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The segmentation of brain tissue by MRI not only contributes to the study of the function and anatomical structure of the brain,
but it also offers a theoretical foundation for the diagnosis and treatment of brain illnesses. When discussing the anatomy of the
brain in a clinical setting, the terms “white matter,” “gray matter,” and “cerebrospinal fluid” are the ones most frequently used
(CSF). However, due to the fact that the human brain is highly complicated in its structure and that there are many different
types of brain tissues, the human brain structure of each individual has its own set of distinctive qualities. Because of these
several circumstances, the process of segmenting brain tissue will be challenging. In this article, several different clustering
algorithms will be discussed, and their performance and effects will be compared to one another. The goal of this comparison
is to determine which algorithm is most suited for segmenting MRI brain tissue. Based on the clustering method, the primary
emphasis of this research is placed on the segmentation approach that is appropriate for medical brain imaging. The
qualitative and quantitative findings of the experiment reveal that the FCM algorithm has more steady performance and better
universality, but it is necessary to include the additional auxiliary conditions in order to achieve more ideal outcomes.

1. Introduction

MRI brain tissue segmentation, as we are all aware, not only
contributes to the study of the function and anatomical
structure of the brain, but it also offers a theoretical founda-
tion for the diagnosis and treatment of brain illnesses [1].
Therefore, the achievement of precise tissue segmentation
using MRI carries with it extremely significant implications
for clinical diagnosis and treatment [2]. Within the context
of medical practice, the segmentation of brain tissue primar-
ily relates to the white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF). However, due to the fact that the
human brain is highly complicated in its structure and that
there are many different types of brain tissues, the human
brain structure of each individual has its own set of distinc-
tive traits [3]. Because of these several circumstances, the

process of segmenting brain tissue will be challenging. As a
result, the development of an outstanding segmentation
algorithm that is appropriate for every MRI brain tissue is
a topic that presents a significant amount of difficulty. While
doing so, it also encourages researchers to work on develop-
ing algorithms for segmenting brain tissue, which has
become a primary focus of research in recent years [4, 5].
In clinical practice, it is frequently required to present a
three-dimensional model of the structure of brain tissue in
order to offer a foundation for the diagnosis and treatment
of a patient. When brain surgery, for instance, is required,
the procedure can be planned and simulated in accordance
with the three-dimensional anatomy of the brain. This
makes it easy for focus to quickly and accurately select the
surgical area. In addition, the goal of visualizing brain tissue
is to finish the job of segmenting it, which is the concept of
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visualization. Therefore, the segmentation of brain tissue has
significant practical significance in the context of medical
diagnostics [6–8].

Research on brain images is extremely vital to the pro-
gression of humankind; among the many key research
paths being pursued, one that has garnered a lot of atten-
tion is the segmentation of brain tissue. It has, from the
beginning, been understood to be a challenging issue to
resolve on account of the intricate make-up of the brain
as well as other aspects. After years of research, various
segmentation algorithms are being applied to medical
photos all around the world, including the United States.
In general, medical image segmentation algorithms can be
broken down into the following categories: threshold-
based segmentation [9–11], edge detection-based segmenta-
tion [12–14], fuzzy-clustering-based segmentation [15],
level-set-based segmentation [16, 17], and region-growth-
based segmentation [18]. Each of these categories is named
after a different method of segmentation.

A method known as threshold-based segmentation is a
technique that can divide an image into its component parts.
Its segmentation principle splits the pixels in the image into
various categories one at a time based on one or more
thresholds, and the value of the threshold is decided based
on the gray level [8, 10]. The fundamental objective of image
binarization is to segment those regions of the image that
have areas of the same gray level. This is done so that each
area of the same gray level can be assigned to a distinct
category in the source image. All of the pixels in one partic-
ular gray-level region share the same attribute qualities, but
the pixels in other gray-range regions do not have this
property [12].

Only the grayscale information contained inside the
image is utilized in the threshold-based segmentation
method, which results in the algorithm having a relatively
low sensitivity to background noise. Because of this, the seg-
mentation result produced by the threshold segmentation
approach will be quite unsatisfactory whenever the gray
values of the regions that are to be segregated are compara-
ble to one another. There are many different types of brain
tissues visible in medical pictures of the human brain.
Because of the complicated nature of the characteristic
intensity distribution in the photos, it will be quite challeng-
ing to choose a suitable threshold value. If you solely utilize
the threshold segmentation approach, it will be tough to
obtain the desired impact of segmentation because of the
intricacy. As a result of this, academics frequently mix
threshold-based algorithms with other methods in order to
successfully accomplish the task of medical image segmenta-
tion. In their study [14], Sandeep and colleagues suggested a
sparse feature threshold that was based on compressed sens-
ing, and they utilized it to segment gray matter and white
matter in MRI images of the brain. It begins by training a
sparse dictionary that is appropriate for the corresponding
image, then employs compressed sensing technology to
extract the sparse features of the image patch that corre-
spond to the pixel point, and finally applies the sparse pro-
jection threshold to the image in order to segment it and
obtain a variety of binary images.

The edge-detection-based segmentation approach first
extracts the pixels that mark the boundaries of the various
image sections and then links each of the collected pixels
individually. The segmented region has a boundary that is
represented by the connection line. The performance of this
approach is satisfactory for evident areas that have a
straightforward background. However, when confronted
with images that are rich in features and have uneven bright-
ness, such as MRI scans of the human brain, the edge detec-
tion approach finds it challenging to entirely detect the edge
pixels of the object area. As a result, it is unable to accom-
plish reliable object segmentation. When doing region seg-
mentation, particularly when employing hard-means to
separate pixels, this will almost always result in the image
being oversegmented [16]. Some researchers have suggested
using fuzzy clustering methods as a solution to these kinds of
issues. The fuzziness of classification is described by fuzzy c-
means clustering through the application of membership
function, which may more accurately and scientifically char-
acterize the pixels in the image that are located in the inter-
section area of two different categories. The fuzzy c-means
clustering method is extremely sensitive to noise; hence, it
is particularly well suited for the segmentation of images
with low levels of noise. Additionally, the training speed
may be very slow when it is employed in clustering situa-
tions that include a big quantity of data; the selection of
the initial center point has a significant impact on the
amount of work that is required. The quantity of calcula-
tions will dramatically increase when there is a little bigger
variation between the initial center point and the ground-
truth center point. In addition, with this method of cluster-
ing, it is impossible to avoid falling into a situation where a
local optimum has been reached. Kandan and Murugeswari
[18] devised a novel approach to complete the segmentation
of medical MRL brain pictures. This algorithm is based on
the FCM algorithm, which was designed to improve the
aforementioned difficulties. The genetic algorithm and the
particle swarm optimization method are utilized in order
to locate the initial center point that is optimal for the situ-
ation. In addition, the FCM algorithm is particularly vulner-
able to noise due to the fact that it only analyzes the gray
value between pixels. However, the new approach recon-
structs and optimizes the objective function, which makes
it acceptable for noisy MRI brain pictures. The fundamental
concept behind the level-set approach is to employ the
development of three-dimensional surfaces to symbolize
the development process of two-dimensional curves. This
is done by using a level set. In the realm of computer vision,
the level set approach has the potential to produce satisfac-
tory results when applied to picture segmentation. An
improved spatial fuzzy clustering level set segmentation
algorithm was proposed by Yuan and Yu [19] for MRI brain
tissue segmentation. The Neumann boundary condition of
the third function of level set evolution is combined with this
method, and then, that boundary condition is used to obtain
the directional derivative of the normal of the specified func-
tion on any surface.

The fundamental concept behind the level set technique
is to model the development of two-dimensional curves by
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simulating the growth of three-dimensional surfaces [20].
The level-set method, which is used in the field of computer
vision, is capable of producing high-quality results when
segmenting images. An enhanced version of the spatial
fuzzy-clustering level-set technique was proposed by Parker
and Feng [21] for the purpose of MRI brain tissue segmen-
tation. To calculate the directional derivative of the normal
of the supplied function on any surface, this method com-
bines the Neumann boundary condition with the third func-
tion of level-set evolution. Start from a specific pixel or a
small region as the starting point for the region-growth
method. Merge the pixels or regions near it that have char-
acteristics that are similar to the growth point in order to
form a new growth point. Then, repeat the growth process
until the growth conditions are no longer satisfied. An algo-
rithm that segments MRI brain tissue in phases and is based
on the expansion of regions was proposed by Kuo et al. [22].
However, the segmentation effect of scattered cerebrospinal
fluid is not very good.

In recent years, academics from all around the world
have come up with a variety of segmentation algorithms.
Because of this, the MRI brain tissue segmentation program
allows for the selection of a large number of different seg-
mentation techniques. Every approach has perks and draw-
backs of its own, and the circumstances in which they are
most useful are rarely the same [23, 24]. According to the
preceding analysis, the clustering-based segmentation algo-
rithm achieves better results when applied to the process of
brain tissue segmentation. However, the clustering-based
algorithms also include K-means clustering, fuzzy c-means
clustering, maximum entropy clustering, Gaussian mixture
model, mean-shift, and agglomerative cluster. The effective-
ness of each of these algorithms for clustering data likewise
varies to varying degrees. In order to determine which
clustering algorithm is the most effective for MRI brain tis-
sue segmentation, this article will first examine a number
of different clustering algorithms and then compare the per-
formance and impacts of these various methods. The seg-
mentation algorithm that is suited for medical brain
imaging is the primary emphasis of this research. The clus-
tering approach is also discussed briefly.

The remaining parts of the paper are structured as
described below. In Section 2, we will discuss the works that
are linked. The typical algorithms for grouping textures are
discussed in Section 3, including the mean-shift algorithm
and the fuzzy c-means algorithm. In Section 4, we conduct
an analysis of the simulation model as well as the outcomes
of the comparison. In the end, we bring our work to a close
and then move on to Section 5, where we address future
work.

2. Related Works

2.1. Difficulty of MRI Brain Tissue Segmentation. Imaging of
the human brain makes extensive use of magnetic resonance
imaging (MRI), which, as we all know, offers several benefits,
including strong contrast in soft tissues, the absence of radi-
ation damage, and widespread use. The segmentation of
brain tissue by MRI not only contributes to the study of

the function and anatomical structure of the brain, but it
also offers a theoretical foundation for the diagnosis and
treatment of brain illnesses [25]. Because of this, the achieve-
ment of correct tissue segmentation with MRI has a very
significant impact on clinical diagnosis and therapy. Gray
matter (GM), white matter (WM), cerebrospinal fluid
(CSF), muscle, bones, and other important brain structures
can be seen in clinical MRI brain images, as depicted in
Figure 1. However, due to the fact that the human brain is
highly complicated in its structure and that there are many
different types of brain tissues, the human brain structure
of each individual has its own set of distinctive qualities.
Because of these several circumstances, the process of seg-
menting brain tissue will be challenging. As a result, the
development of an outstanding segmentation algorithm that
is appropriate for every MRI brain tissue is a topic that pre-
sents a significant amount of difficulty. While doing so, it
also encourages the research of brain tissue segmentation
algorithms and has become a center of attention for research
at the present time. In clinical practice, it is frequently
required to present a three-dimensional model of the struc-
ture of brain tissue in order to offer a foundation for the
diagnosis and treatment of a patient. For instance, if brain
surgery is required, the procedure can be planned and simu-
lated in accordance with the three-dimensional anatomy of
the brain. This makes it easy for the focus to rapidly and
properly determine the place of the surgery [26–28]. In addi-
tion, the goal of visualizing brain tissue is to finish the job of
segmenting it, which is the concept of visualization. As a
result, the process of segmenting brain tissue has significant
use in the field of medical diagnosis.

The human brain is made up of several different tissues,
each of which has a unique structure, as well as a different
form and dimension. In the human brain, the boundary
shape of white matter, gray matter, and CSF is complicated
and alternatively distributed; also, the topological organiza-
tion is complex [27]. Additionally, the distinctions between
tissues in MRI images of the human brain are particularly
visible in the disparities of gray information. In general,
the gray information that is shared between various tissues
has significant variances, whereas the gray information that
is shared between the same tissues is identical [28]. How-
ever, in greater detail, due to the inherent signal changes in
the imaging process, the same tissue will also display vari-
ances in the gray information. This results in the overlap-
ping of the gray information of various tissues, which
makes tissue segmentation more challenging. In Figure 2,
the area shown in red and blue has been enlarged. It is clear
that areas that fall under the same category have a compli-
cated distribution of gray, and that some patches share the
same gray scale and characteristics. When a straightforward
threshold method is applied, it is challenging to partition the
comprehensive tissue data.

In magnetic resonance scans of the brain, a variety of
tissues can be seen, including fat, skull, and muscle. The
gray information of these tissues is highly similar to the
gray information of the gray matter, white matter, and
cerebrospinal fluid (CSF) in the brain, which makes it more
difficult to precisely segment the different types of tissue in
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the brain. Therefore, prior to segmenting brain tissue, it is
required to exclude the tissues that do not belong to the
brain in order to assure the correctness of the segmenta-
tion. This is done so that the segmentation will be accurate.
The elimination of nonbrain tissue, on the other hand, is a
challenging procedure, which makes the segmentation of
brain tissue much more difficult. The uniformity of each
tissue and the continuity of the boundary are destroyed,
which leads to an unsatisfactory segmentation effect and a
reduction in segmentation accuracy. Additionally, the dis-
tribution of gray information changes as a result of the
influence of electrical noise, which appears as salt-and-
pepper noise or Gaussian noise. Based on the study shown
above, it is clear that successfully segmenting human brain

MRI images is a challenging task. As a result, the question
of how to accurately segment human brain MR images
remains a contentious and challenging one in the field of
medical image processing.

2.2. Clustering Analysis. Within the realm of artificial
intelligence, the clustering algorithm is an essential com-
ponent of the unsupervised learning methodology. It is
an efficient method for analyzing data, extracting useful
information from data, and classifying data. In addition,
clustering analysis technology can divide individuals with
similarity into the same cluster/subset by calculating the
similarity between samples in the dataset. This is accom-
plished by calculating the correlation between the samples

(a) (b)

(c) (d)

(e)

Figure 1: Tissue segmentation of human brain. (a) Raw image; (b) segmentation result; (c) white matter; (d) gray matter; (e) CSF.
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in the dataset. In this context, each subset is referred to as
a cluster, and inside each cluster, there is exactly one
cluster center.

Clustering algorithms can be loosely broken down into
two distinct categories: those that work at the pixel level
and those that work at the feature level. The first category
includes hierarchical clustering, partitioned clustering (K-
means and FCM), and density-based partitioning (GMM);
feature-level clustering has become a popular research direc-
tion in recent years; the second category includes constraint-
based partitioning, fuzzy-based partitioning, granularity-
based partitioning (mean-shift), kernel clustering, and spec-
trum clustering; all of these are illustrated in Figure 3. In
recent years, the majority of the algorithms that are used
for the segmentation of brain tissue are based on K-means
clustering, fuzzy c-means clustering, maximum entropy
clustering, Gaussian mixture model, mean-shift, and hierar-
chical cluster. K-means clustering is an acronym for “Kernel
means clustering.” Rarely are corresponding investigations
carried out on the performance of all clustering methods
on the same data set in order to determine the adaptability
of the algorithms. In the following part, we will go over the
typical algorithms in further detail.

3. Typical Clustering Algorithm

Recently, scholars at home and abroad have proposed many
clustering-based segmentation algorithms. Therefore, a wide
variety of segmentation techniques can be selected in the
application of MRI brain tissue segmentation. Each cluster-
ing algorithm has its advantages and disadvantages, and
the practical situations are also different, where mean-shift
and fuzzy c-means clustering are representative algorithms.
We will introduce these two algorithms for clustering in
detail.

3.1. Fuzzy c-Means Clustering. The fuzzy c-means algorithm
(FCM) is the most widely used clustering approach in the
field of picture segmentation. The FCM algorithm is a

method for the clustering of data that is based on the optimi-
zation of an objective function. A numerical value is used to
indicate the degree of membership that each sample has in
the clustering center. It is permissible for a sample to have
the same numerical value and still belong to numerous
distinct classes. The FCM algorithm is a method of unsuper-
vised clustering that does not take into account the influence
of human factors. As a result, the investigation into the divi-
sion of brain tissues is extremely significant. It uses an itera-
tive method to constantly update the cluster center and
constantly optimize the objective function, which causes
the objective function to reach the least value and classifies
the pixels using the maximum membership criterion. This
is the fundamental concept behind it. The following is a tex-
tual representation of the objective function of the FCM
algorithm:

J = 〠
c

k=1
〠
N

j=1
μmkj xj − vk

�
�

�
�
2
2, ð1Þ

where N is the number of pixels in the image; xj is the j-th
pixel point; c is the preset number of clusters; vk is the k-th
cluster center; m is the fuzz factor; ukj is the membership
degree of the j-th sample point the k-th cluster. For any pixel
j and its class k, there are the following constraints:

〠
c

k=1
ukj = 1, 0 ≤ ukj ≤ 1: ð2Þ

Generally speaking, the Lagrange multiplier method is
used to solve the above formula (Equation (1)) with con-
straints, and the formulas for updating the membership
degree and cluster center are given as follows:

μkj =
1

∑c
k=1 xj − vk

�
�

�
�
2/ xj − vl
�
�

�
�

� �1/m−1 , ð3Þ

Red area

Blue area

Figure 2: Grayscale difference among different tissues.
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Figure 3: Classification diagram of clustering algorithm.

Figure 4: Comparison of clustering results of different algorithms for Figure 1.

Figure 5: Comparison of clustering results of different algorithms for Figure 8.
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kjxj
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kj

, ð4Þ

where ukj is the membership degree of the j-th sample point
the k-th cluster and vk is the cluster center. Through the
above two equations, the membership of the cluster center
v and the pixel point x is repeatedly updated, and finally,
the segmentation result can be completed and achieved
when the objective function reaches the convergence crite-
rion. Generally, whether the objective function reaches the
minimum value can be judged by the difference between
the objective functions in the two iterations being less than
the error threshold value, but it is easy to fall into the local
optimal solution. Therefore, the fuzzy c-means algorithm
usually takes the maximum change value of the pixel mem-
bership or the maximum change value of the cluster center
as the condition of the end of the iteration.

The algorithm steps are given as follows:

(1) Set the number of cluster centers c

(2) Randomly initialize the cluster center vi

(3) Use the corrected cluster center matrix to update the
membership matrix

(4) Utilize the corrected membership degree matrix to
update the cluster center matrix

The preceding analysis demonstrates that, similar to the
K-means algorithm, the number of cluster centers for the
FCM algorithm needs to be given in advance; however, the
number of clusters in an MRI image is typically unknown
in practical applications. This can be seen from the fact that
the above analysis was performed. The clustering effect will
be greatly reduced when the initial value or preset value is
not equal to the ground-truth value. Secondly, according to
Equations (3) and (4), it can be seen that the FCM algorithm
is an iterative operation on basis of gradient descent, so it is
also very sensitive to the initial value. This is because the
FCM algorithm is based on the principle of gradient descent.
In addition, random initialization makes it quite simple to
get stuck in a cycle of local optimization, which in turn
results in a reduction in the estimation accuracy of the final
segmentation results.

The FCM algorithm is more reliable than the K-means
algorithm because it includes a fuzziness factor when
describing each data sample. K-means does not include this
component. The accuracy of the FCM algorithm will be
higher than that of the K-means algorithm when applied
to the brain tissue clustering; however, due to the introduc-
tion of membership factor, the objective function is more
complex, so the complexity of the FCM algorithm is higher
than that of the K-means algorithm. For the clustering of
each sample, it will be more accurate than the traditional
K-means hard clustering. When applied to the brain tissue
clustering, the segmentation speed can be slower than that
of the K-means algorithm.

3.2. Mean-Shift Clustering. Mean-shift is a kind of density
clustering algorithms, which belongs to a specific theory
for image segmentation when used as a segmentation
method. Since mean-shift uses the density gradient method
to estimate the parameters of distribution and uses the ker-
nel function to weight the samples in mean-shift clustering.
When allocating weights to the samples in each bandwidth,
the contribution of the offset to the mean-shift vector varies
with the distance between the samples and the offset. Mean-
shift assumes that the datasets of different clusters conform
to or obey other probability density distributions. By finding
the densest direction in the sample set and constantly shift-
ing to the maximum density, it is considered that the point
converging to the same maximum in the iterative process
is a member of the same cluster as the sample converges to
the local density maximum.

Given n sample points in dd-dimensional space Rd , the
mean-shift vector at the point xi can be denoted as

Mh xð Þ = 1
k
〠
xi∈Sh

xi − xð Þ, ð5Þ

where MhðxÞ is the mean-shift vector, Sh is a high-
dimensional sphere with a radius h, xi represents the sample
points in the high-dimensional sphere region, and x repre-
sents the initial clustering center point; kmeans that k points
fall into the region Sh among the n sample points; Equation
(5) is to calculate the average value of the sample weight in
the high-dimensional ball, where xi close to point x should
have a higher weight. Introducing the kernel function and
ωðxiÞ to weight the samples in mean-shift, the mean-shift
clustering is extended to the following form:

Mh xð Þ = ∑n
i=1G xi − xð Þ/hð Þω xið Þ xi − xð Þ
∑n

i=1G xi − xð Þ/hð Þω xið Þ , ð6Þ

where ωðxiÞ > 0 is a weight assigned to sample point x,
GðxÞ is the unit kernel function, and GðxÞ = kxk2 is the
bandwidth of the kernel function. Gaussian kernel function
is often used in brain tissue segmentation.

If the weight ωðxiÞ is not considered in Equation (6), the
mean-shift vector between the cluster center and the sample
xi in the bandwidth can be rewritten as follows:

Mh xð Þ = ∑n
i=1G xi − xð Þ/hð Þxi

∑n
i=1G xi − xð Þ/hð Þ‐x : ð7Þ

Let mhðxÞ =∑n
i=1Gððxi − xÞ/hÞxi/∑n

i=1Gððxi − xÞ/hÞ, and
Equation (4) can be rewritten as follows:

mh xð Þ =Mh xð Þ + x ð8Þ

mhðxÞ is the new cluster center after x plus MhðxÞ. In MRI
brain tissue segmentation, the gray values of the same cluster
are selected, and then, the regions less than M pixels are
merged. The final segmentation result is obtained through
iterative optimization. The essence of mean-shift is to solve
the local maximum of probability density, where the mean-

7Computational and Mathematical Methods in Medicine



shift vector makes the object point always move to the max-
imum point of probability density. Therefore, a region near
the object point is often selected for greedy iteration, gradu-
ally converging the maximum probability density.

4. Experiment Results and Analysis

This paper selects ten brain images from a simulated brain
database, which contains a set of realistic MRI data volumes
produced by an MRI simulator and can be downloaded from
https://brainweb.bic.mni.mcgill.ca/. The purpose of this
selection is to make it easier to compare the results of differ-

ent experiments. To begin, six standard clustering tech-
niques are picked to segment MRI brain pictures. Next,
two evaluation indexes are chosen to compare the perfor-
mance of these comparison algorithms. Finally, the results
of this comparison are presented. In the final step, the qual-
itative and quantitative outcomes produced by the various
algorithms are compared and examined.

4.1. Comparison Algorithm Selection. In recent years,
academics from all around the world have come up with a
variety of segmentation algorithms. Methods that are parti-
tion-based, density-based, grid-based, and constraint-based

(a) (b) (c)

(d) (e)

Figure 6: Clustering results of K-means algorithm for different tissues. (a) Clustering results; (b) CSF; (c) GM; (d) WM; (e) other tissue.
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are the broad categories that can be used to classify the clus-
tering algorithms. The clustering algorithm is being used
more frequently, and as a result, it is putting forward stron-
ger requirements for itself. This is because research is
becoming more in-depth, and the morphology of data is
becoming more diverse. In order to cluster brain tissue, these
algorithms make use of a variety of different clustering prin-

ciples and procedures; yet, the results that they produce are
satisfactory.

As a consequence of this, the application of MRI brain
tissue segmentation allows for the selection of a wide variety
of different segmentation approaches. Each approach has a
unique set of benefits and drawbacks, and the circumstances
in which they are most useful are never the same. However,

(a) (b) (c)

(d) (e)

Figure 7: Clustering results of FCM algorithm for different tissues. (a) Clustering results; (b) CSF; (c) GM; (d) WM; (e) other tissue.

9Computational and Mathematical Methods in Medicine



clustering-based segmentation algorithms encompass a wide
variety of subcategories, despite the fact that their perfor-
mance is superior in brain tissue segmentation. The effec-
tiveness of each of these techniques for clustering likewise
varies to varying degrees. As a result, we chose six different
clustering techniques to compare and contrast: the K-
means clustering algorithm, the fuzzy c-means algorithm,
the Gaussian mixture model, the mean-shift algorithm, the

fuzzy subspace clustering strategy, and the maximum
entropy clustering algorithm. To determine which MRI
brain tissue segmentation method is superior in the long
run, each algorithm’s effectiveness in clustering brain tissue
and its effect on segmentation are evaluated independently.

4.2. Parameter Setting and Development Platform. In the
field of medical image processing, image segmentation is

(a) (b) (c)

(d) (e)

Figure 8: Clustering results of MEC algorithm for different tissues. (a) Clustering results; (b) CSF; (c) GM; (d) WM; (e) other tissue.
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the process of dividing a picture into many mutually distinct
sections based on the anatomy structure. This approach
makes use of the fundamental characteristics of the image,
such as gray scale and texture. In a perfect world, the out-
comes of the segmentation would be such that each region
would be able to take into account both the similarity of
pixels between regions as well as the homogeneity of pixels
within its own region. The segmentation of brain tissue
MRIs is the primary focus of this particular piece of research.
There are four distinct types of brain tissue, which are
referred to as white matter, gray matter, cerebrospinal fluid,
and other tissues. For this reason, the number of clusters in
all comparison algorithms is always set to 4.

On the other hand, the initial clustering center of the
clustering algorithm is generated in a random manner, and
these initial values may contain nondense points or abnor-
mal points. This results in the clustering algorithm falling
into the local extremum, which in turn lowers the segmenta-
tion accuracy. In addition, the initial value may be rather
removed from the actual center of clustering, which results
in an increase in the number of iterations required for clus-
tering and a decrease in the algorithm’s effectiveness. In
order to make comparative analysis easier, this study uses
the source code to evaluate the six traditional comparison
techniques that were chosen for inclusion in it. Additionally,
all of the parameters are set to their default settings, and the
initial values are determined using random number seeds.
Normalized Mutual Information (NMI) and Rand Index
(RI) are adopted to analyze the performance of comparison
algorithm, where all quantitative results are the average of
five experiments in order to reasonably and fairly evaluate
the clustering performance of each clustering algorithm.
This is done in order to reasonably and fairly evaluate the
clustering performance of each clustering algorithm. These
two indicators have a value range of [0, 1], and the general
rule of thumb is that a greater number indicates a higher
level of clustering performance.

These cluster methods are implemented in MATLAB on
Windows 10 with a 64-bit system, and the hardware plat-
form is on a Windows PC equipped with Intel(R) Cor-
e(TM)i5-1135G7 CPU@2.50GH and 4G RAM.

4.3. Qualitative Analysis of Different Algorithms. Ten brain
MRI samples are chosen at random from the BrainWeb
database in order to test the full segmentation performance
of various clustering techniques. Because of the confines of
the available area, we will only be analyzing a select few
examples of typical image segmentation findings. For the
MRI brain tissue to preserve its precise information, the
clustering technique is required. This is due to the compli-
cated structure of the tissue. Therefore, in order to conduct
a comparative analysis of various algorithms, the research
applies the clustering algorithms that were selected to the
segmentation of MRI brain tissue. The results of the segmen-
tation performed by the various algorithms are displayed in
Figures 4 and 5.

In human brain magnetic resonance scans, there are
many structural tissues that do not belong to the brain, such
as fat, the skull, muscle, and other tissues. Because the gray

information of these tissues and the gray information of par-
ticular brain structures are so highly comparable to one
another, proper segmentation of brain tissues is made more
difficult as a result. Therefore, when segmenting brain tissue,
it is required to exclude the tissues that do not belong to the
brain in order to assure the correctness of the segmentation.
This is done to ensure the correctness of the segmentation.
Nevertheless, the procedure of removing tissue that is not
part of the brain is challenging and complicated. In this
study, the nonbrain tissues have been grouped together
under the same category or cluster. Figures 4 and 5 show
the segmentation results, which show that the segmentation
results of the K-means clustering algorithm have a lot of
noise, the segmentation results of the FCM algorithm con-
tain a small amount of noise in white matter and cerebrospi-
nal fluid, and the segmentation results of the hierarchical
cluster algorithm remove the noise, but the cerebrospinal
fluid in the brain sulcus is also smoothed out. These results
can be seen by looking at the segmentation. On the other
hand, the results of the mean-shift algorithm’s segmentation
are the most accurate of all of them. Despite the fact that
Figures 4 and 5 demonstrate the results of segmentation
using different methods, they are unable to portray the
results of distinct tissues in a way that is intuitive. As a result,
the experiment provides evidence of the segmentation out-
comes of several categories. The benchmark of several differ-
ent types of tissues in the selected image is shown in the first
row of Figures 6–11. The remaining rows of the figure con-
tain the clustering results corresponding to K-means cluster-
ing, fuzzy c-means clustering, maximum entropy clustering,
Gaussian mixture model, mean-shift, and hierarchical clus-
ter, making it easy to compare the clustering results pro-
duced by various algorithms. The K-means clustering
technique is discovered to have flaws when they are com-
pared to other algorithms, and the results of the clustering
are found to be largely one-sided, meaning that they can
only segment a portion of the region.

A comprehensive white-matter region cannot be
obtained using maximum entropy clustering. Both the hier-
archical cluster method and the Gaussian mixture model
algorithm are capable of obtaining a white-matter region
that is relatively comprehensive; however, the boundary part
of the gray-matter region does not appear to be particularly
obvious. When compared to previous techniques, the white-
matter region generated by the fuzzy c-means clustering
approach is both more complete and more transparent.

It has been demonstrated through observation that it is
challenging for each comparison method to achieve a decent
segmentation effect for MRI brain pictures that contain four
clusters. The white-matter region of some clustering
methods has a significant number of incorrectly categorized
pixels, which not only has a negative impact on the region’s
overall integrity but also produces an unsatisfactory aesthetic
effect. The FCM algorithm increases the impact of the
cerebrospinal fluid (CSF) when compared to the K-means
algorithm; nonetheless, there are still some scattered
misclassifications, and the outcome needs further develop-
ment. Visually, the FCM method achieves the best segmen-
tation effect; nevertheless, for some photos, the mean-shift
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approach achieves the best results. All of the results from the
MRI segmentation have the consistency of homogeneous
regions, and they do a better job of preserving the border
information. There are no obviously incorrect pixels in any
of these findings.

It is clear from the results of the segmentation that FCM
has high robustness and obtains more accurate segmentation
results. While the K-means algorithm is able to segment

white matter, the results of segmenting gray-matter regions
are substantially worse. In contrast, the FCM is significantly
larger than the other approaches, and it produces more
accurate segmentation results. When compared to the other
cluster algorithms shown in Figures 6–11, the FCM has the
highest segmentation performance thanks to its superior
accuracy when it comes to the segmentation of various
MRI brain pictures. When calculating the pixel similarity,

(a) (b) (c)

(d) (e)

Figure 9: Clustering results of GMM algorithm for different tissues. (a) Clustering results; (b) CSF; (c) GM; (d) WM; (e) other tissue.
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all traditional clustering algorithms only take into account
the gray information of the image. This results in severe
interference from noise and uneven gray in the process of
segmentation, which is something that should be brought
to your attention. The precision of the segmentation is not
very great, and the details of the edge of the tissue that has
been segmented are not very visible. On the other hand, it
is necessary for each algorithm for clustering to do an initial-

ization of the clustering center beforehand. The initial clus-
tering center, for instance, is generated in a haphazard
manner by the traditional FCM algorithm. When the initial-
ization is poor, it is difficult for the algorithm to converge
rapidly, it takes a long time to run, and it even leads to the
algorithm easily falling into the local optimal point, which
impacts the clustering accuracy. All of these problems arise
because of the poor initialization. It is important to note that

(a) (b) (c)

(d) (e)

Figure 10: Clustering results of mean-shift algorithm for different tissues. (a) Clustering results; (b) CSF; (c) GM; (d) WM; (e) other tissue.
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the equivalent class in Figures 6(c), 7(e), 8(e), 9(e), 10(b),
and 11(d) does not have any detailed information. This sug-
gests that the clustering technique does not segment the item
in these classes. As an illustration, the K-means algorithm
does not divide the area denoted by “gray matter” in
Figure 6.

As can be seen from Figures 6–11, since the FCM algo-
rithm only uses grayscale information to calculate the simi-
larity between pixels, there are still many misclassification
points in the segmentation result, and the tissue boundary
is not clear. The optimal initial clustering center of the max-
imum entropy clustering algorithm reduces the noise points
compared with the FCM algorithm, but the segmentation
result is still poor. Although the image segmented by the
Gaussian mixture model algorithm has fewer noise points,
the edge details of each tissue are incomplete. For example,
when segmenting gray matter, the background details are
wrongly segmented, and the segmentation effect is not good.
The tissue images obtained by these algorithms are different
from the benchmark images. The edge details are not very

complete, and the segmentation effect is not perfect. How-
ever, it is undeniable that these traditional clustering algo-
rithms do not require pretraining, have little computation,
and are easy to deploy in the brain tissue application.

4.4. Quantitative Analysis of Different Algorithms. From the
segmentation result, it can be seen that the FCM algorithm
has less noise points in the segmented image, and the edges
of the segmentation image are clearer. The performance of
the algorithm is better, and the reliability is higher. Table 1
shows the quantitative results of different algorithms. It
can be seen that the FCM algorithm has higher segmenta-
tion accuracy than the comparison algorithm.

The FCM algorithm for the segmentation of cerebrospi-
nal fluid has relatively high NMI and RI indexes, but the
average index is quite low. RI-mean of FCM is 0.89931,
while that of mean-shift is 0.90666. To put it another way,
the RI-mean of the FCM is not the ideal option because
the mean-shift algorithm has a high segmentation index
for the white matter of some images. It can be seen from

(a) (b) (c)

(d) (e)

Figure 11: Clustering results of HC algorithm for different tissues. (a) Clustering results; (b) CSF; (c) GM; (d) WM; (e) other tissue.
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the assessment indicators in Table 1 that FCM is optimized
in terms of segmentation accuracy compared with the prior
algorithms, and the final average segmentation accuracy is
0.73121 and 0.89931, respectively. Compared with the K-
means, MEC, GMM, HC, and mean-shift algorithms, the
NMI index of FCM algorithm is increased by 1.86 percent,
2.07 percent, 1.83 percent, 1.13 percent, and 0 69 percent,
and RI index rose by 1.66 percent, 1.69 percent, 1.44 percent,
0.46 percent, and 1.26 percent. On some images, the mean-
shift algorithm produces the best results, while the FCM
clustering algorithm produces the best results on other
images. Mean-shift does not need to manually set the num-
ber of clusters; hence, the segmentation effect on some
photos is significantly better than other techniques.

In general, the FCMmethod is better than these compar-
ison algorithms, which enhances the performance of K-
means algorithm on the whole. FCM algorithm has better
consistent performance and higher universality. It can better
segment brain images and effectively resist some interfer-
ence, which has higher performance when segmenting
images with complex backdrops.

5. Conclusions

As a result of the high level of complexity that the human
brain possesses as well as the wide variety of different types

of brain tissues, the physical composition of the human
brain differs from person to person. Because of these several
circumstances, the process of segmenting brain tissue will be
challenging. In this article, several different clustering algo-
rithms will be discussed, and their performance and effects
will be compared to one another. The goal of this compari-
son is to determine which algorithm is most suited for seg-
menting MRI brain tissue. The segmentation algorithm
that is suited for medical brain imaging is the primary
emphasis of this research. The clustering approach is also
discussed briefly. The qualitative and quantitative findings
of the experiment reveal that the FCM algorithm has more
steady performance and higher universality, but the addition
of the auxiliary conditions is necessary in order to produce
outcomes that are closer to being perfect.

In the future, we are going to conduct additional
research into the efficacy of deep learning networks in the
segmentation of brain tissue, compare and contrast it with
the performance of traditional algorithms, and investigate
the degree to which traditional algorithms and intelligent
algorithms are adaptable.

Data Availability

The dataset used to support the findings of this study are
available from the corresponding author upon request.

Table 1: Quantitative results of different algorithms.

Images Indexes
Clustering models

K-means FCM MEC GMM HC Mean-shift

1
RI 0.8899 0.8914 0.8898 0.8855 0.8569 0.8976

NMI 0.7131 0.715 0.7135 0.7059 0.6421 0.7289

2
RI 0.8889 0.8911 0.8878 0.8851 0.8834 0.8947

NMI 0.7107 0.7147 0.7091 0.7049 0.6944 0.691

3
RI 0.8915 0.894 0.8915 0.8873 0.878 0.9023

NMI 0.7163 0.7202 0.7162 0.7099 0.6993 0.7108

4
RI 0.896 0.898 0.896 0.8917 0.8783 0.9062

NMI 0.7262 0.7292 0.7262 0.7188 0.6792 0.7228

5
RI 0.8983 0.9007 0.8984 0.896 0.9003 0.9143

NMI 0.731 0.7355 0.731 0.7283 0.7133 0.7373

6
RI 0.9012 0.9026 0.9012 0.8971 0.896 0.9039

NMI 0.7371 0.7399 0.7371 0.7307 0.7184 0.7412

7
RI 0.9005 0.9017 0.9005 0.8951 0.8992 0.9071

NMI 0.732 0.7339 0.732 0.7238 0.7062 0.7446

8
RI 0.902 0.9031 0.902 0.895 0.8923 0.9148

NMI 0.7362 0.7375 0.7362 0.7234 0.7125 0.7061

9
RI 0.9028 0.9052 0.9028 0.8964 0.901 0.9137

NMI 0.7391 0.7423 0.7391 0.7291 0.7342 0.7369

10
RI 0.9039 0.9053 0.9039 0.8959 0.8931 0.912

NMI 0.7418 0.7439 0.7418 0.7288 0.7245 0.7569

Average

RI-mean 0.8975 0.89931 0.89739 0.89251 0.88785 0.90666

RI-std 0.005316 0.005131 0.005516 0.004524 0.0131775 0.00674436

NMI-mean 0.72835 0.73121 0.72822 0.72036 0.70241 0.72765

NMI-std 0.010719 0.010418 0.010946 0.009479 0.024977688 0.01903099
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