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Helicobacter pylori (H. pylori) is the most common risk factor for gastric cancer worldwide. The membrane proteins of the H.
pylori are involved in bacterial adherence and play a vital role in the field of drug discovery. Thus, an accurate and cost-
effective computational model is needed to predict the uncharacterized membrane proteins of H. pylori. In this study, a reliable
benchmark dataset consisted of 114 membrane and 219 nonmembrane proteins was constructed based on UniProt. A support
vector machine- (SVM-) based model was developed for discriminating H. pylori membrane proteins from nonmembrane
proteins by using sequence information. Cross-validation showed that our method achieved good performance with an
accuracy of 91.29%. It is anticipated that the proposed model will be useful for the annotation of H. pylori membrane proteins
and the development of new anti-H. pylori agents.

1. Introduction

Helicobacter pylori (H. pylori) is a Gram-negative spiral-
shaped bacterium that infects half of the human population
worldwide. H. pylori causes gastric mucosa damage, chronic
inflammation, and dysregulation of the gut community,
increasing the risk of gastric cancer [1–3]. Attachment to
the gastric mucosa is the first step in establishing bacterial
colonization [4]. H. pylori membrane proteins such as
antigen-binding adhesin (BabA), sialic acid-binding adhesin
(SabA), outer inflammatory protein (OipA), and outer mem-
brane protein Q (HopQ) can act as putative virulence factors
that mediate the host-pathogen interactions, induce the
release of inflammatory cytokines, and enhance the virulence
property of the bacterium [4–6]. Thus, the identification of
H. pylori membrane protein receptors contributes to the
design of therapeutic drugs and vaccine development [7, 8].

Although H. pylori membrane proteins play a key role in
attachment to and entry into host cells, only few have been
described so far. There are some efforts in the prediction of
membrane proteins [9, 10] for other germs like Mycobacte-

rial [11] and Chlamydiae [12]. However, there are no
machine learning-based approaches for the prediction of
theH. pylorimembrane proteins. In this study, we developed
a comprehensive in silico approach for discriminating novel
H. pylori membrane proteins using amino acid sequence-
based criteria. First, the benchmark dataset was constructed
based on a reliable source. Second, sequence-based feature
encoding methods were used to represent protein sequences.
Next, the incremental feature selection (IFS) technique with
multiple feature ranking methods was applied to obtain the
optimal feature set. Finally, a membrane protein prediction
model was established based on the optimal feature set. The
workflow can be seen in Figure 1.

2. Materials and Methods

2.1. Benchmark Dataset. An objective and strict benchmark
dataset is fundamental for a robust prediction model
construction [13–18]. The Universal Protein Resource
(UniProt) [19] is a comprehensive resource for proteins
and can be freely accessed at https://www.uniprot.org/. The

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 7493834, 7 pages
https://doi.org/10.1155/2022/7493834

https://orcid.org/0000-0002-0215-6397
https://orcid.org/0000-0003-1467-7453
https://orcid.org/0000-0002-8200-9337
https://orcid.org/0000-0001-5734-5809
https://orcid.org/0000-0002-4619-247X
https://www.uniprot.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7493834


382 H. pylori membrane protein sequences and 1111
nonmembrane protein sequences were obtained from the
UniProt. If a sequence contains nonstandard letters, the
sequence was removed from the dataset. To avoid the influ-
ence of sequence similarity [20], CD-HIT [21] with 0.3
sequence identity was used to exclude highly similar
membrane proteins. Finally, 114 (29.8% of the original)
membrane proteins and 219 (19.7% of the original) non-
membrane proteins remained in the benchmark dataset.

2.2. Feature Encoding. Generally, feature encoding plays a
crucial role for machine learning in model construction
[22–28]. The feature encoding method determines the
degree of sequence information mining. In this work, k
-mer amino acid composition [29–31], gapped k-mer
method [32], and pseudo-amino acid composition
(PseAAC) [33–39] were used to formulate sequences.

Let the protein S be expressed as follows:

S = R1R2R3R4R5 ⋯ RiRi+1 ⋯ RL, ð1Þ

where L denotes the length of the protein sequence and Ri is
the i-th amino acid.

By using k-mer amino acid composition, a primary pro-
tein sequence S can be transferred into a vector Vk with 20k
elements according to the following formula:

Vk = f k−mer
1 f k−mer

2 ∙∙∙f k−mer
i ∙∙∙f k−mer

20k
h iT

, ð2Þ

where the symbol T means the transposition of a vector and
f k−mer
i is the normalized frequency of the i-th k-mer amino
acid component occurring in S and can be calculated by

f k−mer
i = ni

∑20k
i=1ni

= ni
L − k + 1 , ð3Þ

where ni means the number of occurrences of the i-th k-mer
amino acid component in the sequence S.

With the increase of k, one protein sequence may have
many k-mers absent, and its feature vector will contain a

large number of zero values. To overcome this sparse prob-
lem, gapped k-mer (k-mer with g gap) was used. For exam-
ple, “GG” with 3 gaps constitute the patterns “GNNNG,”
where N represent any kind of amino acid. By using the
gapped k-mer method, a primary protein sequence S can
be transferred into a vector Vg with 20k−g elements accord-
ing to the following formula:

Vg = f gk−mer
1 f gk−mer

2 ∙∙∙f gk−mer
i ∙∙∙f gk−mer

20k−g
h iT

, ð4Þ

where the f gk−mer
i is the normalized frequency of the i-th k

-mer with g gap amino acid component occurring in S.
PseAAC can represent a protein sequence in a dis-

crete model without completely losing its sequence-order
information. A primary protein sequence S can be trans-
ferred into a vector Vp with PseAAC according to the
following formula:

Vp = x1 ⋯ x20 x20+1 ⋯ x20+λ½ �T, ð5Þ

xi =

f i
∑20

i=1 f i + ω∑λ
j=1Θj

, 1 ≤ i ≤ 20,

ωΘi − 20
∑20

i=1 f i + ω∑λ
j=1Θj

, 20 + 1 ≤ i ≤ 20 + λ,

8>>>><
>>>>:

ð6Þ

where f i is the normalized frequency of i-th amino acid,
and Θj is the j-th sequence correlation factor that can be
calculated by the product of the six physicochemical
property numerical values between amino acids at differ-
ent positions. ω is the weight factor for short range and
long range.

2.3. Feature Selection and Modeling. To exclude noise and
improve computational efficiency, feature selection is an
indispensable step [23, 40–45]. Binomial distribution is one
of the wonderful feature selection techniques that have been
successfully applied in many works [46–48]. The high bino-
mial distribution score indicates that the presence of the k
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Figure 1: The workflow diagram of developing the H. pylori membrane protein prediction model.
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-mer amino acid in a membrane protein sequence is not
accidental. Analysis of variance (ANOVA) tests the ratio of
the variance between groups and the variance within the
groups to analyse the differences among group means [30].
The high ANOVA score means there is a big feature differ-
ence between the membrane protein group and the non-
membrane protein group. In this study, binomial
distribution was used on k-mer features, and ANOVA was
used on gapped k-mer and PseAAC features to winnow
out the irrelevant features. Then, ANOVA was used to
reprune all the redundant features.

After ranking the features according to their statistical
scores, the IFS strategy with support vector machine
(SVM) was adopted to determine the optimal feature set
[49–53]. SVM is a classification algorithm that finds the
optimal classification hyperplane in the high-dimensional
feature space. The IFS strategy added features one by one
to the feature set from a higher-ranked to a lower-ranked
score. Once a new feature set was composed, LIBSVM [54]
with 5-fold cross-validation was performed to train and test
prediction models. The optimal feature set is defined based
on the principle that the prediction model based on such
features could achieve maximum accuracy. Finally, an
SVM model was constructed based on the optimal feature
subset for the membrane protein prediction.

2.4. Performance Evaluation Metrics. In order to assess the
capability of the binary prediction method, six indexes,
namely, accuracy (ACC), sensitivity (Sn), specificity (Sp),

precision (Pre), Matthew’s correlation coefficient (MCC),
and the area under the receiver operating characteristic
curve (AUC) [55–60], were used and formulated as

ACC = TP + TN
TP + TN + FP + FN

, ð7Þ
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Figure 3: The ROC curves of the 5-fold cross-validation test.
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Figure 2: The IFS curves for (a) 2-mer features, (b) gapped 2-mer features, (c) PseAAC features, and (d) merged features.
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Sn = TP
TP + FN

, ð8Þ

Sp = TN
TN + FP

, ð9Þ

Pre = TP
TP + FP

, ð10Þ

MCC = TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FNð Þ TP + FPð Þ TN + FPð Þ TN + FNð Þp ,

ð11Þ
where TP (true positive) and TN (true negative) present the
numbers of correctly identified membrane proteins and
nonmembrane proteins, respectively. FP (false positive)
and FN (false negative) denote the number of nonmem-
brane proteins incorrectly classified as membrane proteins
and the number of membrane proteins incorrectly classi-
fied as nonmembrane proteins, respectively. Receiver oper-
ating characteristics (ROC) analysis was used to measure

the performance of the model with the varying decision
thresholds [61–63]. Due to the small sample size, the
result of the 5-fold cross-validation was used to evaluate
the model performance.

3. Results and Discussion

3.1. Feature Optimization. As shown in equations (3), (4),
and (5), the description of the protein sequences depends
on parameters k, g, ω, and λ. For k-mer feature encoding,
k = 2, 3, 4 was tried in this study. The model achieved the
best accuracy of 90.09% with the top 150 binomial
distribution-ranked 2-mer features (Figure 2(a)). For gapped
k-mer feature encoding, we set k = 2 and traverse g from 1 to
20, when g = 15, and the model achieved the best accuracy of
90.39% with the top 89 ANOVA-ranked features
(Figure 2(b)). For PseAAC, we set the weight factor ω = 0:5
and parameter λ from 1 to 70 with step size 5, and the best
performance achieved was 88.59% when the λ is 20 and fea-
ture number is 10 (Figure 2(c)). To represent the sequence
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Figure 4: (a) The heat map of AAC of the model features. (b) The frequency of the six amino acids in the two classes.
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information comprehensively, all best feature subsets were
merged and ranked by ANOVA. IFS was performed again
to filter out the redundant features. As we can see in
Figure 2(d), the model achieved the best accuracy of
91.29% when the top 109 ANOVA-ranked features were
used to train the model.

3.2. Model Construction and Evaluation. Finally, 109 features
were used to construct the SVM-based model for the predic-
tion of membrane proteins. And the soft margin SVM
penalty coefficient c and Gaussian kernel function width
parameter γ are 0.5.

To show the prediction capability of the final model, six
evaluation metrics were calculated based on the result of the
5-fold cross-validation. The model achieved the ACC of
91.29%, Sn of 82.46%, Sp of 95.9%, Pre of 91.26%, and
MCC of 0.804. We also drew the ROC curve in
Figure 3. It shows that the AUC reaches the value of
0.931, suggesting that the proposed model has an excellent
prediction capability on membrane protein classification.

3.3. Amino Acid Composition (AAC) of Optimal Features.
The AAC of the model features was used to analyse the pref-
erence of membrane proteins for specific amino acids.
Among the optimal feature set, there are 83 2-mer features,
16 gapped 2-mer features, and 10 PseAAC features. Focus-
ing on the 2-mer and gapped 2-mer features, we found that
the occurrence of leucine (L), glutamic acid (E), aspartic acid
(D), phenylalanine (F), valine (V), and histidine (H) exceeds
50% of the total (Figure 4(a)). And the frequencies of F, L,
and V in membrane protein sequences are significantly
higher than those in nonmembrane protein sequences
(p < 0:001). In contrast, the frequencies of D, E, and H in
nonmembrane protein sequences are significantly higher
than those in membrane proteins (p < 0:001) (Figure 4(b)).

4. Conclusions

H. pylori membrane proteins are an important class of
molecules that play key roles in host-pathogen interactions.
However, it is a new area in the prediction of H. pylorimem-
brane proteins with machine learning methods. Hence, we
developed an H. pylori membrane proteins predictor on
the basis of sequence-based information. The model will
powerfully support the discovery of H. pylori membrane
proteins and the research of H. pylori infection. It has the
potential to be significant in novel vaccine candidate anti-
gens and drug development [64, 65]. In the future, we will
stay focused on the H. pylori membrane protein prediction
issues and screen the possible vaccine candidates and drug
targets. Moreover, we will collect more data to train a deep
learning model [66–71] to improve prediction performance.
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