current heartbeat and the next heartbeat, and
ratio-RR is the ratio of the pre-RR to the post-RR. The
local-RR is the average of the ten previous-RR before the
current heartbeat. To eliminate differences between patients,

the mean R peak interval was subtracted from previous-RR,
post-RR, and local-RR.

3.3. Multiscale 1D-CNN Reparameterization. Inspired by
RepVGG [31], we use parallel convolutional layers (Conv1D)
to form a multiscale feature of SWT to improve the classifica-
tion effect. Figure 4 shows the original network structure of
the multiscale 1D-CNN without reparameterization in
Figure 1. In this part, we will describe the detail of reparame-
terization multiscale 1D-CNN.

The Conv1d and batch normalized layer (BN) can be
formula expressed as

Conv xð Þ =W xð Þ + b,

BN xð Þ = γ
x − μð Þ
σ

+ β,
ð2Þ

where x is the input, WðxÞ is the convolution operation, b
and β are the biases of the Conv1D and BN layers, respec-
tively. And μ, σ, and γ are the mean, standard deviation,
and learnable scale factors, respectively. The output of the
Conv1D is used as the input of the BN to obtain as

BN Conv xð Þð Þ = γ
W xð Þ
σ

+ γ
b − μð Þ
σ

+ β: ð3Þ

The above formula can be regarded as a new Conv1D
formula. Thus the Conv1D after fusion with the BN layer
is formulated as follows:

Conv′ xð Þ =W’ xð Þ + b′: ð4Þ

where W ′ = γðW/σÞ, b′ = γððb − μÞ/σÞ + β.Taking the first
layer of multiscale 1D-CNN as an example, the reparameter-
ization process is shown in Figure 4. Starting from the orig-
inal two-scale structure, each Conv1D first needs to adsorb
its BN separately, and the new Conv1D obtained is shown
in Eq. (4). Then the 1 × 5 convolutional kernel is directly
converted to 1 × 7 size by a zero-padding operation. Finally,
the convolutional kernel parameter matrix and bias of the
two Conv1D are directly added separately to obtain the
merged convolutional layer. Therefore, two Conv1Ds and
their BNs layers are fused to a new Conv1D.

In Figure 5, the 1 × 7 and 1 × 5 Conv1D have the same
step, and the padding parameter of the latter is set to 1 while
the former is set to 0 to ensure that the output tensor size of
both is the same. Theoretically, any number of Conv1Ds can
be fused, provided that the following conditions are satisfied:
same step size; the kernel size of each Conv1D differs by a
multiple of 2. By setting the padding of each Conv1D, it is
ensured that the size of the tensor obtained after convolution
of each Conv1D is the same. The fused network has fewer
parameters than the original network and does not degrade
the inference accuracy.

4. Experimental Results

In this part, the experimental datasets and evaluation criteria
are first introduced, and then a series of experiments and
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analysis is used to illustrate the effectiveness of the proposed
arrhythmia heartbeats classification scheme.

4.1. Dataset Setup. The MIT-BIH arrhythmia database [32]
is a classic and excellent dataset in the field of ECG signal
processing, and many studies on cardiac beat classification
are based on this dataset. The dataset has been in an updated
state since its creation. The MIT-BIH consists of 48 records
from 47 different patients with a sampling frequency of

360HZ. We used the modified-lead II (MLII) in the dataset
as the original signal. According to the classification stan-
dard of arrhythmia beats suggested by the American associ-
ation of medical instrumentation (AAMI) standard [33], five
heartbeats (normal, supraventricular ectopic beats, ventricu-
lar ectopic beats, fusion, and unknown beats) are classified.
Noting that the annotation file in the MIT-BIH dataset
[32] contains the information on QRS peak occurrence time
and heartbeat type, and we take 99 samples and 156 samples
on the left and right sides of the R peak, respectively. Thus, a
heartbeat sample of length 256 was obtained (5-level SWT
requires an input sample length of 2n, n > 5). The heartbeat
segment is standardized by Z-score regularization, which is
beneficial to the training of the model. Finally, 109398 heart-
beats were extracted from MIT-BIH dataset, of which there
are 90548 in normal class (N), 2779 in supraventricular
ectopic beats (S) class, 7234 in ventricular ectopic beats
(V) class, 802 in fusion (F) class, and 8035 in unknown beats
(Q) class.

4.2. Evaluation Criteria. To evaluate the experimental
results, four metrics: the sensitivity (Se), the specificity
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Figure 2: the 5-level SWT process.

Table 1: The frequency range of 5-level SWT subbands.

SWT subband Frequency range(Hz)
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Figure 1: The overview of proposed automatic heartbeat classification scheme, 1 × 256 and 32 × 8 represent the input and output sizes of the
multiscale 1D-CNN.
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(Sp), the positive predictivity (P+), and the accuracy (Acc),
are implemented for the performance analysis.

Se =
TP

TP + FN
,

Sp =
TN

TN + FP
,

P+ =
TP

TP + FP
,

Acc =
TP + TN

TP + TN + FP + FN
,

ð5Þ

where TP, FP, TN, and FN are the true positive, false posi-
tive, true negative, and false negative, respectively. In addi-

tion to this, the overall accuracy is used for evaluating the
overall performance, it defined as

Overall Acc %ð Þ = Total number of correctly classified
Total number of heartbeats

× 100%:

ð6Þ

10

8

6

4

2

0

–2

–4

0 50 100 150 200 250

Standardized ECG
D3

D4
D5

Figure 3: Three detail coefficients D3, D4, and D5 of decomposed ECG segments using SWT for class S.
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Figure 5: the reparameterization process, from left to right, is as follows: original structure; the fusion of Conv1D and BN layers; zero-filling
of 1 × 5 kernels into 1 × 7 kernels; completion of the fusion.

Table 2: Average overall accuracy obtained by ten-fold cross
validation for each structure.

Case
The number of Conv1D in
different layers x1 − x2 − x3ð Þ Overall Acc

1 1-1-1 99.37%

2 3-2-1 99.41%

3 3-2-2 99.41%

4 2-2-1 (proposed) 99.43%

x1 − x2 − x3, x1, x2, x3 represent the number of Conv1D in the first, second,
and third layer, respectively.
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4.3. Implementation Detail. In order to ensure the general-
izability of the model and find the proper hyperparameters,
the extracted 109,398 heartbeats are used for 10-fold cross-
validation based on heartbeat-orientation. 10-fold cross-
validation is used. The checkpoint technique from the
skorch [34] library is utilized in the training to save the
best model.

The proposed network uses cross-entropy loss function
and Adam optimizer. The learning rate is empirically set as
0.001and the reduction is 0.1 per 12 epochs. The dropout
rate is set as 10%. The stride of Conv1D is set as 1. The num-
ber of 1D-CNN convolutional kernels in the 3 layers is 8, 16,
and 32, respectively. The kernel size and step size of the
pooling layer are set as 3.

4.4. Original Multiscale 1D-CNN Structure Selection. To
keep the original multiscale 1D-CNN lightweight, the classi-
cal 3-layer structure is taken into account. In order to find
the most appropriate number of convolutional layers per
layer for multiscale 1D-CNN, we did comparison experi-
ments. In the first layer, a 1 × 7 Conv1D is fixed, and 1 ×
5 and 1 × 3 Conv1D can be parallelized. The second and
third layers are fixed with a 1 × 5 and 1 × 4 Conv1D,
respectively. The corresponding layers can be paralleled
with a 1 × 3 and 1 × 2 Conv1D, respectively. Here, four
cases were taken into account, and 10-fold cross-
validation technology was used to evaluate each case. The
obtained average overall accuracy results are shown in
Table 2. It can be found that the accuracy of case 3 achieves
the best overall accuracy 99.43%, which is our proposed
multiscale 1D-CNN structure before re-parameterization
(as shown in Figure 5).

4.5. Performance Evaluation. By comparing the results of the
proposed reparameterization network with the original ones,
we find that the overall accuracy obtained by the two infer-
ences is the same in the first 16 decimal places. It can be con-
sidered that the reparameterization will not affect the model

inference results. The classification accuracy of five types of
heartbeats is shown in Table 3. The proposed scheme
achieves good average accuracy on different evaluation met-
rics. The average Se, Sp, P+, and Acc is 95.32%, 99.61%,
96.91%, and 99.77%, respectively. Furthermore, the confu-
sion matrix obtained by 10-fold cross-validation is shown
in Table 4. It can be found that the proposed scheme is good
at distinguishing each heartbeats class (S, V , F, and Q clas-
ses), especially for the Q class.

Here, we show the overall accuracy, Se, and P+ of each
fold classification during the 10-fold cross-validation, as
shown in Figure 6. The average overall accuracy obtained
is 99.43%. In the 9rd fold, the best performance 99.52% can
be achieved. Meanwhile, Se and P+ had the best results of
98.09% and 96.24% and appeared in the 5th and 8th folds.
It can be found that the overall accuracy does not fluctuate
too much during the 10-fold cross-validation. The results
illustrate that the proposed scheme is stable and robust.

4.6. Performance Comparison. In order to evaluate the
effectiveness of the proposed scheme, the performance
comparison between the proposed method and some state-
of-the-art arrhythmia heartbeat classification methods are
listed in Tables 5. For fair comparison, all the compared
methods are based on the MIT-BIH arrhythmia database.
As seen from Table 5, the proposed method which used a
simple 3 layers 1D-CNN network is able to achieve a com-
parable performance with other complex DL methods.

Furthermore, we conducted experiments using the
patient-oriented dataset partitioning method proposed by
de Chazal et al. [35] and obtained an overall accuracy of
96.14% in the DS2 dataset.

4.7. The Lightweight Brought by Reparameterization. To
evaluate the effectiveness of reparameterization on light-
weight, the third-party library thop is utilized. The number
of parameters of the original multibranch CNN is 53989.
After the reparameterization operation, the number of

Table 3: The classification accuracy for each heartbeat class.

N S V F Q Average

Se 99.78% 93.89% 98.51% 84.38% 99.68% 95.78%

Sp 98.34% 99.91% 99.88% 99.94% 99.98% 99.61%

P+ 99.66% 96.31% 98.36% 90.97% 99.71% 96.98%

Acc 99.53% 99.75% 99.77% 99.79% 99.96% 99.77%

Table 4: Confusion matrix for five types of heartbeat classification results.

Predicted label
N S V F Q

True label

N 90352 87 53 36 22

S 142 2610 26 2 0

V 68 10 7122 29 1

F 77 3 45 675 0

Q 24 0 2 0 8014
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parameters decreased to 25301, which is 55.5% less than the
original ones. For the floating-point operations (FLOPs), the
original multibranch CNN is 85780800 and the FLOPs of
the reparameterized multibranch CNN is 63273600, which
is reduced by 26.24%. Combined with the accuracy after
the reparameterization (see Section 4.5), it can be found that
the reparameterization multibranch CNN can greatly reduce
the computational cost without loss much on the inference
results.

5. Conclusion

In this paper, a novel arrhythmia heartbeat classification
scheme is proposed. Multifeature feature fusion-based
method is first taken into account. The SWT subband fea-
ture and RR interval feature work together for improving
the classification accuracy. The newly designed reparameter-
ization multibranch CNN structure achieves a lightweight
network while maintaining high heartbeat classification
accuracy. The proposed scheme is evaluated on the MIT-
BIH arrhythmia database and the average overall accuracy
is 99.43%. Our future work will be focused on solving the

problem of minority heartbeats classes being misclassified
to N class.
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Table 5: Performance comparison with existing DL methods.

Authors # heartbeats # categories Overall accuracy

El Bouny et al. [21] 109428 5 99.11%

Khalil and Adib [22] 45000 6 99.57%

Shoughi et al. [19] 113131 5 98.71%

Yildirim et al. [16] 100022 5 99.23%

Proposed method 109398 5 99.43%
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