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Melanoma is a dangerous form of skin cancer that results in the demise of patients at the developed stage. Researchers have
attempted to develop automated systems for the timely recognition of this deadly disease. However, reliable and precise
identification of melanoma moles is a tedious and complex activity as there exist huge differences in the mass, structure, and
color of the skin lesions. Additionally, the incidence of noise, blurring, and chrominance changes in the suspected images
further enhance the complexity of the detection procedure. In the proposed work, we try to overcome the limitations of the
existing work by presenting a deep learning (DL) model. Descriptively, after accomplishing the preprocessing task, we have
utilized an object detection approach named CornerNet model to detect melanoma lesions. Then the localized moles are
passed as input to the fuzzy K-means (FLM) clustering approach to perform the segmentation task. To assess the segmentation
power of the proposed approach, two standard databases named ISIC-2017 and ISIC-2018 are employed. Extensive
experimentation has been conducted to demonstrate the robustness of the proposed approach through both numeric and
pictorial results. The proposed approach is capable of detecting and segmenting the moles of arbitrary shapes and orientations.
Furthermore, the presented work can tackle the presence of noise, blurring, and brightness variations as well. We have attained
the segmentation accuracy values of 99.32% and 99.63% over the ISIC-2017 and ISIC-2018 databases correspondingly which
clearly depicts the effectiveness of our model for the melanoma mole segmentation.

1. Introduction

The abnormal growth of the skin cells results in cancer
inside the human body which is broadly categorized into
three types namely squamous cell carcinoma, melanoma,
and basal, respectively [1]. Among all three types, melanoma
is designated as the most fatal type of skin cancer that
develops inside the skin cells namely melanocytes. In a
recent study published in [2], it is found that only in the
US, approximately 10 thousand victims are dying annually

due to this dangerous disease. The unnecessary expansion
of the skin cells generates lesions in the human body that
differ in structure, appearance, and mass. The irregular
lesion is about 6mm in size and contains a rare appearance
usually in red, brown, pink, or black color which requires an
urgent inspection by the dermatologist. Melanoma is further
distributed into two categories named benign and malig-
nant. The first category of melanoma known as benign is
the less fatal type of skin cancer and is easily curable,
whereas malignant is the advanced stage of skin cancer that
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may cause the victim death if not detected timely. Mainly,
experts execute physical checkups of skin lesions by examin-
ing their appearance, structure, and size. However, such an
examination process is a time-consuming activity because
of the shortage of dermatologists. The timely detection of
melanoma lesions is vital as it can control the mortality rate
of victims and also protect them from painful surgical pro-
cesses. Now, computer vision (CV) and artificial intelligence
(AI) approaches have assisted the research community to
design valued and computer-aided melanoma diagnostic
techniques.

Research areas of AI which are working in the medical
area are widely distributed into two types namely the
machine learning (ML) and DL frameworks. For the ML
techniques, the researchers employ pattern-based methods
to extract the feature vector from the input samples which
are later classified into respective classes with the help of
some classifiers like KNN, SVM, and decision tree (DT).
However, due to the complex structural properties of mela-
noma lesions, the conventional ML approaches are not
found much proficient as the extensive changes in the color,
size, and shape of lesions decrease the recognition ability of
these methods. To enhance the effectiveness of the mela-
noma recognition systems, classification is performed after
segmenting the diseased area of skin from the healthy
region. Hence, the segmentation of diseased portions is
mandatory for the reliable detection of melanoma lesions.
Some works like those performed in [3, 4] have tried to bet-
ter elaborate the significance of the segmentation procedure.
However, the segmentation accuracy of existing approaches
have been dropped significantly for images with intense
changes in light, brightness, and sample distortions, whereas
for practical cases, it is impossible to obtain samples with
unchanged characteristics. Therefore, there exists a demand
for a more accurate melanoma moles recognition system.

Recently, the robustness and better recall ability of the
DL frameworks have encouraged scientists to test them in
the area of medical image analysis. These systems have
exhibited tremendous performance in several areas of the
medical including eye abnormalities recognition [5], brain
cancer identification [6], heart diseases [7], and skin cancer
classification [8]. The ability of DL methods to better com-
pute ambiguity in health-related systems has empowered
them to effectively identify and locate the unhealthy regions
of the human body [9–16]. The DL approaches highly rely
on the selected convolutional neural network (CNN) that
is responsible for extracting useful information from the
input images and assisting to locate the diseased portion like
melanoma moles from human skin. Several methods have
used the CNN frameworks for the timely recognition of
the melanoma moles from the dermoscopic images and
showed impressive results which clearly depict the better
adaptability of these methods toward skin cancer recogni-
tion. However, most of these methods accomplished some
preprocessing steps to tackle the problem of keypoints maps
saturation [17]. To avoid such issues, many works have uti-
lized sample mapping along with pixel-wise labels [18, 19].
However, there is a demand for a more reliable model that
can better tackle the issues of existing methods.

Reliable and timely detection of skin cancers from
images with intense distortion like the incidence of noise,
blurring, and brightness variations is still a complex proce-
dure. Besides, the complex properties of skin moles contain-
ing alterations in the size, architecture, and color further
enhance the difficulty of the recognition method. Moreover,
the presence of hair and small blood vessels also hinders
the accurate localization of the diseased region. In this
work, we attempted to deal with the problems of existing
works by proposing a more robust framework. We have
used the CornerNet model along with the FKM approach
to detect and segment the skin lesions from the dermo-
scopic images. The presented work provides the following
main contributions:

(i) Employed CornerNet model with the FKM
approach for calculating a reliable set of features,
which resulted to improve segmentation ability by
locating the moles of varying sizes

(ii) Present a more robust framework that reduces the
model train and test time complexity due to its
power to tackle the framework overfitted data

(iii) The presented framework is capable of identifying
the abnormal skin moles for samples with intense
chrominance, brightness, changes, and suffering
from noise and blurring attacks

(iv) Enhanced skin lesion segmentation ability of the
presented work because of the ability of the Corner-
Net model to nominate a more representative set of
features

(v) A huge evaluation has been carried out on two stan-
dard databases named ISIC-2017 and ISIC-2018
and confirmed the robustness of the introduced
work for the melanoma lesions segmentation

We have followed the following structural scheme for
the rest of the article: Section 2 explains the work from his-
tory that is already performed for skin cancer moles recogni-
tion. The presented framework is explained in detail under
Section 3 while the model evaluation results are presented
in Section 4. Finally, the work is concluded under Section 5.

2. Related Work

In this section, an in-depth analysis of already performed
work for moles melanoma detection is performed, and the
results of all related works are discussed. Extensive work
accompanying conventional ML approaches has been car-
ried out by scientists for the automated recognition of skin
cancers from dermoscopic samples. One such work was pre-
sented in [20] where a segmentation step was performed to
locate the area of interest. Secondly, the features from the
processed samples were computed by employing the ABCD
rule along with the cooccurrence matrix [21]. Finally, the
SVM approach was applied to perform the skin moles cate-
gorization task. The work proposed in [20] has attained an
average accuracy value of 92.10%. Codella et al. [22]
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introduced a framework by employing the ensembling tech-
nique for skin cancer identification. Initially, the U-Net
model was used to segment the moles from the input images,
after which the features were computed from the segmented
areas via using a sparse coding approach and pattern-based
methods. Finally, the SVM model was trained on the com-
puted feature to compute the classification score. In the last
step, results are averaged to determine the final class label
associated with each image. The work discussed in [22]
acquired a classification accuracy of 76% and needs results
enhancement. Daghrir et al. [23] proposed a hybrid method
to classify the skin moles from dermoscopic images. In the
first step, the Otsu method along with the Gaussian
approach was used to accomplish the preprocessing step
over the input images. Then, the features from the processed
samples were extracted by using the scale-invariant feature
transform (SIFT) and the histogram of oriented gradients
methods, while for the classification of the samples, two
renowned ML classifiers named SVM and KNN were used.
Besides, the work also proposed a CNN model to compute
the deep features as well. The final class associated with each
sample is determined by employing a majority vote method.
This framework [23] presents improved melanoma lesion
identification and categorization results; however, the model
requires a huge set of samples for efficient training.

Another framework was presented in [24] that accom-
plished the melanoma lesion segmentation task by employ-
ing the superpixel area growth approach. The approach
inherited the idea of the Gaussian mixture model (GMM)
which effectively distributed the suspected sample into
equal-sized portions. The skin moles were then presented
by assigning colored labels to all superpixels extracted with
the delta metric approach, which are capable of differentiat-
ing the various color shades that are difficult to recognize by
the naked eye. The method discussed in [24] attained the
segmentation results of 86.83%; however, the segmentation
accuracy needs more enhancement. Moreover in [25],
another conventional ML approach was introduced that
employed the concept of the codeword that used the key-
points similarity computation to accomplish the classifica-
tion task of melanoma moles. In the first step, a highly
correlated set of sample keypoints was computed by employ-
ing the linear prediction method, after which the SIFT
method along with the RGB color spaces was utilized to
compute the feature vector. The acquired feature vectors
were employed for the SVM training to accomplish the mel-
anoma moles classification job. The work [25] robustly uti-
lizes processing resources; however, the classification
results have highly relied on the selected codebook size.

Now, the efficiency of the CNN and DL approaches has
gained much popularity which insisted scientists to test
them in the area of health and care as well. Several
approaches have been presented by the researcher to provide
automated solutions for several medical-related applications
like assisting the practitioner in radiology or automatically
recognizing several types of syndromes including skin can-
cers. One such technique was proposed in [26], where the
author presented a lightweight framework for recognizing
melanoma moles that could be deployed on smartphones.

This work utilized a DL method named the AlexNet model
and trained it over the HAM10000 dataset to classify the
melanoma moles. The work discussed in [26] attained the
classification accuracy of 84%; however, unable to perform
well for lesions of very small sizes. Acosta et al. [27] intro-
duced a DL framework to locate and categorize skin moles
into various classes. Initially, the Mask-RCNN model was
employed to identify the diseased area from the input image.
Next, a CNN framework namely the ResNet152 was applied
over the segmented region to compute the features and spec-
ify the class associated with the detected part. The samples
were recognized as benign or malignant. Zhang et al. [28]
also employed a DL approach where the fully convolution
network (FCN) technique was employed to segment the dis-
eased areas from the dermoscopic samples. The used model
named the FCN employed the VGG model as its base net-
work for calculating the nominative feature set from the
input images. Moreover, a small framework was employed
to fuse the texton pattern-based pixel keypoints with the
deep features. This work [28] shows better melanoma moles
classification performance; however, the detection results
reduce on images containing moles with arbitrary shapes
and similar looks. Another approach was proposed in [29]
where a DL model namely FC-DPN was introduced to
enhance the melanoma lesions segmentation results. The
FC-DPN model employed the FCN approach by replacing
the dense blocks with the dual-path network (DPN) blocks
to better extract the sample features. The DPNs were then
distributed into two subregions namely the DPN-
projection and processing units, respectively. The major rea-
son for this distribution was to successfully reemploy the
computed keypoints. The work discussed in [29] attains
the classification accuracy of 95.14% over the ISBI 2017
dataset,4 however, at the charge of increased model compu-
tational complexity. Lei et al. [30] proposed a work to per-
form the automated detection and classification of skin
cancers. The approach utilized the residual framework with
the FCN method to differentiate the healthy and diseased
areas from dermoscopic samples. After this, the employed
framework was utilized to calculate the estimation of all
pixels combined iteratively to produce the resultant segmen-
tation mask of the skin moles. The methodology elaborated
in [30] has shown an average segmentation accuracy value
of 95.78% over the ISBI 2016 repository; however, this
approach is computationally expensive. A similar method
was introduced in [31] that employed the pixel-wise contri-
bution of samples to locate the melanoma moles from the
input samples. Initially, a step was performed to improve
the visual appearance of the dermoscopic images. Then, an
encoder-decoder framework was used to process the
improved images to accomplish the classification task as
normal or melanoma-affected. The framework discussed in
[31] is efficient to locate the skin moles from the dermo-
scopic images; however, the model is suffering from an over-
fitting problem. An object detection-based approach was
proposed in [32] to present an automated system for skin
mole detection and segmentation. First, annotations were
developed to exactly identify the diseased portion from the
training samples, on which a DL approach namely the
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Faster-RCNN was trained. At the test stage, the trained
model locates the melanoma-affected region that was further
segmented by the fuzzy K-means algorithm. The work was
capable of locating the small lesions and acquired the aver-
age segmentation accuracy of 95.60% over the PH2 reposi-
tory. Similarly, many other segmentation approaches [33,
34] have shown robust performance for clustering the dis-
eased areas from the input images.

Nawaz et al. [35] presented another framework for the
automated identification and classification of the skin model
via employing the Faster-RCNN model together with the
SVM approach. The work elaborated in [35] is robust to
melanoma classification because of its empowerment to
tackle the model overfitting data. However, the works dis-
cussed in [32, 35] have highly relied on the selection of
hyperparameters in the model training phase. Banerjee
et al. [36] also presented a framework for melanoma lesion
segmentation. The work utilized an object detection model
named the YOLO that extracted a feature vector from the
dermoscopic images to locate the position of the affected
region. After this, the L-type fuzzy approach was employed
to accomplish the segmentation task. The work proposed
in [36] performs well for the skin cancer moles segmentation
task; however, the detection performance degrades for the
lesions of very small sizes. Another DL work was elaborated
in [37] where a CNN model was designed to accomplish the
skin moles classification task. The CNN model consisted of
68 layers along with the classification unit. The model [37]
provides a lightweight solution to melanoma classification;
however, results are reported for a small database. Khan
et al. [38] proposed a computer-aided framework to locate
and classify melanoma moles from the input images. The
method initially employed an object detection approach
named the Mask-RCNN model to locate and segment the
skin moles via computing the deep features with the
ResNet50 base network. The detected regions were passed
to the DenseNet-201 model to understand the structural
description of moles which were later categorized by
employing the SVM algorithm. The method elaborated in
[38] attained the clustering and categorization results of
93.60% and 96.30%, correspondingly, however, at the
expense of increased model complexity. Many other
researchers have attempted to classify and segment the skin
cancer moles [39–45]; however, there is a demand for per-
formance enhancement. Besides, the expense of processing
power for such methods is a substantial barrier in medical
applications. An analysis of existing work is presented in
Table 1.

3. Methodology

In the presented work, we have introduced a DL approach
namely the CornerNet model along with the FKM method
to detect and segment melanoma lesions from dermoscopic
images. In the first step, a preprocessing step is executed
on the input images to eradicate the unwanted objects from
the images under analysis. That is, hair or tiny blood vessels
can hinder the recognition ability of the CornerNet model.
After this, the processed images are used as input to train

the CornerNet model for computing the deep features set
and detecting melanoma lesions. Once the moles are
detected by the CornerNet model, next the FKM clustering
approach is applied to exactly segment the moles. The entire
flow of the proposed approach is explained in Figure 1. We
have confirmed through analysis that the employment of
the CornerNet model with the FKM clustering approach is
proficient for locating and segmenting skin lesions of vary-
ing masses, shapes, and colors. A detailed description of all
steps is given in the proceeding sections.

3.1. Preprocessing. The advancement of DL approaches has
presented several automated systems for recognizing differ-
ent medical diseases via employing image modalities. How-
ever, the incidence of noise, blurring, and light variation in
samples during the capturing process are unavoidable. The
major cause of the occurrence of these transformation
changes is the quick variations in the lighting conditions
and shadows reflected from the human bodies. The presence
of such artifacts in samples can reason for performance deg-
radation for any detection model. Furthermore, in the der-
moscopic samples of skin cancers, the occurrence of hair
and minute blood vessels further increases the complexity
of melanoma mole detection and segmentation. To tackle
the above-elaborated issues, a preprocessing step is accom-
plished on the input images by considering several morpho-
logical closing operations to remove the unrequired details
from images. Besides, an unsharp filter [47] is also applied
to enrich the graphic details of the skin cancer samples
which contributes to effectively recognizing the melanoma
lesions from the dermoscopic images. We have mentioned
the mathematical description of the employed preprocessing
operation in the following.

Sx u, vð Þ = S u, vð Þ ⊕Wð Þ ⊖W: ð1Þ

In Equation (1), Sðu, vÞ is presenting the input sample
with u and v depicting the pixel location. Moreover, W pre-
sents the structuring kernel with a squared shape along with
the size of 10 and angles 90° and 180° for all image values,
respectively, while Sxðu, vÞ denotes processed samples free
from artifacts. During the artifacts removal process, some
other effects like smoothness and blurring are added to sam-
ples, so we have applied an unsharp filter to improve the
visual appearance of images. The mathematical construction
of the unsharp filter is discussed in the following:

Sp u, vð Þ = Sx u, vð Þ × ϖ u, vð Þ,

ϖ u, vð Þ = −
1

πσ4
1 − u2 + v2

2σ2

� �
e− u2+v2ð Þ/2σ2 :

ð2Þ

Finally, the resultant image Soðu, vÞ is attained by
employing Equation (3) free from all unnecessary details.
After this, the processed images are passed to the CornerNet
model for its training to detect the skin moles.

So u, vð Þ = S u, vð Þ − Sp u, vð Þ: ð3Þ
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3.2. CornerNet. The CornerNet [48] is a well-known one-
stage object detection model that recognizes the region of
interest (RoIs) like the diseased region (skin moles) from
the input samples through keypoint calculation. The Cor-
nerNet model is concerned to estimate the top-left (TL)
and bottom-right (BR) corners to draw the box with more
accurateness in comparison to other object detection models

[49, 50]. The CornerNet framework is comprised of two
basic units which are the feature computation backbone
and the prediction module (Figure 1). At the start, a key-
point extractor unit is used which extracts the reliable fea-
ture vector that is employed to estimate the heatmaps
(Hms), embeddings, offset, and class (C). The Hms is con-
cerned to give the approximation if a specific location in a

Table 1: Relative investigation of existing approaches for recognizing melanoma moles.

Author Year Approach Task Database Accuracy

ML techniques

Alquran et al. [20] 2017 Pattern features + SVM Categorization Custom database 92.10%

Codella et al. [22] 2017 U-Net + SVM Categorization ISIC-2016 76%

Daghrir et al. [23] 2020 SIFT + SVM and KNN Categorization ISIC-2017 88.40%

Bama et al. [24] 2021 GMM model Segmentation PH2 86.83%

Hu et al. [25] 2019 SIFT + SVM Categorization PH2 82%

Durgarao et al. [44] 2021 LVP, and LBP + C-means Segmentation PH2 79.44%

DL techniques

Ameri et al. [26] 2020 AlexNet Categorization HAM10000 84%

Acosta et al. [27] 2021 ResNet-152 Categorization ISIC-2017 90.40%

Zhang et al. [28] 2019 VGG-16 Categorization ISIC-2017 92.72%

Shan et al. [29] 2020 FC-DPN Segmentation ISIC-2017 95.14%

Bi et al. [30] 2019 Res-FCN Segmentation ISIC-2016 95.78%

Adegun et al. [31] 2019 Encoder-decoder Categorization ISIC-2017 95%

Nawaz et al. [32] 2021 Faster-RCNN + FKM Segmentation PH2 95.6%

Nawaz et al. [35] 2021 Faster-RCNN + SVM Categorization ISIC-2016 89.10%

Banerjee et al. [36] 2020 YOLO + L-type fuzzy clustering Segmentation ISIC-2017 97.33%

Iqbal et al. [37] 2021 CNN Categorization ISIC-2019 88.75%

Khan et al. [38] 2021 Mask-RCNN, DenseNet201 + SVM Segmentation ISIC-2016 93.6%

Mohakud et al. [39] 2022 Encoder-decoder Segmentation ISIC-2016 98.32%

Abdar et al. [40] 2021 Bayesian model Categorization Kaggle skin cancer dataset 88.95%

Pacheco et al. [41] 2021 Metadata and block-based method Categorization ISIC-2019 74.90%

Wang et al. [42] 2022 U-Net Segmentation ISIC-2017 94.67%

Zhao et al. [43] 2022 U-Net++ Segmentation ISIC-2018 95.30%

Ali et al. [46] 2021 DCNN Categorization HAM10000 91.93%
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Figure 1: Proposed method diagram.
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sample is a TL/BR corner associated with a particular cate-
gory [51], while the embeddings are used to discriminate
the detected pairs of corners and offsets to fine-tune the
box position. The corners with high-scored TL and BR coor-
dinates are employed to regulate the exact position of the
box, whereas the associated category for each detected dis-
eased region is specified by using the embedding distances
on the computed feature vector.

The CornerNet framework shows robust performance in
detecting and classifying several types of objects [49, 52–54].
The abnormalities of melanoma lesions have some distinct
characteristics, like moles of different shapes and sizes and
high color resemblance in the affected and healthy regions
of skin areas which complicates the detection procedure.
Moreover, the existence of several image distortions like
the alterations found in the light, color, and brightness of
the samples and the incidence of noise and blurring effect
further increase the complexity of the skin lesions detection.
Therefore, to better tackle the complexities of samples, we
have used the CornerNet model with an Hourglass frame-
work as its base network. The introduced base network is
capable of locating and extracting the more relevant sample
attributes which assists the CornerNet approach to enhance
its recall ability in comparison to the conventional model.

The inspiration for nominating the CornerNet approach
for deep features computation and detection of melanoma
moles is due to its capability to effectually detect objects by
utilizing keypoint approximation in comparison to earlier
approaches [49, 50, 55–57]. The framework utilizes detailed
keypoints and identifies the object by employing a one-stage
detector, so it eliminates the need of using huge anchor
boxes for diverse target dimensions than the other one-
stage object recognition models, i.e., SSD [55] and YOLO
(v2, v3) [56]. Moreover, the CornerNet model is more com-
putationally robust than the other anchor-based two-stage
approaches, i.e., RCNN [57], Fast-RCNN [49, 58], and
Faster-RCNN [50, 59]) as these techniques employ two
phases to accomplish the object localization and categoriza-
tion job. Consequently, the CornerNet model efficiently
tackles the problems of existing works by presenting a more
proficient network that extracts more nominative sample
features and reduces the computational cost as well.

3.2.1. Hourglass Network. The hourglass network [28] is
employed as a backbone to obtain relevant features from
the input image. It is a fully convolutional network consist-
ing of one or more hourglass modules. Initially, the model
accepts the image with dimensions of 256 × 256. In an hour-
glass module, input features are first downsampled by using
a series of max-pooling layers and convolutions. After that,
the features are upsampled back to their original resolution
by using a series of convolutional and upsampling layers.
As details of the feature are lost during the operation of
max-pooling layers, details in the upsampled features are
brought back by introducing skip layers. Both global and
local features are captured by the hourglass network in one
uniform structure. When the network stacks multiple hour-
glass modules, it can reprocess the features for capturing
higher-level information. Due to these properties, the hour-

glass network becomes a more suitable choice for brain
tumor detection.

3.2.2. Corner Detection. After the hourglass network, there
are two modules for the prediction of corners, i.e., top-left
and bottom-right corners. Each corner has one positive
ground-truth position location, and all other locations are
set as negative. This is done this way because, for a close pair
of false corner detections, a box can still be produced which
overlaps the ground-truth box. The radius is determined by
analyzing the size of an object, which is done by making sure
that a bounding box corresponding to at least an IoU with
ground-truth annotations would be generated by a pair of
points residing within the radius. The parameter t is set to
0.7 in each experiment. When the radius is given, an unnor-
malized 2D Gaussian is used to determine the amount of
penalty reduction. The 2D Gaussian, g is determined by
e−ða

2+b2Þ/2σ2 , which has a center at locations and has σ as
one-third portion of the radius.

The detection loss function is defined as

Ldetect =
−1
M

〠
N

n=1
〠
H

j=1
〠
W

k=1

1 − pnjk
� �φ

log pnjk
� �

if gnjk = 1

1 − gnjk
� �ω

gnjk

� �φ
log 1 − pnjk

� �
otherwise,

8><
>:

ð4Þ

whereM represents the total number of objects in the image.
For a certain location ðj, kÞ, pnjk is the score for a certain
class C in the set of predicted heatmaps, and gnjk is the heat-
map labeled as “ground-truth” which is generated with the
Gaussians. φ and ω are hyperparameters that are responsible
for controlling the contribution of each point. In our imple-
mentation, we have set the values of φ and ω, as 3 and 5,
respectively. The Gaussian bumps are encoded with gnjk,
and the term ð1 − gnjkÞ guarantees the reduction of the pen-
alty around the locations which are set as ground-truth.

The downsampling layers are employed to reduce
memory usage and gather global information [15, 28]. Every
location denoted by a, b in the input image is mapped to
another location ða/d, b/dÞ in the heatmaps, where d is the
factor to which downsampling is performed. Remapping
locations from the heatmaps to the input image may result
in some precision loss, which can affect the quality of the
IoU of smaller bounding boxes. The CornerNet resolves this
issue by predicting location offsets for adjusting the corner
locations before their mapping to the input resolution and
given by

Zi =
ai
n
−

ai
n

j k
, bi
n
−

bi
n

� �� �
, ð5Þ

where Zi denotes offset and ai and bi are the coordinators of
a and b for corner i. Particularly, one group of offsets is
predicted shared by top-left corners of all categories, and
another group of offsets is shared by bottom-right corners.
The smooth L1 loss [11] is applied at ground-truth corners
for training purposes and is defined as
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Lof f =
1
M

〠
M

i=1
SmoothL1Loss Zi, Zi′

� �
: ð6Þ

3.2.3. Corner Grouping. An image may contain multiple
objects; thus, the algorithm may detect multiple bottom-
right and top-left corners in a single image. In this step,
the algorithm detects the pair of bottom-right and top-left
corners belonging to the same bounding box. For each
detected corner, the network predicts an embedding vector
such that the distance between the embeddings for each
bottom-right and top-left corners belonging to the same
bounding box should not be large. The corners are then
grouped based on these distances. Here, we incorporate the
embeddings of only one dimension. The “pull” and “push”
losses used to train the network for grouping and separation
of the corners are given as below:

Locpull =
1
M

〠
M

i=1
etpi − ei

� �2
+ ebti − ei
À Á2� �

,

Locpush =
1

M M − 1ð Þ〠
M

i=1
〠
M

j=1
j≠i

max 0,Δ− etpi − ej
��� ���h i

,
ð7Þ

where etpi represents the embeddings for the bottom-right
corner and top-left corners with ebti , where e denotes embed-
dings, tp denotes top-right corner, bt denotes bottom-right
corner, and i denotes the skin moles. Moreover, ei denotes
the mean of etpi and ebti , and the value of Δ = 1 is used in
all our experiments. Same as the offset loss, the losses are
only applied at the ground-truth corner location.

3.2.4. Prediction Module. The feature computation frame-
work has consisted of two separate output units, which
denote the TL and the BR corners estimation branches,
respectively. Every branch unit comprises a corner pooling
layer (CPL) positioned on the top of the backbone to pool
keypoints and produces three results: Hms, embeddings,
and offsets. This module is an improved residual block
(RB) containing two 3 × 3 CnL and one 1 × 1 residual net-
work followed by a CPL. The CPL assists the framework to
identify the potential corners. The reduced keypoints are
used as input into a 3 × 3 CnL-BtN layer, and then the
reverse projection is performed. This improved RB is
followed by a 3 × 3 CnL which produces Hms, embeddings,
and offsets. The Hms is concerned to give the approximation
if a specific location in a sample is a TL/BR corner associated
with a particular category, while the embeddings are used to
discriminate the detected pairs of corners and offsets to fine-
tune the box position. A suspected image can contain more
than one affected region; therefore, embeddings assist the
model to determine if the predicted corner points belong
to a single or different class.

3.3. Skin Lesion Segmentation Using FKM. Once the lesions
are detected by the CornerNet model, then the FKM
approach is applied to the detected moles to segment them

by separating the diseased pixels from the healthy regions.
The major purpose of nominating the FKM in comparison
to the K-means clustering technique is that the K-means
model belongs to the hard clustering category in which one
sample belongs to a single cluster. While in comparison, in
the FKM approach, one sample can reside in several clusters,
so it is better suited to overlapped data.

The detected lesions from the last step are passed as
input to the FKM approach to accomplish the segmentation
task. The FKM approach distributes the suspected sample
into l segments rk = ðk = 1, 2, 3, ::lÞ that are linked to the cen-
ter of the cluster denoted as Cl. The FKM algorithm employs
“fuzzy” or “soft” relation among ROIs and samples and min-
imizes distortion by utilizing the following formulation:

L = 〠
k

u=1
〠
N

v=1
bfu,vgu,v: ð8Þ

In Equation (3), k denotes the total clusters, whereas f
represents the fuzzifier parameter that operates the key-
points and resultant clusters. Moreover, bu,v∈ [0,1], and
gu,v shows the link and the computed Euclidean distance
among the center of clusters and keypoints. A detailed
description of the FKM approach is given in Algorithm 1.

4. Results

In this part, a detailed description of the used datasets is
given. Moreover, we have defined the performance measures
used to evaluate the segmentation results of the presented
methodology. Furthermore, a comprehensive experimental
evaluation has been carried out to explain the segmentation
ability of our work in comparison to other latest frame-
works. Table 2 shows the description of the trainable param-
eters for the proposed approach.

4.1. Datasets. To validate the model in segmenting the mel-
anoma moles, we have considered two standard databases
named ISIC-2017 and ISIC-2018. The mentioned datasets
are provided by the “International Symposium on Biomedi-
cal Images (ISBI) in the Challenge of Skin Lesion Analysis
toward Melanoma Detection” [60]. A detailed explanation
of the employed repositories is elaborated in Figure 2. In
both datasets, the ground-truths are provided which are
examined and verified by a panel of experts in this domain.
The major cause of nominating the ISIC repositories for
evaluating the segmentation ability of the presented work
is that both datasets contain samples of varying attributes
like the intense changes in the size, mass, shape, and color
of the moles. Moreover, images are subject to several distor-
tions like containing blurring, noise, and intensity variations
which make them challenging and close to real-world exam-
ples. We have divided the datasets into three sets where 60%
of data is used for model training, 10% for validation, and
30% is employed for model testing.

We have trained the presented work with an epoch rate
of 20. To show the effective learning of our work, we have
reported the training accuracy and loss graphs in Figure 3
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which are clearly depicting the robust performance of our
approach.

4.2. Evaluation Metrics. To measure the segmentation results
of the presented work, several standard measures named
sensitivity [61], specificity [62], accuracy [63], dice coeffi-
cient [64], and Jaccard Index [65] are nominated. The math-
ematical depiction of the used measures is given in the
following:

Specificity = TP
TP + FP

,

Sensitivity = TP
TP + FN

,

Accuracy = TP + TN
TP + FP + TN + FN

,

Dice = 2 × TP
2 × TP + FN + FP

:

ð9Þ

4.3. Assessment of Presented Framework. A precise skin mole
detection and segmentation approach should be empowered
to accurately locate the lesions of variable mass and struc-
ture. To check this, an analysis is performed in this section.
For this reason, the test images from both nominated ISIC
datasets are taken and evaluated on the trained framework.
The test samples from both repositories contain cancer
moles of arbitrary shape and size with extensive changes in
the chrominance appearance. The visual results for both
the detection and segmentation of melanoma moles are
shown in Figure 4. The effective recognition ability of the
CornerNet model empowers it correctly identify the mela-

noma lesions by altering mass and structures. To numeri-
cally determine the recognition power of the CornerNet
model, we employed the mAP performance measure as it
helps in understanding the capability of a framework in
locating the melanoma moles. The CornerNet model identi-
fied the melanoma moles with the mAP value of 0.967,
0.988, and 0.971 over the ISCI-2017 and ISIC-2018 reposito-
ries, respectively. For segmentation results, the FKM
approach grouped the skin cancer moles with white color
to determine the region of interest, while the remaining
information is referred to as the black area in the segmented
samples. The visual results from both datasets are shown in
Figure 4 from where it is quite evident that the proposed
approach is proficient in recognizing the melanoma moles
and vigorous to variations exist in the position, volume,
and architecture of the skin moles.

To further discuss the recognition ability of our method,
numerous standard performance metrics are selected to
numerically show the robustness of our approach. Initially,
we have discussed the sensitivity, specificity, and accuracy
values attained over the ISIC-2017 and ISIC-2018 reposito-
ries, and the acquired values are shown in Figure 5. Descrip-
tively, over the ISIC-2017 repository, the presented approach
reported the sensitivity, specificity, and accuracy values of
98.76%, 99.68%, and 99.32%, respectively, whereas for the
ISIC-2018 dataset, the introduced methodology has shown
the values of 99.48%, 99.39%, and 99.63% for the sensitivity,
specificity, and accuracy measures, respectively.

Then, we have selected the Jaccard index and dice coef-
ficient performance metrics as these are considered the stan-
dard measures by the researchers for discussing the
segmentation results of a model. These measures assist to
determine how much a proposed model is capable of locat-
ing and recognizing the skin moles of varying sizes and
shapes. The attained results are depicted with the help of a
box plot as this graph is capable of better discussing the
attained values by showing the lowest, highest, and average
results (Figure 6). The values shown in Figure 6 clearly show
that our work is empowered to depict better segmentation
results for both nominated datasets. More clearly, in the case
of ISIC-2017 respiratory, the presented technique has
attained the Jaccard index and dice scores of 0.9693, and

Sequence of steps performed by FKM for melanoma moles segmentation.
1. Input:

Clusters = Ck
Clusters initialization =Ck = 0
Keypoints = gi,j
Fuzzification parameter =m

//FKM ( )
2. Compute membership for all keypoints of clusters

bði, jÞ = ððgði, jÞð1/m−1Þ∑k
l=1ð1/gilÞ1/m−1ÞÞ−1

3. Change value of the cluster centers:
CjðpÞ =∑N

j=1bi,j
mXi/∑N

j=1bi,j
m:

4. Replicate step 2, until the convergence of the FKM technique.
5. Output: Show samples with segmented healthy and diseased areas

Algorithm 1

Table 2: Training parameters of the presented methodology.

Model parameters Value

No of epochs 20

Value of learning rate 0.0001

Selected batch size 8

The threshold for the confidence score 0.2

The threshold for the unmatched region 0.5
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0.9813, while for the ISIC-2018, the proposed approach has
shown the Jaccard index and dice scores of 0.9783 and
0.9886. The values clearly show that our work is quite profi-
cient in locating the lesions under huge changes in the shape
and structure of moles.

Another important measure employed by the scantiest to
elaborate on the recognition ability of any model is the con-
fusion matrix as this plot assists to understand the ability of
the model to differentiate the healthy samples from the dis-
eased. The attained confusion matrix for both ISIC-2017 and
ISIC-2018 repositories with the help of the proposed
approach is shown in Figure 7. The reported values in the
figure clearly show the effectiveness of our approach in accu-
rately locating and recognizing the diseased and healthy
samples.

It is quite evident from the visual and quantitative results
discussed above that the proposed framework has exactly seg-
mented the skin moles with a high recall ability and robust
performance results. The model has depicted better results
because of its power to nominate the representative set of key-
points capable of better discussing the structural information

of suspected samples which eventually improves the segmen-
tation results of the proposed approach.

4.4. Comparison with Challenge Teams. We performed an
analysis to evaluate the segmentation results of the proposed
approach for both employed results against the highest per-
forming teams from the ISIC-2017 and ISIC-2018
competitions.

For the ISIC-2017 dataset, the obtained analysis with the
challenge teams is shown in Table 3 where we have taken the
five highest performing teams and compared our results
with them. The stated values in Table 3 are reported from
the ISIC-2017 challenge leaderboard. It is quite visible from
the comparison shown in Table 3 that the proposed
approach has attained the highest segmentation values for
all employed evaluation metrics compared to the competi-
tive approaches. The approaches discussed in [66–70]
acquired the accuracies of 93.40%, 93.20%, 93.40%, 93.10%,
and 93.0%, while comparatively, our work has shown the
accuracy results of 99.32%. Similarly, for the Jaccard index,
dice score, specificity, and sensitivity, the proposed approach

Samples from the test images

Samples from the validation set

Samples from the training set

No of images

0 500 1000 1500 2000 2500 3000 3500 4000

ISIC-2017

ISIC-2018

Figure 2: Details of samples from both employed datasets.
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Figure 3: Pictorial illustration of train time accuracy and loss graphs.
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has shown the values of 0.9693, 0.9813, 99.68%, and 98.76%,
respectively, which are higher than the values shown in
[66–70]. More descriptively, for the Jaccard index metric,
we have shown a performance gain of 20.91% which is
13.81% for the dice measure in comparison to the competi-
tive method. Similarly, for the accuracy performance metric,
we have attained a performance gain of 6.10%. Besides, for
the specificity and sensitivity evaluation measures, we have
shown a performance gain of 2.02% and 17.22%, respec-
tively, in comparison to the selected methods. Hence, we
can say that our approach is more competent than the peer
approaches in segmenting skin lesions and shows the state-
of-the-art performance.

Further, we have elaborated on the comparative analysis
of our work with the top three teams of the ISIC-2018 chal-

lenge to conduct a performance comparison for the ISIC-
2018 repository. The obtained comparison is shown in
Table 4. For the ISIC-2018 dataset, the proposed approach
has performed better than all the selected teams from the
competition leaderboard. More clearly, for the Jaccard index,
the selected models have shown the average results of
0.8363, which is 0.9783 for our work. Therefore, for the Jac-
card index, the proposed work has given an average perfor-
mance gain of 14.20%. Similarly, for the dice measure, the
competitor methods have elaborated the average score of
0.9001, which is 0.9886 for our work. So, we have given an
average performance gain of 8.79%% for the dice score. Sim-
ilarly, for accuracy, the peer teams have shown average
results of 94.33%, while our work has gained an accuracy
value of 99.63%. So, for the accuracy measure, we have

Input Localized SegmentedGroundtruth

Figure 4: A pictorial representation of both localized and segmented images with the CornerNet model along with the FKM approach.
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attained an average performance gain of 5.30%. Moreover,
for the specificity metric, the nominated teams have attained
an average score of 95.96%, which is 99.39% for our method.

So, for the specificity measure, we have given a performance
gain of 3.42%. Furthermore, for the sensitivity measure, the
comparative approaches have given an average value of

100.00%

95.00%

90.00%

85.00%

80.00%

Sensitivity Specificity Accuracy

ISIC-2017

ISIC-2018

ISIC-2017

ISIC-2018

Figure 5: Dataset-wise attained segmentation results.
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Figure 6: Performance measure of the presented technique in the forms of attained (a) Jaccard index and (b) dice score over the ISCI-2017
and ISIC-2018 datasets correspondingly.

1.38%

1.10%

98.90%

Melanoma

Melanoma

Predicted class

Healthy

Tr
ue

 c
la

ss

Healthy

98.62%

(a)

99.45%

99.33%0.55%Melanoma

Melanoma

Healthy

predicted class

Healthy

Tr
ue

 c
la

ss

0.67%

(b)

Figure 7: Attained confusion matrix results for the employed databases as (a) ISIC-2017 and (b) ISIC-2018 correspondingly.
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91.93%, which is 99.48% for our approach. So, for the sensi-
tivity measure, we achieved a performance gain of 7.55%. In
accordance with the conducted evaluation, this analysis
demonstrates that the advised method is accomplished in
attaining better segmentation results as compared to top-
ranked approaches on the same datasets.

4.5. Performance Analysis with the Latest Methods. In this
part, we have selected numerous new techniques employing
the ISIC-2017 and ISIC-2018 datasets and compared our
results with them by using several standard performance
metrics.

Initially, for the ISIC-2017 datasets, the approaches
described in [71–78] are selected, and the attained perfor-
mance comparative analysis is exhibited in Table 5. Descrip-
tively, the work in [71] was based on a deep learning
framework for accomplishing the automated segmentation
of the skin moles. In the first phase, the model employed
the ResNet50 network to calculate a set of feature vectors,
in which later, the segmentation was applied with the
decoder unit. This approach [71] exhibited segmentation
accuracy, Jaccard index, and dice scores of 94.50%, 80.53%,
and 87.92%. Wu et al. [72] proposed a DL framework for
recognizing the skin moles and acquired the average accu-
racy, Jaccard index, and dice scores of 93.26%, 76.53%, and
85.00%, while the work presented in [74] represents a model
namely W-net for segmenting the melanoma lesions and
reported sensitivity, specificity, and accuracy with the values
of 0.9486, 0.9889, and 97.94%. The methods discussed in
[73, 75] attained the average segmentation results with accu-
racies of 98.67% and 86%, respectively. Moreover, the
approaches in [76–78] also showed promising segmentation
results with values of 94.08%, 94.30%, and 93.13%, respec-
tively, while it is quite evident from the results reported in
Table 5 that the proposed approach has shown the highest
performance values for all used evaluation measures.

It is quite clear from the values shown in Table 5 that the
comparative methods have shown an average sensitivity
value of 0.8890, while our work has depicted a sensitivity

score of 0.9876 and given a performance gain of 9.86%, while
for the specificity measure, the competitive approaches have
shown a value of 0.9806 which is 0.9968 for our work. So, we
have shown a performance gain of 1.62% for the specificity
measure. Moreover, for the accuracy, Jaccard index, and dice
score, the selected methods have shown the average values of
99.13%, 81.29%, and 89.37%, which are 99.32%, 96.93%, and
98.13% for the proposed approach. Therefore, we have pre-
sented the performance gains of 4.20%, 15.64%, and 8.76%
for the accuracy, Jaccard index, and dice score.

We have also performed the comparison of our
approach for the ISIC-2018 dataset against the latest
approaches mentioned in [72–76, 79–81], and the attained
comparison is given in Table 6. In [72], a network named
FAT-Net was proposed to perform the segmentation of skin
moles from the dermoscopic images and attained sensitivity,
specificity, and accuracy scores of 0.9100, 0.9699, and
95.78%, while the work in [74] also utilized a CNN model
and depicted the sensitivity, specificity, and accuracy scores
of 0.9554, 0.9840, and 97.39%, whereas the method
described in [73] deployed a deep learning framework and
attained sensitivity, specificity, and accuracy scores of
0.9910, 0.9878, and 98.86%. Araújo et al. [79] presented a

Table 3: Comparative analysis of our work with performance values from the ISIC-2017 challenge leaderboard.

Method Jaccard index Dice Accuracy Specificity Sensitivity

CDNN [66] 0.7650 0.8490 93.40% 97.50% 82.50%

U-Net [67] 0.7620 0.8470 93.20% 97.80% 82.00%

Deep residual network [68] 0.7600 0.8440 93.40% 98.50% 80.20%

U-Net [69] 0.7540 0.8390 93.10% 96.90% 81.70%

FCNN [70] 0.7.20 0.8370 93.00% 97.60% 81.30%

Proposed 0.9693 0.9813 99.32% 99.68% 98.76%

Table 4: Comparative analysis of our work with performance scores from the ISIC-2018 challenge leaderboard.

Method Jaccard index Dice Accuracy Specificity Sensitivity

Mask-RCNN2+segmentation 0.838 0.898 94.20% 96.30% 90.60%

Ensemble with CRFv3 0.837 0.904 94.50% 95.20% 93.40%

Lesion segmentation by DCNN 0.834 0.900 94.30% 96.40% 91.80%

Proposed 0.9783 0.9886 99.63% 99.39% 99.48%

Table 5: Performance analysis of the proposed work with the new
methods over the ISIC-2017 dataset.

Reference Sensitivity Specificity
Accuracy

(%)
Jaccard

index (%)
Dice
(%)

[71] 0.8804 0.9659 94.50 80.53 87.92

[72] 0.8392 0.9725 93.26 76.53 85.00

[74] 0.9486 0.9889 97.94 — 93.22

[73] 0.9695 0.9950 98.67 95.98 97.95

[75] 0.8600 — — — —

[76] — — 94.08 78.55 86.48

[77] — — 94.30 — —

[78] 0.8364 — 93.13 74.88 85.63

Proposed 0.9876 0.9968 99.32 96.93 98.13
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method named LinkNet to locate and clustered the mela-
noma lesions and gained an accuracy score of 96.70%. Fur-
thermore, the approaches elaborated in [75, 81]
demonstrate sensitivity scores of 0.86 and 0.7890, respec-
tively. Moreover, the techniques discussed in [76, 80] pre-
sented accuracy results of 97.20% and 96.19%, respectively.

The performed analysis in Table 6 clearly shows the
effectiveness of our approach in comparison to the latest
methods, as we have attained the highest results for all
reported performance measures. In a more descriptive man-
ner, the selected approaches have shown an average sensitiv-
ity score of 0.8927, while our work has reported a sensitivity
value of 0.9939 and given a performance gain of 10.12%. For
the specificity, the comparative methods have given a score
of 98.14% which is 0.9914 for the proposed work. So, we
have shown a performance gain of 1.34% for the specificity
measure. Moreover, for the accuracy, Jaccard index, and dice
score, the comparative methods have shown average values
of 97.02%, 88.78%, and 91.73%, while the proposed
approach has demonstrated the values of 99.63%, 97.83%,
and 98.86% and presented the performance gains of 2.61%,
9.05%, and 7.13% for the accuracy, Jaccard index, and dice
score, respectively.

The performance evaluations conducted in Tables 5 and
6 are clearly confirming the proficiency of our work as com-
pared to the other latest methods. Our approach has gained
the highest results due to the shallow structural description
of the proposed approach that assists it to avoid the gradient
vanishing problem and makes it capable of learning the com-
plex properties of melanoma lesions. The other approaches
from history are employing very deep networks with the
employment of redundant information which enhances their
computational complexity and causes the model overfitting
problem. The proposed approach has better tackled the limita-
tions of peer methods by proposing an efficient approach that
assists to learn a more descriptive set of the features of the
sample and enhances the recall ability of the model.

5. Conclusions

The adverse stage of melanoma cancer results in compli-
cated and expensive surgical cure processes and even can
cause the demise of the victim. In the presented work, we

attempted to diagnose the lesions at the earliest stage by seg-
menting them from the dermoscopic samples. We have used
the CornerNet model along with the FKM approach to
detect and segment the skin moles from the dermoscopic
samples. Our work is capable of locating and segmenting
skin lesions of varying mass, orientations, and colors. More-
over, the proposed approach can easily tackle the incidence
of noise, blurring, and intensity changes found in the input
images. We have performed a rigorous experimental evalua-
tion over two standard repositories named the ISIC-2017
and ISIC-2018 and attained accuracy scores of 99.32% and
99.63%. Moreover, we have shown the visual samples to
elaborate on the accurate segmentation performance of our
approach and confirmed that the proposed solution is profi-
cient in accurately recognizing the skin moles and assists the
dermatologist in quickly detecting the lesions to understand
the severity level of the disease. The proposed framework
shows enhanced melanoma lesions detection and classifica-
tion results; however, small performance degradation is
observed for images with extensive color variations. There-
fore, in the future, we plan to investigate other DL frame-
works along with feature selection techniques to deal with
this limitation [82]. Moreover, we planned to evaluate the
presented work on other medical diseases.

Data Availability

Two publically available datasets have been utilized for the
experimental process such as ISIC-2017 and ISIC-2018
(https://challenge.isic-archive.com/challenges/).

Conflicts of Interest

All authors declared no conflict of interest in this work.

Authors’ Contributions

All authors contributed equally in this work.

Acknowledgments

This work was supported by the Korea Technology and
Information Promotion Agency (TIPA) for SMEs grant
funded by the Korea government (Ministry of SMEs and
Startups) (No. S3271954) and the Soonchunhyang University
Research Fund.

References

[1] R. L. Siegel, K. D. Miller, S. A. Fedewa et al., “Colorectal cancer
statistics, 2017,” CA: a Cancer Journal for Clinicians, vol. 67,
no. 3, pp. 177–193, 2017.

[2] H. W. Rogers, M. A. Weinstock, S. R. Feldman, and B. M. Col-
diron, “Incidence estimate of nonmelanoma skin cancer (kera-
tinocyte carcinomas) in the US population, 2012,” JAMA
Dermatology, vol. 151, no. 10, pp. 1081–1086, 2015.

[3] L. Ballerini, R. B. Fisher, B. Aldridge, and J. Rees, “A color and
texture based hierarchical K-NN approach to the classification
of non-melanoma skin lesions,” in Color Medical Image Anal-
ysis, pp. 63–86, Springer, 2013.

Table 6: Performance analysis of the proposed work with the new
methods over the ISIC-2018 dataset.

Reference Sensitivity Specificity
Accuracy

(%)
Jaccard

index (%)
Dice
(%)

[72] 0.9100 0.9699 95.78 82.02 89.00

[74] 0.9554 0.9840 97.39 — 93.00

[73] 0.9910 0.9878 98.86 95.66 97.78

[79] 0.8620 0.9860 96.70 80.00 88.90

[75] 0.8600 — — — —

[80] 0.8691 0.9809 97.20 97.57 —

[76] 0.9049 — 96.19 83.45 89.99

[81] 0.7890 0.9800 — 94.00 —

Proposed 0.9939 0.9948 99.63 97.83 98.86

13Computational and Mathematical Methods in Medicine

https://challenge.isic-archive.com/challenges/


[4] Y. Cheng, R. Swamisai, S. E. Umbaugh et al., “Skin lesion clas-
sification using relative color features,” Skin Research Technol-
ogy, vol. 14, no. 1, pp. 53–64, 2008.

[5] T. Nazir, M. Nawaz, J. Rashid et al., “Detection of diabetic eye
disease from retinal images using a deep learning based Cen-
terNet model,” Sensors, vol. 21, no. 16, p. 5283, 2021.

[6] M. Masood, T. Nazir, M. Nawaz, A. Javed, M. Iqbal, and
A. Mehmood, Brain Tumor Localization and Segmentation
Using Mask RCNN, 2021.

[7] B. Pellini and A. A. Chaudhuri, “Circulating tumor DNAmin-
imal residual disease detection of non–small-cell lung cancer
treated with curative intent,” Journal of Clinical Oncology,
vol. 20, no. 6, 2022.

[8] A. A. Ewees, R. M. Ghoniem, L. Abualigah, and F. A. Hashim,
“Boosting chameleon swarm algorithm with consumption
AEO operator for global optimization and feature selection,”
Knowledge-Based Systems, vol. 246, article 108743, 2022.

[9] M. Abdar, F. Pourpanah, S. Hussain et al., “A review of uncer-
tainty quantification in deep learning: techniques, applications
and challenges,” Information Fusion, vol. 76, pp. 243–297,
2021.

[10] G. K. Nilsen, A. Z. Munthe-Kaas, H. J. Skaug, and M. Brun,
“Epistemic uncertainty quantification in deep learning classifi-
cation by the Delta method,” Neural Networks, vol. 145,
pp. 164–176, 2022.

[11] M. A. Khan, K. Muhammad, M. Sharif, T. Akram, and
S. Kadry, “Intelligent fusion-assisted skin lesion localization
and classification for smart healthcare,” Neural Computing
and Applications, pp. 1–16, 2021.

[12] Y. Qin, Z. Liu, C. Liu, Y. Li, X. Zeng, and C. Ye, “Super-
resolved q-space deep learning with uncertainty quantifica-
tion,” Medical Image Analysis, vol. 67, article 101885, 2021.

[13] R. Rahaman, “Uncertainty quantification and deep ensem-
bles,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[14] M. Abdar, M. A. Fahami, S. Chakrabarti et al., “BARF: a new
direct and cross-based binary residual feature fusion with
uncertainty-aware module for medical image classification,”
Information Sciences, vol. 577, pp. 353–378, 2021.

[15] Z. Senousy, M. M. Abdelsamea, M. M. Gaber et al., “Mcua:
multi-level context and uncertainty aware dynamic deep
ensemble for breast cancer histology image classification,”
IEEE Transactions on Biomedical Engineering, vol. 69,
pp. 818–829, 2022.

[16] M. Abdar, S. Salari, S. Qahremani et al., “UncertaintyFuseNet:
robust uncertainty-aware hierarchical feature fusion model
with ensemble Monte Carlo dropout for COVID-19 detec-
tion,” 2022, arXiv preprint arXiv:.08590.

[17] C. Barata, M. E. Celebi, and J. S. Marques, “Development of a
clinically oriented system for melanoma diagnosis,” Pattern
Recognition, vol. 69, pp. 270–285, 2017.

[18] V. Badrinarayanan, A. Handa, and R. Cipolla, “Segnet: a deep
convolutional encoder-decoder architecture for robust seman-
tic pixel-wise labelling,” 2015, arXiv preprint arXiv:.07293.

[19] L. Bi, J. Kim, E. Ahn, D. Feng, and M. Fulham, “Semi-auto-
matic skin lesion segmentation via fully convolutional net-
works,” in 2017 IEEE 14th International Symposium on
Biomedical Imaging (ISBI), pp. 561–564, Melbourne, VIC,
Australia, 2017.

[20] H. Alquran, I. A. Qasmieh, A. M. Alqudah et al., “The mela-
noma skin cancer detection and classification using support

vector machine,” in 2017 IEEE Jordan Conference on Applied
Electrical Engineering and Computing Technologies (AEECT),
pp. 1–5, Aqaba, Jordan, 2017.

[21] M. A. Khan, M. A. Khan, F. Ahmed et al., “Gastrointestinal
diseases segmentation and classification based on duo-deep
architectures,” Pattern Recognition Letters, vol. 131, pp. 193–
204, 2020.

[22] N. C. Codella, Q. B. Nguyen, S. Pankanti et al., “Deep learn-
ing ensembles for melanoma recognition in dermoscopy
images,” IBM Journal of Research Development, vol. 61,
pp. 1–5, 2017.

[23] J. Daghrir, L. Tlig, M. Bouchouicha, and M. Sayadi, “Mela-
noma skin cancer detection using deep learning and classical
machine learning techniques: a hybrid approach,” in 2020
5th International Conference on Advanced Technologies for
Signal and Image Processing (ATSIP), pp. 1–5, Sousse, Tunisia,
2020.

[24] S. Bama, R. Velumani, N. Prakash, G. Hemalakshmi, and
A. Mohanarathinam, “Automatic segmentation of melanoma
using superpixel region growing technique,” Materials Today:
Proceedings, vol. 45, pp. 1726–1732, 2021.

[25] K. Hu, X. Niu, S. Liu et al., “Classification of melanoma based
on feature similarity measurement for codebook learning in
the bag-of-features model,” Biomedical Signal Processing Con-
trol, vol. 51, pp. 200–209, 2019.

[26] A. Ameri, “A deep learning approach to skin cancer detection
in dermoscopy images,” Journal of Biomedical Physics Engi-
neering, vol. 10, no. 6, p. 801, 2020.

[27] M. F. Jojoa Acosta, L. Y. Caballero Tovar, M. B. Garcia-Zapir-
ain, and W. S. Percybrooks, “Melanoma diagnosis using deep
learning techniques on dermatoscopic images,” BMC Medical
Imaging, vol. 21, no. 1, pp. 1–11, 2021.

[28] L. Zhang, G. Yang, and X. Ye, “Automatic skin lesion segmen-
tation by coupling deep fully convolutional networks and shal-
low network with textons,” Journal of Medical Imaging, vol. 6,
no. 2, article 024001, 2019.

[29] P. Shan, Y. Wang, C. Fu, W. Song, and J. Chen, “Automatic
skin lesion segmentation based on FC-DPN,” Computers in
Biology Medicine, vol. 123, article 103762, 2020.

[30] L. Bi, J. Kim, E. Ahn, A. Kumar, D. Feng, and M. Fulham,
“Step-wise integration of deep class-specific learning for der-
moscopic image segmentation,” Pattern Recognition, vol. 85,
pp. 78–89, 2019.

[31] A. A. Adegun and S. Viriri, “Deep learning-based system for
automatic melanoma detection,” IEEE Access, vol. 8,
pp. 7160–7172, 2019.

[32] M. Nawaz, Z. Mehmood, T. Nazir et al., “Skin cancer detection
from dermoscopic images using deep learning and fuzzy K-
means clustering,” Microscopy Research Technique, vol. 85,
p. 339, 2022.

[33] X. Zhao, F. Nie, R. Wang, and X. Li, “Improving projected
fuzzy K-means clustering via robust learning,” Neurocomput-
ing, vol. 491, pp. 34–43, 2022.

[34] S. Kanniappan, D. Samiayya, D. R. Vincent P M et al., “An effi-
cient hybrid fuzzy-clustering driven 3D-modeling of magnetic
resonance imagery for enhanced brain tumor diagnosis,” Elec-
tronics, vol. 9, no. 3, p. 475, 2020.

[35] M. Nawaz, M. Masood, A. Javed et al., “Melanoma localization
and classification through faster region-based convolutional
neural network and SVM,” Multimedia Tools Applications,
vol. 80, no. 19, pp. 28953–28974, 2021.

14 Computational and Mathematical Methods in Medicine



[36] S. Banerjee, S. K. Singh, A. Chakraborty, A. Das, and R. Bag,
“Melanoma diagnosis using deep learning and fuzzy logic,”
Diagnostics, vol. 10, no. 8, p. 577, 2020.

[37] I. Iqbal, M. Younus, K. Walayat, M. U. Kakar, and J. Ma,
“Automated multi-class classification of skin lesions through
deep convolutional neural network with dermoscopic images,”
Computerized Medical Imaging Graphics, vol. 88, article
101843, 2021.

[38] M. A. Khan, T. Akram, Y.-D. Zhang, and M. Sharif, “Attri-
butes based skin lesion detection and recognition: a mask
RCNN and transfer learning-based deep learning framework,”
Pattern Recognition Letters, vol. 143, pp. 58–66, 2021.

[39] R. Mohakud and R. Dash, “Skin cancer image segmentation
utilizing a novel EN-GWO based hyper-parameter optimized
FCEDN,” Journal of King Saud University-Computer Informa-
tion Sciences, 2022.

[40] M. Abdar, M. Samami, S. D. Mahmoodabad et al., “Uncer-
tainty quantification in skin cancer classification using three-
way decision-based Bayesian deep learning,” Computers In
Biology Medicine, vol. 135, article 104418, 2021.

[41] A. G. Pacheco and R. A. Krohling, “An attention-based mecha-
nism to combine images and metadata in deep learning models
applied to skin cancer classification,” Ieee Journal Of Biomedical
Health Informatics, vol. 25, no. 9, pp. 3554–3563, 2021.

[42] Y.Wang and S.Wang, “Skin lesion segmentationwith attention-
based SC-Conv U-Net and feature map distortion,” Signal,
Image Video Processing, vol. 16, no. 6, pp. 1471–1479, 2022.

[43] C. Zhao, R. Shuai, L. Ma, W. Liu, and M. Wu, “Segmentation
of skin lesions image based on U-Net++,” Multimedia Tools
Applications, vol. 81, no. 6, pp. 8691–8717, 2022.

[44] N. Durgarao and G. Sudhavani, “Diagnosing skin cancer via
C-means segmentation with enhanced fuzzy optimization,”
IET Image Processing, vol. 15, no. 10, pp. 2266–2280, 2021.

[45] S. Haggenmüller, R. C. Maron, A. Hekler et al., “Skin cancer
classification via convolutional neural networks: systematic
review of studies involving human experts,” European Journal
of Cancer, vol. 156, pp. 202–216, 2021.

[46] M. S. Ali, M. S. Miah, J. Haque, M. M. Rahman, and M. K.
Islam, “An enhanced technique of skin cancer classification
using deep convolutional neural network with transfer learn-
ing models,” Machine Learning with Applications, vol. 5, arti-
cle 100036, 2021.

[47] A. Polesel, G. Ramponi, and V. J. Mathews, “Image enhance-
ment via adaptive unsharp masking,” IEEE Transactions on
Image Processing, vol. 9, no. 3, pp. 505–510, 2000.

[48] H. Law and J. Deng, “CornerNet: detecting objects as paired
keypoints,” International Journal of Computer Vision,
vol. 128, pp. 642–656, 2019.

[49] R. Girshick, “Fast r-CNN,” in Proceedings of the IEEE interna-
tional conference on computer vision, pp. 1440–1448, Santiago,
Chile, 2015.

[50] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,”
IEEE transactions on pattern analysis machine intelligence,
vol. 39, no. 6, pp. 1137–1149, 2017.

[51] M. Nawaz, T. Nazir, M. Masood et al., “Analysis of brain MRI
images using improved cornernet approach,” Diagnostics,
vol. 11, no. 10, p. 1856, 2021.

[52] A. Raj, V. P. Namboodiri, and T. Tuytelaars, “Subspace align-
ment based domain adaptation for rcnn detector,” 2015, arXiv
preprint arXiv:.05578.

[53] X. Zhao,W. Li, Y. Zhang, T. A. Gulliver, S. Chang, and Z. Feng,
“A faster RCNN-based pedestrian detection system,” in 2016
IEEE 84th Vehicular Technology Conference (VTC-Fall),
pp. 1–5, Montreal, QC, Canada, 2016.

[54] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, real-time object detection,” in Proceedings
of the IEEE conference on computer vision and pattern recogni-
tion, pp. 779–788, Las Vegas, NV, USA, 2016.

[55] W. Liu, D. Anguelov, D. Erhan et al., “SSD: single shot multi-
box detector,” in European conference on computer vision,
pp. 21–37, Springer, 2016.

[56] J. Redmon and A. Farhadi, “Yolov3: an incremental improve-
ment,” 2018, arXiv preprint arXiv:.02767.

[57] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-
based convolutional networks for accurate object detection
and segmentation,” IEEE transactions on pattern analysis
machine intelligence, vol. 38, no. 1, pp. 142–158, 2015.

[58] T. Nazir, A. Irtaza, A. Javed, H. Malik, D. Hussain, and R. A.
Naqvi, “Retinal image analysis for diabetes-based eye disease
detection using deep learning,” Applied Sciences, vol. 10,
no. 18, p. 6185, 2020.

[59] S. Albahli, M. Nawaz, A. Javed, and A. Irtaza, “An improved
faster-RCNN model for handwritten character recognition,”
Arabian Journal for Science Engineering, vol. 46, no. 9,
pp. 8509–8523, 2021.

[60] C. Curiel-Lewandrowski, R. A. Novoa, E. Berry et al., “Artificial
intelligence approach in melanoma,”Melanoma, pp. 1–31, 2019.

[61] R. Parikh, A. Mathai, S. Parikh, G. C. Sekhar, and R. Thomas,
“Understanding and using sensitivity, specificity and predic-
tive values,” Indian Journal of Ophthalmology, vol. 56, no. 1,
pp. 45–50, 2008.

[62] A. K. Akobeng, “Understanding diagnostic tests 1: sensitivity,
specificity and predictive values,” Acta Paediatrica, vol. 96,
no. 3, pp. 338–341, 2007.

[63] A. Popovic, M. De la Fuente, M. Engelhardt, and
K. Radermacher, “Statistical validation metric for accuracy
assessment in medical image segmentation,” International
Journal of Computer Assisted Radiology Surgery, vol. 2, no. 3-
4, pp. 169–181, 2007.

[64] R. R. Shamir, Y. Duchin, J. Kim, G. Sapiro, and N. Harel,
“Continuous dice coefficient: a method for evaluating probabi-
listic segmentations,” 2019, arXiv preprint arXiv:.11031.

[65] L. Hamers, “Similarity measures in scientometric research: the
Jaccard index versus Salton’s cosine formula,” Information
Processing Management, vol. 25, no. 3, pp. 315–318, 1989.

[66] Y. Yuan, “Automatic skin lesion segmentation with fully
convolutional-deconvolutional networks,” 2017, arXiv pre-
print arXiv:.05165.

[67] M. Berseth, “ISIC skin lesion analysis towards melanoma
detection,” 2017, arXiv preprint arXiv:.00523.

[68] L. Bi, J. Kim, E. Ahn, and D. Feng, “Automatic skin lesion anal-
ysis using large-scale dermoscopy images and deep residual
networks,” 2017, arXiv preprint arXiv:.04197.

[69] A. Menegola, J. Tavares, M. Fornaciali, L. T. Li, S. Avila, and
E. Valle, “RECOD titans at ISIC challenge,” 2017, arXiv pre-
print arXiv:.04819.

[70] J. Kawahara and G. Hamarneh, “Fully convolutional neural
networks to detect clinical dermoscopic features,” IEEE Journal
Of Biomedical Health Informatics, vol. 23, no. 2, pp. 578–585,
2019.

15Computational and Mathematical Methods in Medicine



[71] R. Gu, L. Wang, and L. Zhang, “DE-net: a deep edge network
with boundary information for automatic skin lesion segmen-
tation,” Neurocomputing, vol. 468, pp. 71–84, 2022.

[72] H.Wu, S. Chen, G. Chen, W.Wang, B. Lei, and Z.Wen, “FAT-
net: feature adaptive transformers for automated skin lesion
segmentation,” Medical Image Analysis, vol. 76, article
102327, 2022.

[73] S. Banerjee, S. K. Singh, A. Chakraborty, S. Basu, A. Das, and
R. Bag, “Diagnosis of melanoma lesion using neutrosophic
and deep learning,” Traitement du Signal, vol. 38, no. 5, 2021.

[74] S. Khouloud, M. Ahlem, T. Fadel, and S. Amel, “W-net and
inception residual network for skin lesion segmentation and
classification,” Applied Intelligence, pp. 1–19, 2021.

[75] M. K. Hasan, M. T. E. Elahi, M. A. Alam, M. T. Jawad, and
R. Martí, “DermoExpert: skin lesion classification using a
hybrid convolutional neural network through segmentation,
transfer learning, and augmentation,” Informatics in Medicine
Unlocked, vol. 28, p. 100819, 2022.

[76] D. Dai, C. Dong, S. Xu et al., “Ms RED: a novel multi-scale
residual encoding and decoding network for skin lesion seg-
mentation,” Medical Image Analysis, vol. 75, article 102293,
2022.

[77] R. Kaur, H. GholamHosseini, and R. Sinha, “Skin lesion seg-
mentation using an improved framework of encoder-decoder
based convolutional neural network,” International Journal
of Imaging Systems Technology, vol. 32, no. 4, pp. 1143–1158,
2022.

[78] R. Ramadan and S. Aly, “CU-net: a new improved multi-input
color U-net model for skin lesion semantic segmentation,”
IEEE Access, vol. 10, pp. 15539–15564, 2022.

[79] R. L. Araújo, F. H. de Araújo, and R. R. Silva, “Automatic seg-
mentation of melanoma skin cancer using transfer learning
and fine-tuning,” Multimedia Systems, pp. 1–12, 2022.

[80] E. S. Dos Santos, K. R. Aires, H. M. Portela, G. B. Junior, J. D.
Santos, and J. M. Tavares, “Semi-automatic segmentation of
skin lesions based on superpixels and hybrid texture informa-
tion,” Medical Image Analysis, vol. 77, article 102363, 2022.

[81] N. Badshah and A. Ahmad, “ResBCU-net: deep learning
approach for segmentation of skin images,” Biomedical Signal
Processing Control, vol. 71, article 103137, 2022.

[82] A. A. Ewees, R. M. Ghoniem, and M. A. Gaheen, “Improved
seagull optimization algorithm using Lévy flight and mutation
operator for feature selection,” Neural Computing and Appli-
cations, vol. 34, no. 10, pp. 7437–7472, 2022.

16 Computational and Mathematical Methods in Medicine


	MSeg-Net: A Melanoma Mole Segmentation Network Using CornerNet and Fuzzy K-Means Clustering
	1. Introduction
	2. Related Work
	3. Methodology
	3.1. Preprocessing
	3.2. CornerNet
	3.2.1. Hourglass Network
	3.2.2. Corner Detection
	3.2.3. Corner Grouping
	3.2.4. Prediction Module

	3.3. Skin Lesion Segmentation Using FKM

	4. Results
	4.1. Datasets
	4.2. Evaluation Metrics
	4.3. Assessment of Presented Framework
	4.4. Comparison with Challenge Teams
	4.5. Performance Analysis with the Latest Methods

	5. Conclusions
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments



