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The insulated gate bipolar transistor (IGBT) is widely utilized in the transportation, power, and energy domains because of its high
input impedance and minimal on-voltage drop. IGBTs are frequently used in industrial applications for lengthy periods of time,
collecting fatigue damage and eventually aging and failing, which can result in system shutdown and financial losses in severe
circumstances. As a result, a study into the IGBT’s reliability is extremely important. Fault prediction technology, which is an
important aspect of reliability research, may analyze device state through changes in terminal parameters, anticipate aging
trends, and issue early warnings at thresholds to avoid significant safety issues caused by IGBT aging failures. Therefore, the
appropriate end parameters are selected as aging characteristic parameters, and fault prediction is performed. Therefore, this
paper has carried out research on the IGBT fault prediction technology that integrates the terminal characteristics and artificial
intelligence neural network. The main research contents include the following: (1) this paper starts from the basic principle of
IGBT and the structure of its device and analyzes its failure mode on the failure of IGBT. The characteristic parameter of
collector-emitter turn-off peak voltage value is selected for IGBT fault prediction, and the aging data of NASA PCoE Research
Center is used to verify that the characteristic parameter can be used for fault prediction. (2) In view of the shortcomings of
traditional fault forecasting methods, this paper proposes to use deep learning time series forecasting methods for fault
forecasting. The LSTM is theoretically analyzed, and the prediction network is built. The experimental results show that the
LSTM network model can improve the accuracy of IGBT fault prediction, with fewer parameters and higher prediction efficiency.

1. Introduction

As the most important component in a power electronic sys-
tem, IGBT is the first-choice module for power semiconduc-
tor devices. IGBT was invented in 1982. Although it is a very
new type of power semiconductor device, it is still develop-
ing and improving. From the point of view of power con-
sumption, when the rated current of the IGBT is 75A and
the rated voltage is 600V, the rated power of the first gener-
ation IGBT is 100 watts, and now, it is less than 30 watts. At
present, the maximum collector current of the IGBT has
been more than 3500A [1]. From the point of view of the
manufacturing process, the current IGBT process is already
less than 1 micron. At the same time, the gate trenching

technology is adopted in the fourth-generation products,
and the size of the chip is also reduced by 80% compared
with the previous generation [2]. With the continuous
improvement and optimization of the performance and vol-
ume of IGBTs, it is reasonable to seize most of the power
electronic equipment market. Its superior performance and
low power consumption are powerful tools to promote the
development of the new energy era. At present, the applica-
tion prospect is very broad, and it is an indispensable part of
many fields such as rail transit, household appliances, infra-
structure, and new energy vehicles. For example, in the
“heart” of the train, the traction converter uses IGBT mod-
ules [3]. The above are all civil fields. For other fields such
as aerospace equipment, IGBT also plays a key role. It can

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 7459354, 10 pages
https://doi.org/10.1155/2022/7459354

https://orcid.org/0000-0001-9603-0412
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7459354


be said that the status of IGBTs for power electronic systems
is not lower than that of CPUs for computer systems. IGBT
modules, on the other hand, have a very high internal resis-
tance under high pressure or high temperature, are prone to
high conduction loss, and are not very resistant to high
impact force, so they are used in harsh production environ-
ments, or after long-term use, they will gradually age or even
fail, causing the equipment to stop running, and even the
entire power system to be paralysed, causing serious eco-
nomic losses and even threatening human life [4]. According
to the statistics of the British Wind Energy Agency, before
2009, more than 700 wind turbines were burned in the
world, many of which were caused by the failure of IGBTs.
The reliability of IGBTs plays an important role in the
smooth operation of power electronic systems, so it is very
meaningful to study the causes of IGBT failures and fault
prediction [5]. Before IGBT failure prediction, it is necessary
to first study the cause of IGBT failure, that is, the failure
mechanism of IGBT. After understanding the changing
trend of the degradation parameters before the IGBT fails,
measure these parameters. When the parameters are found
to be abnormal or about to reach the alarm threshold, it
means that the device may fail, so that it can be repaired
or replaced in time to avoid more serious accidents [6].
Not only that, while avoiding equipment failure, it can also
automate maintenance and repair, redundant copy replace-
ment, etc., which improves the efficiency and cost of opera-
tion management and reduces the burden of manual
maintenance. In this context, in order to reduce the heavy
losses caused by the shutdown of the power system due to
IGBT failure during the operation of power electronic equip-
ment and improve the stability of the power system opera-
tion, countries around the world are actively carrying out
IGBT fault prediction research [7]. The direction of its fault
research can be roughly divided into two types: one is based
on the machine model and probability model of IGBT, the
focus of the research is mainly on the characteristics and
materials of the device itself, and the fault prediction model
is obtained through statistical analysis of a large number of
aging experimental data. The other is an intelligent algo-
rithm prediction model driven by IGBT data. The focus of
the research is on the data drive of degradation parameters.
Consider using intelligent algorithms such as popular neural
networks to build fault prediction models [8]. In today’s
intelligent world, the rapid development of ANN has ush-
ered in a data-driven era. Finding the relationship between
features and targets through data is the mainstream direc-
tion of the current social forecasting development. In this
paper, the terminal characteristics and neural network are
combined to predict the fault of IGBT, because the neural
network has incomparable advantages in dealing with non-
linear problems. It provides a good solution for data predic-
tion of nonlinear, time-varying, strongly constrained, large-
lag processes.

The following is the paper’s organization paragraph: In
Section 2, the related work is provided. The suggested work’s
methods are examined in Section 3. The experiments and
results are discussed in Section 4. Finally, the research job
is completed in Section 5.

2. Related Word

Abroad, Reference [9] proposes a physical model for life esti-
mation of standard power modules. The proposed model
can physically explain the dependence of life on various
characteristics of the temperature profile, such as frequency,
maximum, and minimum temperature. The model uses the
Clech method to simulate the stress-strain solder response
under cyclic thermal loading and uses a solder deformation
mechanism diagram to describe the dominant failure mech-
anism under stress-temperature circumstances. Reference
[10] studied the fundamental frequency thermal cycle and
proposed a life estimation method for modular multilevel
converter submodules based on the combination of finite
element analysis and physical life model. This method pro-
vides a more in-depth physical description of the failure
mechanism and takes into account the thermal coupling
between chips, making life calculations more accurate. Ref-
erence [11] obtained the thermomechanical stress distribu-
tion around the IGBT defect through finite element
analysis, gave a life model combined with the performance
of the solder layer, and then verified the model through
power cycling experiments and microscale CT scanning.
Reference [12] demonstrated the influence of solder joint
thickness on the service life of power semiconductor IGBT,
and based on this, the optimization problem of solder layer
thickness was studied. In China, Reference [13] considers
the failure position of the solder layer and the feedback effect
of thermal characteristics caused by fatigue, establishes a
multiphysics coupling simulation of IGBT, uses an update
strategy based on the Cauer thermal network model, and
establishes a method that takes into account the cumulative
effect of solder layer fatigue. The IGBT life prediction model
of the wind turbine converter is finally evaluated. The ana-
lytical life model of IGBT mainly describes the relationship
between load current, current frequency, average tempera-
ture, temperature fluctuation value, temperature rise rate,
and other factors and the number of failures, that is, life.
At present, the life model provided by device manufacturers
is mainly based on the average temperature. In the relation-
ship between the temperature fluctuation value and the
number of failures, the number of failures is obtained by
power cycle or temperature cycle experiments. Reference
[14] established the finite element model of the IGBT
model SKM50GB12T4, considering the influence of the
power cycle load temperature level on the fatigue life of
the solder layer of the device, improved the Coffin-
Manson model, and applied the improved model to the
IGBT life prediction. In China, by analyzing the failure
mechanism of IGBT, Reference [15] designed a power cycle
experiment and formulated an experimental plan, used the
Weibull distribution to obtain the parameters of the device
life model, and then established the Coffin-Manson-
Arrhenius life model. The model has higher accuracy, and
the effect of junction temperature is more in line with the
actual situation. The fault prediction approach based on
terminal characteristics compares characteristic parameters
in the actual operating state with known aging characteris-
tic parameters of the device, judges the current operating
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condition, and predicts future parameter trend curves.
When the specified aging threshold is reached, the aging
IGBT can be maintained, repaired, or replaced in time.
The core of this method is to extract and transform histor-
ical data and use some intelligent algorithms to estimate the
trend of the device’s future operating state. Its key technol-
ogies include aging feature parameter extraction and pre-
diction algorithm design, and mainstream algorithms
include regression algorithms in numerical algorithms, fil-
tering algorithms, and artificial neural networks (ANNs)
in machine learning.

Abroad, a research group from Cranfield University used
the collector-emitter voltage VCE of IGBT as a characteristic
parameter, established a random degradation model based
on probability distribution, and studied the effects of the
gamma distribution, exponential distribution, Poisson distri-
bution, and combined distribution models on IGBTs. The
accuracy of life prediction is improved, and the failure model
based on a time-delay neural network (TDNN) is used to
improve the prediction accuracy. Compared with the
method based on the stochastic model, the error of the pre-
diction method based on TDNN is less than 4% [16–18].
Reference [19] studied the fault prediction framework of
IGBT. The framework uses the Mahalanobis distance
method for abnormality monitoring. After monitoring the
abnormality, the particle filter (PF) method is used to predict
the fault time, and the collector-emitter saturation voltage is
selected. Decreasing VCE ðONÞ is an aging characteristic
parameter, and its value increases by 20% as the failure
threshold. The prediction error of the research and analysis
algorithm is 20%. Reference [20] studied a fault prediction
method based on a neural network and adaptive neurofuzzy
inference system and used it to predict the degradation of
IGBT devices, using the IGBT collector-emitter voltage
degradation life data in the NASA Research Center database
to compare the proposed method. For verification, the
prediction errors of the two methods are 19% and 31%,
respectively. The fault prediction method based on end char-
acteristics does not require the mathematical model and
physical model of the object and estimates the future opera-
tion trend of the object based on the condition monitoring
data, thus avoiding the shortcomings of the model-based
fault prediction method, but in practical engineering appli-
cations, some historical data are difficult to obtain or expen-
sive to obtain, and the obtained data also has certain
uncertainty and incompleteness, which increases the diffi-
culty of the method based on end characteristics [21, 22].
Moreover, the traditional prediction algorithms used in
some literature cannot make full use of the historical infor-
mation of the data, resulting in inaccurate prediction and
low precision. Therefore, how to effectively use the time-
series information of the data is also an important point.
There are many classifications of intelligent algorithms in
fault prediction based on terminal characteristics, especially
in the field of machine learning led by neural networks,
which have unparalleled advantages in solving nonlinear
problems, and some of them also have good solutions to
time series problems, and more importantly, it is more in

line with the current trend of rapid development of big data
technology.

3. Method

3.1. IGBT Aging Characteristic Parameter Selection. The
aging failure or failure of IGBT will lead to changes in its
physical and chemical properties; that is to say, the aging
failure problem of IGBT will be manifested in its terminal
parameters to a certain extent. Therefore, on the basis of
studying the failure mechanism of IGBT, the terminal
parameters that best represent its health state can be selected
as the aging characteristic parameters and combined with
some intelligent algorithms to predict the failure. This
section will list the key terminal parameters of IGBT and
analyze the changes in their values with aging and finally
select appropriate parameters as aging characteristic param-
eters. The terminal parameters of IGBT devices mainly
include gate turn-on threshold voltage, module thermal
resistance value, collector-emitter saturation voltage value,
and collector-emitter turn-off peak voltage value. Each
eigenvalue is analyzed below.

3.1.1. Gate Turn-On Threshold Voltage. The gate turn-on
threshold voltage is the minimum voltage value for the IGBT
to ensure that the device can be turned on. As the IGBT
gradually degrades and fails, the material layer at its gate will
gradually degrade, resulting in a larger turn-on voltage dur-
ing the turn-on process. This indicates that the gate turn-on
threshold voltage gradually increases during the IGBT deg-
radation process, which can be used as a characteristic
parameter for fault prediction. However, the gate voltage in
a normal application environment is controlled by a steady
source circuit signal, and it is difficult to effectively detect
the gradually changing minimum turn-on threshold voltage.

3.1.2. Module Thermal Resistance Value. Since the IGBT
works in a high-temperature and high-pressure environ-
ment for a long time, its degradation effect is very obvious,
resulting in expansion cracks in the device material layer,
which increases the thermal resistance value of the module
and the junction temperature value of the module, further
accelerating the degradation of the device. For the detection
of junction temperature and thermal resistance, it is cur-
rently necessary to go deep into the device for measurement,
which can still be achieved in the experimental environment,
but it is difficult to effectively measure the IGBT device in
normal use, which is not conducive to using this character-
istic parameter for IGBT fault prediction.

3.1.3. Collector-Emitter Saturation Voltage Value. The IGBT
is in the off-and-on state for a long time, and its ideal equiv-
alent principle can be compared to a lossless on-off switch.
However, in practical applications, there will be internal
on-off resistance. This results in a voltage drop between col-
lector and emitter. Some literature studies have shown that
the voltage between the collector and the emitter is not con-
stant, but changes with the degradation of the IGBT. During
the degradation process, the collector-emitter saturation
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voltage value is gradually rising, so it can be a characteristic
parameter for IGBT fault prediction.

3.1.4. Collector-Emitter Turn-Off Peak Voltage Value. Dur-
ing the IGBT turn-off process, due to the existence of the
parasitic transistor, the transistor generates a transient volt-
age, and this voltage and the IGBT collector-emitter voltage
work together to generate an instantaneous peak voltage. At
the moment of a turn-off, the VCE of the IGBT will have a
high peak value, the turn-off current will drop rapidly, and
the turn-off voltage will rise rapidly. When the voltage rises,
there will be a voltage value exceeding the normal voltage,
and there will be a protruding peak in the waveform. The
existence of this overvoltage will cause stress shock to the
device, so it is very necessary to analyze the voltage value.
Analysis of laboratory aging data shows that when the IGBT
degradation changes, the instantaneous peak voltage of its
turn-off is gradually decreasing, so this parameter can be
used to predict IGBT faults.

Through the comparison of experimental data, the
collector-emitter turn-off peak voltage value shows a down-
ward trend in the process of IGBT degradation, and the
effect is obvious, while the collector-emitter saturation volt-
age value has no obvious upward trend in this data set. From
the previous theoretical analysis and degradation experi-
mental data, it is shown that the collector-emitter turn-off
peak voltage value can be well used as the characteristic
parameter of IGBT fault prediction. This paper will select
this characteristic parameter and use this data set to study
the IGBT fault prediction algorithm. Write a Python pro-
gram to extract the peak voltage value of each group of data
and obtain a total of 540 groups of peak voltage values.

3.2. Time Series Forecasting Methods. The purpose of failure
prediction is to find out the failure of the device in advance
so that the staff can deal with it in time and reduce the loss of
system operation. The traditional IGBT fault prediction
method is to use mathematical statistics to mathematically
model the IGBT degradation parameters, but this method
fails to make full use of the data time series information,
and the model is difficult to apply to complex production
and life. Machine learning algorithms and BP neural net-
work algorithms have significantly improved prediction
accuracy. However, the IGBT failure process gradually
degrades with time. Therefore, this paper focuses on the
application of deep learning time series prediction algo-
rithms in IGBT fault prediction. The time series forecasting
method developed earlier, there are many forecasting
methods, and the application is also very wide. The tradi-
tional time series forecasting method is developed from the
mathematical statistics theory, and now, there are many
branches of forecasting methods. The nature of prediction
can be divided into quantitative analysis method and quali-
tative analysis method, and many subsequent prediction
methods are also evolved on the basis of this method. The
regression methods such as univariate linear regression
evolved from the causal prediction method to determine
the relationship between data samples by means of data pro-
cessing. In the process of modeling regression, this method

does not make full use of the contextual relationship of the
data sequence, and it is difficult for the regression model to
make effective predictions on future data. The moving average
method evolved from the trend forecasting method uses time-
series historical information for forecasting. The moving aver-
age method mainly seeks the average value of a historical time
series for a stationary time series to predict the data. The
weighted moving method is an improvement and improve-
ment of the moving average method. It mainly weights the
historical information, assigns different weights to different
historical information, and then predicts the future data. The
moving average method has good prediction accuracy for sta-
ble series, but it is difficult to apply effectively to nonstationary
series. The weighted movement method needs to retain the
information of the entire historical sequence when forecasting,
and its forecasting efficiency is greatly reduced in the face of
the huge amount of data forecasting.

With the continuous progress of science and technology
in recent years, AI has developed rapidly. The model func-
tion fitting ability of AI algorithms is much higher than that
of traditional modeling methods.

3.2.1. Decision Tree. It is a method of using information gain
to predict or classify data, and its commonly used forms are
decision trees such as ID3 and C4.5. This method realizes
the decision-making model through continuous attribute
judgment and decision-making and achieves the application
purpose. However, when constructing the model, the deci-
sion tree ignores the relationship between attributes and fea-
tures, and it is more prone to decision bias for data with
unbalanced samples.

3.2.2. Bayesian Network. It is a directed acyclic graph model,
which represents a set of conditional probabilities, and can
also be regarded as a nonlinear extension of a Markov chain.
The advantage of this network is that the attribute variables
can be connected to make inferences and predictions; the
disadvantage is that the training of the network structure is
more complicated, and it is not easy to train the model
application.

3.2.3. Support Vector Machine (SVM). SVM is used on
various occasions due to its extremely robust performance.
It works by efficiently dividing the data by finding the hyper-
plane with the largest spacing of the data. Support vector
regression is to make all the data of a set have the closest
distance to the plane, so as to achieve the purpose of data
prediction. However, this method cannot fully utilize the
historical information of time series.

3.2.4. Neural Network. Due to the strong function fitting
ability of neural networks and model construction through
learning and training, the application of neural networks
has developed rapidly in recent years. Now, the neural net-
work has developed many branches, including back propa-
gation neural network (BPNN), recurrent neural network
(RNN), and convolutional neural network (CNN), which
are the development and application neural networks.
BPNN can fit any nonlinear function, and its prediction
model has a strong expressive ability. Due to the influence
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of its own structure, the RNN has a more obvious solution to
dealing with time series problems, such as speech recogni-
tion and machine translation. Recent studies have shown
that CNN can also perform time series prediction. The
method is to use the network to make predictions on the
time series data by constructing spatial data information
from the sample data time series. To sum up, the time series
forecasting method is developing in the direction of AI.
Among them, the neural network has been paid more and
more attention by scholars and research institutions from
all walks of life due to its strong model construction and
expression ability.

3.3. Deep Learning-Related Technologies

3.3.1. Deep Learning Concepts. The performance and generali-
zation ability of the shallow network model is limited. In order
to improve the performance of the model, the artificial neural
network (ANN) has been improved and extended. The multi-
layer and various neural networks are connected and com-
bined, and the training optimization algorithm is improved to
construct a network model belonging to the deep neural net-
work (DNN) model. Compared with the shallow network,
the improved multilayer network has greatly improved the
ability to solve complex problems. Due to the different struc-
tures of the neural network, the deep learning neural network
includes the following three network structures:

(1) DNN Network Is Composed of Multilayer Neural Net-
works. Compared with the BPNN, it has more layers in gen-
eral. The complexity of the network model is improved by
increasing the number of hidden layers of the network,
which is mainly used to solve application problems such as
nonlinearity or linearity.

(2) CNN Is Different from the Fully Connected Network. It
belongs to the partially connected network model. Network
layers are connected by convolution kernel operations. This
kind of network mainly performs feature processing on
images through convolution operations and is mainly used
in image processing.

(3) RNN Is a Network with a Feedback Connection. Due to
the special structure of the network itself, the network has
an excellent effect in dealing with time series problems,
mainly used for speech recognition and time series predic-
tion. RNN has developed rapidly in recent years, and a vari-
ety of improved RNN structures have been formed, such as
the Long Short-Term Memory Network (LSTM) structure
and GRU structure. In the application, in order to improve
the use effect, most of them use a combination of various
network structures to improve the performance of the
model. In this paper, RNN such as LSTM is used in the study
of IGBT fault prediction. And use the combined network
model to improve the prediction network, and finally
explore the best prediction network, model.

3.3.2. Loss Function. Compared with the actual value, the
predicted value obtained by the neural network model will

have a certain error. During the model training process, we
always hope that the error value can gradually become
smaller. The function that measures the error distance
between the predicted value and the true value is called the
loss function. The loss function is used to update the weights
during training so that the loss function is gradually reduced
and the model parameters are continuously optimized. The
selection of the loss function is related to the occasion to
be applied. Common loss functions include cross-entropy,
maximum likelihood error, maximum a posteriori probabil-
ity, and mean square error. This paper studies the IGBT fault
prediction problem, and the prediction problem belongs to
the regression problem. Formula (1) shows the expression
of the mean square error loss function:

L σð Þ =
1
n
〠
n

i=1
yi − yσ xi

� �� �2, ð1Þ

where LðσÞ represents the error between the real value and
the predicted value, that is, the loss function; n is the number
of training samples; yi represents the real value; σ is the
parameter variable of the network; and yσðxiÞ represents
the predicted value of the network model. The larger the
value of L, the greater the deviation between the predicted
value of the network model and the true value. The process
of deep learning network training is to continuously fit the
prediction function model by continuously reducing the loss
function value.

3.4. IGBT Fault Prediction Based on LSTM

3.4.1. LSTM Network. Due to the existence of the cyclic
structure of the RNN network introduced above, when using
the chain derivation rule for gradient descent, it is very likely
that the gradient disappears or the gradient explodes. There-
fore, the long-term dependence of the RNN network makes
it difficult to apply for a long-time sequence. In order to
solve the impact of a long-term dependence on RNN, the
long-short-term memory network LSTM came into being.
LSTM is a special loop structure that learns information in
network parameters through the control of three gate struc-
tures. The LSTM structure has three “gates,” namely, the
input gate, forget gate, and output gate. The calculation
method of the LSTM unit is shown in the following formulas:

f t = μ WT
f × ht−1 +UT

f × xt + df

� �
,

it = μ WT
i × ht−1 +UT

i × xt + di
� �

,

Ct′= tanh WT
C × ht−1 +UT

C × xt + dC
� �

,

Ot = μ WT
O × ht−1 +UT

O × xt + dO
� �

,

ð2Þ

where W and U represent the weight parameters of the
corresponding gate structure.

3.4.2. LSTM Prediction Network Design. From the analysis of
the LSTM network structure in the previous chapters, we
can see that the special structure of the LSTM network
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makes it possible to solve time series problems. The special
gate structure of LSTM can store input information of
longer time series and prevent the problem of gradient
disappearance. The advantages of LSTM are as follows:

(1) It solves the long-term dependence problem of RNN,
enabling it to learn information from long time
series

(2) LSTM network has strong data fitting ability, and its
robustness and versatility are strong

(3) The network parameters of the recurrent layer are
shared, and their parameters do not increase with
the length of the time series. Due to the special struc-
ture of LSTM and its advantages for time series pro-
cessing, the LSTM network can be used for IGBT
fault prediction tasks. Next, a prediction network
will be designed step by step for the IGBT fault pre-
diction problem

(1) The Input and Output of the Network. The input of the
LSTM network is time-series data, and its sequence length
can be set to T . For the network output part, LSTM has
two output forms: one is that the input time series XT is
processed by the network to output the same length of time
series data YT ; the other is that the output contains only one
output result value. The input and output of its single-layer
LSTM network are shown in Figure 1.

Here, XT represents a certain sample sequence; YT rep-
resents the output result sequence, and the following formu-
las can be used.

XT = x0, x1,⋯, xt½ �,
YT = y0, y1,⋯, yt½ �:

ð3Þ

Figure 1 shows the two output modes of the LSTM net-
work, which are used in the combination of multi-layer
LSTM networks (Figure 1(a)) to pass the time series back-
ward. Figure 1(b) can be used to get the results when doing
the output of a single-layer network or the last layer of a
multilayer network.

(2) Selection of Activation Function. Sigmoid and tanh acti-
vation functions have gradient disappearance in the value
range, so the IGBT fault prediction network in this paper
will use the Leaky ReLU activation function with better per-
formance to reduce the possibility of gradient disappearance
in a recurrent network.

(3) Hidden Layer Design. The number of hidden layers and
nodes in the hidden layer has an important influence on
the output results of the prediction network. The increase
in the number of layers and nodes will make the network
model more complex and deeper, which will help improve
the data fitting ability but is not conducive to network train-
ing. There is no specific theoretical basis for the design of the
hidden layer, and it is generally set according to an empirical
formula. When setting, you can refer to the empirical for-
mula such as

h =
ffiffiffiffiffiffiffiffiffiffiffiffi
m + n

p
+ b, ð4Þ

where h is the number of hidden layer nodes, m is the num-
ber of input layer nodes, n is the number of output layer
nodes, and b is a constant value of about 10.

(4) Loss Function. This paper studies the problem of IGBT
fault prediction, so the mean square error is chosen as the
loss function of the network.

(5) Prevent Overfitting Method. Overfitting means that the
trained network model performs well in the training set,
but the performance in the test set is poor, making it difficult
to apply in practice. Since the network model has many
parameters and is prone to overfitting, it is necessary to opti-
mize the model by limiting overfitting. Commonly used
methods to limit overfitting include L1 and L2 regularization,
both of which are optimized by “penalizing” weight param-
eters. Formulas (5) and (6) show the calculation methods of
these two regularization methods:

L1 = L σnð Þ + λ〠
n

i

σij j, ð5Þ

x0

x1

xt

y0

LSTM layer
structure

y1

yt

(a) Same-length sequence output

x0

x1

xt

LSTM layer
structure

yt

(b) Single sequence value output

Figure 1: LSTM network output method.
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L2 = L σnð Þ + λ〠
n

i

σ2i , ð6Þ

where LðσnÞ represents the loss function and λ represents the
regularization coefficient, which is generally set to 0.5. Since
L1 regularization produces sparse solutions, this paper uses
the L2 regularization method to prevent overfitting when
designing an IGBT fault prediction network.

In this paper, the IGBT fault prediction network will use
the above design method to design the prediction network
and explore the best IGBT fault prediction network model
by changing the LSTM network with different hidden layers,
different nodes, and different time series lengths.

3.5. Predictive Evaluation Indicators. In order to facilitate the
comparison of the prediction effect of the prediction method
network, it is necessary to quantify the prediction results to
measure the quality of the prediction results of the network
model. Evaluation indicators need to be appropriately
selected according to actual problems. The IGBT fault pre-
diction problem studied in this paper belongs to regression
analysis, so the regression prediction index can be used to
evaluate the model effect. In this paper, the following two
regression prediction evaluations are finally selected.

3.5.1. Mean Absolute Error (MAE). MAE reflects the mean
absolute difference between the predicted value and the true
value, and its calculation formula is shown in

MAE = 1
n
〠
n

i=1
y − ŷj j, ð7Þ

where y represents the real value, ŷ represents the predicted
value, and n represents the number of predicted samples.

3.5.2. Root Mean Square Error (RMSE). The definition of
RMSE is shown in

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
y − ŷð Þ2

s
, ð8Þ

where y represents the real value, ŷ represents the predicted
value, and n represents the number of predicted samples.

4. Experiment and Analysis

4.1. Data Normalization. For network training, data samples
are essential. The dimensions of the samples in the original
data are different, and the value ranges are inconsistent,
which could lead to bias in the network prediction outputs
due to the values of different attribute values in the network
training. The network is likely to ignore a little value,
impacting network training, and prediction accuracy. The
scaling of data so that it falls inside a tiny defined interval
is known as data normalization. Standardizing the data
reduces the impact of varied dimensions and values on net-
work training, improves prediction accuracy, and places the

data in the gradient-sensitive part of the activation function,
which speeds up network training. In this paper, the follow-
ing normalization methods are used for data normalization
in fault prediction data processing, and its data is normal-
ized to between [0, 1] according to the most typical normal-
ization range.

δi =
xi − X:Min

X:Max − X:Min ,

x̂i =
δi

Max −Min +Min,
ð9Þ

where xi represents the sample value, X:Min represents the
minimum value in the sample, X:Max represents the maxi-
mum value in the sample, Min represents the minimum
value of the specified scaling, Max represents the maximum
value of the specified scaling, and x̂i represents the value
after normalization.

4.2. Sliding Time Window Samples. Failure prediction
methods have been described in previous chapters, and
LSTM networks are capable of processing time series data.
The input data of the LSTM network are time-series sam-
ples, so it is necessary to construct time series samples when
training the network and predicting the output. The NASA
PCoE dataset used in this paper to study IGBT fault predic-
tion contains 540 collector-emitter turn-off spike voltage
values. Because spike voltage values are discrete data values,
autocorrelation time series data samples for input to the
LSTM network must be created. The sliding time window
method is used in this paper to create data samples for net-
work training. The sliding time window method moves on
the data value using the supplied input sequence length as
the size of the sliding window, uses the value following the
window sequence as the sample label value, and generates
data samples for training while sliding. The process of the
sliding window method is shown in Figure 2.

Among them, the Figure 2 shows the construction
process of time series data samples with a sequence length
of 5 by the sliding window method. For example,
[½x0, x1, x2, x3, x4�, ½x5�] represents a time series sample
constructed by the sliding window method, and ½x5� repre-
sents the sample label value. This paper uses the sliding win-
dow method when constructing time-series samples and
uses the previous time series values to predict the next sam-
ple point. First, write a Python program to normalize the 540
values of NASA PCoE data using the data normalization
method in the previous section, and write a function pro-
gram for constructing time series samples in Python to con-
struct time series lengths sample sets of 5, 10, 15, 20, and 25,
and use 80% of the time series samples for training and 20%
for testing.

4.3. LSTM Network Experimental Results and Analysis. This
section conducts IGBT fault prediction experiments based
on the LSTM network. Set different time series lengths,
different network layers, and different hidden layer nodes
to explore the best fault prediction model of LSTM. In the
LSTM network experiment, the learning rate is set to
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0.001; the LSTM network layer is set to 1 and 2 layers; the
hidden nodes of each layer are set to 30, 40, and 50 nodes
according to the empirical formula, and the time series
length is set to 5, 10, 15, 20, and 25; batch size is set to 10;
adjust each parameter and the number of model iterations
to make the model converge to the best. The first 80% of
the constructed sample set is utilized for dry training, while
the remaining 20% is used for dry testing. Keras is a Python
library of deep learning techniques that improves and sim-
plifies TensorFlow. In this paper, Keras and Python are used
to create programmer algorithms based on network archi-
tecture and to conduct prediction effect experiments. On
the IGBT fault curve, LSTM network prediction is con-
ducted using the above parameter settings. To explore the
influence of different network depths, nodes, and time series
lengths on the prediction results, the single-layer LSTM,
30-node, 40-node, and 50-node network fault prediction
experiments are now performed. The experimental results
are shown in Table 1 and Figures 3 and 4.

Table 1 and Figures 3 and 4, show the error results of 30,
40, and 50 nodes of a single-layer LSTM network. The nor-
malization (RMSE) in the table represents the root mean
square error value of the data value after normalization, 5,
10, 15, 20, 25 indicates the set time series length.

At the same time, this paper also adds a two-layer LSTM
network to explore the fault prediction results, as shown in
Table 2 and Figures 5 and 6.

Table 2 and Figures 5 and 6 show the error result values
of nodes 30, 40, and 50 of the two-layer LSTM network. The
normalization (RMSE) in the table represents the root mean
square error value of the data values after normalization; 5,
10, 15, 20, and 25 represent the set time series length. When
the LSTM network experiment is deepened again, the adjust-
ment parameters cannot converge the model, and the network
that is too deep cannot learn the sample data. Therefore, in the
above network experiment results, a network model that can
predict IGBT faults better is found.

x0 x1 x2 x3 x4

x1 x2 x3 x4

x5

x5 x6

xn–5 xn–4 xn–3 xn–2 xn–1 xn

Sequence samples Predictive value

Figure 2: Sliding window method.

Table 1: Normalized RMSE for different number of nodes in a
single-layer LSTM.

Number of nodes 5 10 15 20 25

30 0.0113 0.0113 0.0138 0.0118 0.0106

40 0.0125 0.0104 0.0118 0.0103 0.0107

50 0.0119 0.0104 0.0103 0.0108 0.0107

5 10 15 20 25

Time series length

0

0.05

0.1

0.15

0.2

0.25

0.3

RM
SE

The number of nodes is 30
The number of nodes is 40
The number of nodes is 50

Figure 3: RMSE for different number of nodes in a single-layer
LSTM.

5 10 15 20 25

Time series length

0

0.05

0.1

0.15

0.2

0.25

M
A

E

The number of nodes is 30
The number of nodes is 40
The number of nodes is 50

Figure 4: MAE for different number of nodes in a single-layer
LSTM.
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The preceding experimental findings show that correctly
expanding the length of the time series can increase the net-
work model’s prediction accuracy. When the time series is
changed from 5 to 20, for example, the MAE decreases. Sim-
ilar to single-layer LSTM, when the number of LSTM net-

work layers is raised, the MAE and RMSE in 15 and 20-
time series have lower error values, and the prediction
model’s accuracy improves. After the above experimental
results, it is found that when the network parameters are
set to the LSTM layer number of 2, 50 nodes, and the time
series of 20, the RMSE and MAE error values for IGBT fault
prediction are the smallest.

5. Conclusion

With the advancement of science and technology, the use of
power electronic gadgets has increased dramatically. IGBTs
are being used with increasingly powerful system equip-
ment. Furthermore, IGBT devices offer numerous advan-
tages, resulting in an increase in the use of IGBTs and an
increase in the number of applications. However, due to
the hostile working environment and high working intensity
of the IGBT during usage, the IGBT suffers significant
fatigue damage, increasing the likelihood of failure. The
majority of traditional IGBT fault prediction research relies
on fault characteristic parameters for mathematical statistics
or uses machine learning methods to construct prediction
models. These models fail to make full use of the historical
damage information in the process of IGBT degradation
over time, and the prediction accuracy is not high. It is dif-
ficult to combine with practical application. This article has
read a large number of IGBT fault research papers and deep
learning algorithm prediction data and has a deep under-
standing of the current IGBT fault prediction. In this paper,
a fusion of terminal characteristics and a deep learning time
series prediction algorithm is proposed to predict the fault of
IGBT, and the fault prediction network is designed accord-
ing to the theoretical analysis and experimental results, and
the optimal IGBT fault prediction LSTM network model is
finally obtained. The main research work in this paper is as
follows: (1) This paper starts from the basic principle of
IGBT and the structure of its device and analyzes its failure
mode on the failure of IGBT. The characteristic parameter
of collector-emitter turn-off peak voltage value is selected
for IGBT fault prediction, and the aging data of NASA PCoE
Research Center is used to verify that the characteristic
parameter can be used for fault prediction. (2) In view of
the shortcomings of traditional fault forecasting methods,
this paper proposes to use deep learning time series forecast-
ing methods for fault forecasting. The prediction network is
developed once the LSTM is theoretically studied. The
experimental results suggest that using the LSTM network
model, which has fewer parameters and a greater prediction
efficiency, can increase the accuracy of IGBT failure
prediction.
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Table 2: Normalized RMSE for different number of nodes in a
two-layer LSTM.

Number of nodes 5 10 15 20 25

30 0.0113 0.0162 0.0109 0.0110 0.0113

40 0.0135 0.0153 0.0106 0.0111 0.0104

50 0.0127 0.0138 0.0107 0.0103 0.0178

5 10 15 20 25

Time series length

0

0.05

0.1

0.15

0.2

0.25

0.3

RM
SE

The number of nodes is 30
The number of nodes is 40
The number of nodes is 50

Figure 5: RMSE for different number of nodes in a two-layer
LSTM.
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Time series length
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The number of nodes is 30
The number of nodes is 40
The number of nodes is 50

Figure 6: MAE for different number of nodes in a two-layer LSTM.

9Computational and Mathematical Methods in Medicine



Acknowledgments

The research is supported by the Guangxi Key Laboratory
of Manufacturing System & Advanced Manufacturing
Technology (Grant No. 19-050-44-007Z).

References

[1] P. Duan, Y. Jia, L. Liang, J. Rodriguez, K. M. Saidul Huq, and
G. Li, “Space-reserved cooperative caching in 5G heteroge-
neous networks for industrial IoT,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 6, pp. 2715–2724, 2018.

[2] J. M. Thebaud, E. Woirgard, C. Zardini, S. Azzopardi, O. Briat,
and J. Vinassa, “Strategy for designing accelerated aging tests
to evaluate IGBT power modules lifetime in real operation
mode,” IEEE Transactions on Components & Packaging
Technologies, vol. 26, no. 2, pp. 429–438, 2003.

[3] B. Tian, W. Qiao, Z. Wang, T. Gachovska, and J. L. Hudgins,
“Monitoring IGBT's health condition via junction temperature
variations,” in 2014 IEEE Applied Power Electronics Conference
and Exposition-APEC 2014, pp. 2550–2555, Fort Worth, TX,
USA, 2014.

[4] T. D. Batzel and D. C. Swanson, “Prognostic health manage-
ment of aircraft power generators,” IEEE Transactions on
Aerospace & Electronic Systems, vol. 45, no. 2, pp. 473–482,
2009.

[5] R. C. Taylor, “An overview of the Hadoop/MapReduce/HBase
framework and its current applications in bioinformatics,”
BMC Bioinformatics, vol. 11, no. S12, p. S1, 2010.

[6] M. De Ree, G. Mantas, A. Radwan, S. Mumtaz, J. Rodriguez,
and I. E. Otung, “Key management for beyond 5G mobile
small cells: A survey,” IEEE Access, vol. 7, pp. 59200–59236,
2019.

[7] H. Sumida and A. Hirabayashi, “The substrate bias effect on
the static and dynamic characteristics of the lateral IGBT on
the thin SOI film,” IEICE Transactions on Electronics,
vol. 779, pp. 1464–1471, 1994.

[8] S. Mumtaz, H. Lundqvist, K. Z. Saidul Huq, J. Rodriguez, and
A. Radwan, “Smart Direct-LTE communication: An energy
saving perspective,” Ad Hoc Networks, vol. 13, pp. 296–311,
2014.

[9] N. Patil, J. Celaya, D. Das, K. Goebel, and M. Pecht, “Precursor
parameter identification for insulated gate bipolar transistor
(IGBT) prognostics,” IEEE Transactions on Reliability,
vol. 58, no. 2, pp. 271–276, 2009.

[10] P. Baraldi, F. Cadini, F. Mangili, and E. Zio, “Model-based and
data-driven prognostics under different available informa-
tion,” Probabilistic Engineering Mechanics, vol. 32, no. 4,
pp. 66–79, 2013.

[11] B. Hu, S. Konaklieva, S. Kourra, S. A. Williams, L. Ran, and
W. Lai, “Long term reliability evaluation of power modules
with low amplitude thermomechanical stresses and initial
defects,” IEEE Journal of Emerging and Selected Topics in
Power Electronics, vol. 9, no. 1, pp. 602–615, 2021.

[12] R. Elakkiya, G. Kavithaa, V. Samavatian et al., “Reliability
enhancement of a power semiconductor with optimized solder
layer thickness,” IEEE Transactions on Power Electronics,
vol. 35, no. 6, pp. 6397–6404, 2019.

[13] M. Y. Chen, Y. G. Chen, B. Gao, W. Lai, T. Huang, and S. Y.
Xu, “Lifetime evaluation of IGBT module considering fatigue
accumulation of solder layers,” Proceedings of the CSEE,
vol. 38, no. 20, pp. 6053–6061, 2018.

[14] L. Rabiner and B. Juang, “An introduction to hidden Markov
models,” Current Protocols in Bioinformatics, vol. 3, pp. 4–
16, 2007.

[15] W. Lai, Y. Chenm, L. Ran, X. M. Wang, and S. Y. Xu, “IGBT
lifetime model based on aging experiment,” Transactions of
China Electrotechnical Society, vol. 31, no. 24, pp. 173–180,
2016.

[16] A. Alghassi, S. Perinpanayagam, and M. Samie, “Stochastic
RUL calculation enhanced with TDNN-based IGBT failure
modeling,” IEEE Transactions on Reliability, vol. 65, no. 2,
pp. 558–573, 2016.

[17] T. Sreenuch, A. Alghassi, S. Perinpanayagam, and Y. Xie,
“Probabilistic Monte-Carlo method for modelling and predic-
tion of electronics component life,” Development, vol. 5, no. 1,
p. 104, 2014.

[18] A. Alghassi, S. Perinpanayagam, M. Samie, and T. Sreenuch,
“Computationally efficient, real-time, and embeddable prog-
nostic techniques for power electronics,” IEEE Transactions
on Power Electronics, vol. 30, no. 5, pp. 2623–2634, 2015.

[19] N. Patil, D. Das, and M. Pecht, “A prognostic approach for
non-punch through and field stop IGBTs,” Microelectronics
Reliability, vol. 52, no. 3, pp. 482–488, 2012.

[20] D. K. Ghose, S. S. Panda, and P. C. Swain, “Prediction of water
table depth in western region, Orissa using BPNN and RBFN
neural networks,” Journal of Hydrology, vol. 394, pp. 296–
304, 2010.

[21] J. Li, Z. Zhou, J. Wu et al., “Decentralized on-demand energy
supply for blockchain in internet of things: a microgrids
approach,” IEEE transactions on computational social systems,
vol. 6, no. 6, pp. 1395–1406, 2019.

[22] W. Duan, J. Gu, M. Wen, G. Zhang, Y. Ji, and S. Mumtaz,
“Emerging technologies for 5G-IoV networks: applications,
trends and opportunities,” IEEE Network, vol. 34, no. 5,
pp. 283–289, 2020.

10 Computational and Mathematical Methods in Medicine


	IGBT Fault Prediction Combining Terminal Characteristics and Artificial Intelligence Neural Network
	1. Introduction
	2. Related Word
	3. Method
	3.1. IGBT Aging Characteristic Parameter Selection
	3.1.1. Gate Turn-On Threshold Voltage
	3.1.2. Module Thermal Resistance Value
	3.1.3. Collector-Emitter Saturation Voltage Value
	3.1.4. Collector-Emitter Turn-Off Peak Voltage Value

	3.2. Time Series Forecasting Methods
	3.2.1. Decision Tree
	3.2.2. Bayesian Network
	3.2.3. Support Vector Machine (SVM)
	3.2.4. Neural Network

	3.3. Deep Learning-Related Technologies
	3.3.1. Deep Learning Concepts
	3.3.2. Loss Function

	3.4. IGBT Fault Prediction Based on LSTM
	3.4.1. LSTM Network
	3.4.2. LSTM Prediction Network Design

	3.5. Predictive Evaluation Indicators
	3.5.1. Mean Absolute Error (MAE)
	3.5.2. Root Mean Square Error (RMSE)


	4. Experiment and Analysis
	4.1. Data Normalization
	4.2. Sliding Time Window Samples
	4.3. LSTM Network Experimental Results and Analysis

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

