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In this study, the extended SEIR dynamical model is formulated to investigate the spread of coronavirus disease (COVID-19) via a
special focus on contact with asymptomatic and self-isolated infected individuals. Furthermore, a mathematical analysis of the
model, including positivity, boundedness, and local and global stability of the disease-free and endemic equilibrium points in
terms of the basic reproduction number, is presented. The sensitivity analysis indicates that reducing the disease contact rate
and the transmissibility factor related to asymptomatic individuals, along with increasing the quarantine/self-isolation rate and
the contact-tracing process, from the view of flattening the curve for novel coronavirus, are crucial to the reduction in disease-
related deaths.

1. Introduction

From December 2019 until now, the world is facing a new
challenge. The pandemic of COVID-19 was caused by a
novel coronavirus and quickly spread to other parts of the
world [1]. This severe infectious illness is one of the most
contagious viral diseases in humans, and according to statis-
tics, COVID-19 poses a major threat to the health of human
society and the economy. The novel coronavirus is transmit-
ted between all age groups of humans through direct close
contact with a person while they are infectious, contact with
droplets from an infected person’s sneeze or cough, touching
contaminated objects or surfaces such as cell phones and ele-
vator buttons, and then touching the mouth, nose, and eyes
[2]. Coronavirus disease can be transmitted during the
asymptomatic incubation phase and for up to two weeks
after the onset of symptoms. The World Health Organiza-
tion (WHO) reported an incubation period for COVID-19
of between 2 and 10 days [3]. Despite the discovery of differ-
ent platforms of vaccines for the disease, the most effective
interventions to break the transmission chain of infection
are to maintain physical distance, use face masks, stay away
from infected people, identify and quarantine infected peo-

ple, and stay home. Therefore, people suspected of being
infected should be traced and identified immediately and
then isolated from others. This means that nonpharmaceuti-
cal measures such as physical distancing regulation (stay at
least 2 meters away from other people), detecting more cases
of COVID-19, effective identification of asymptomatic indi-
viduals, self-quarantine, wearing a face mask, and tracing the
exposed individuals are still the most effective preventive
measures, from the perspective of flattening the curve of
COVID-19, to curb the spread of COVID-19 in the suffering
community [4–7]. The set of public health strategies that
reduce the peak number of people requiring care and miti-
gate the spread of the disease can be framed in the concept
of flattening the curve of the COVID-19 outbreak.

In general, the coronavirus at the onset of the outbreak
had devastating effects on all host countries and affected
their health and economic infrastructure. COVID-19 has
spread to more than 220 countries, and according to the
World Health Organization, the virus has affected about
202 million people worldwide, and more than 3:4 million
people have died so far [8]. Meanwhile, third-world coun-
tries such as Egypt are suffering more irreparable effects.
Because of the deficiency of proper infrastructure, the
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government is not able to impose strict country-wide or
regional lockdowns, hospitalize or quarantine all patients,
or enforce social distancing regulations. In addition, poor
citizens are deprived of government financial support and
are therefore forced to carry out daily activities. The first
infected case was a Chinese national who was identified at
Cairo International Airport and taken to a quarantine cen-
ter. The first death recorded in Egypt by COVID-19 was
on March 20, 2020. Accordingly, the Egyptian government
took various preventive measures in March to tackle the
effects of the disease, including the closure of educational
centers and places of worship. It has also been confirmed
as of September 1, 2020, that all travelers intending to travel
to this country must provide a polymerase chain reaction
(PCR) test certificate for COVID-19 [9].

Mathematical modeling can be applied to a variety of
contagious diseases, including Ebola, HIV, influenza, SARS,
novel coronavirus epidemics, and heroin, and plays a key
role in analyzing epidemiological models, examining the
effects of various components, predicting how they will
behave, and facilitating disease suppression [10]. Because
of the importance of the behavioral pattern of the novel
coronavirus, various mathematical models have been devel-
oped to investigate the prevalence of the disease. The effect
of different control measures as preventive interventions
using a new mathematical modeling with quarantine, self-
isolation, and public health education and an optimal con-
trol approach to determine their contributions to the
dynamic transmission of COVID-19 is presented in [4].
The impacts of various preventive control measures on the
population dynamics of COVID-19 in Lagos, via an appro-
priately formulated mathematical model, are carried out in
[5]. Kumari et al. [6] applied the SEIAQRDT model, includ-
ing asymptomatic cases, for the prediction of COVID-19
disease in India. In [7], a deterministic model for the trans-
mission dynamics of the novel coronavirus outbreak incor-
porating prosocial behavior is provided, wherein the spread
of the disease has been studied by unnotified and notified
individuals. Mpeshe and Nyerere [11] presented the dynam-
ics of COVID-19 epidemics coupled with fear epidemics. An
educational campaign can help reduce fear among people
and find possible control mechanisms. Based on the fact that
the coronavirus is spread by the travel of people unaware of
the disease who are added to the population impulsively, an
impulsive epidemic model to indicate the sudden growth in
the population is considered in [12]. Zheng et al. [13] con-
sidered the role of the diffusion network in the SIR model
in order to control and mitigate the COVID-19 outbreak,
and the effect of maximum eigenvalue on Turing instability
was investigated. In addition, the effect of network parame-
ters on how the disease spreads is examined, and the model
stability of the model under the proposed approach is pre-
sented via the maximum eigenvalue of the network matrix.
Based on real data for Algeria and India, a discrete mathe-
matical model is proposed to provide a simple description
of the novel coronavirus spread by Sitthiwirattham et al.
[14]. In [15], an optimal analysis of the model for the pur-
pose of assessing the effect of public health education, the
effect of personal protective measures, and the effect of treat-

ing hospitalized or isolated cases on mitigating transmission
of COVID-19 in Ethiopia was conducted. In the absence of
pharmaceutical interventions, the immunity system plays a
vital role in the recovery of patients. Due to the fact that
the immunity system decreases with age, Djilali and Ghanbari
[16] proposed the age-structured SEIR model to predict the
severity of COVID-19 in South Africa, Brazil, and Turkey. In
addition, the effect of isolation on susceptible individuals has
been considered, and finally, the end of the disease outbreak
in the mentioned countries has been estimated. Given the
widespread and rapid prevalence of COVID-19, awareness
and prediction of the dynamic behavior of this disease are cru-
cial. Bentout et al. [17] presented an age-structured model for
three different countries from three different continents. The
proposedmodel includes hospitalized individuals (via estimat-
ing the number of hospital beds required) and the possible
infection of the healthcare staff. In addition, the effect of the
lack of appropriate personal protective equipment on the
spread of the disease is considered. The peak time of the dis-
ease and the number of infected people despite medical mea-
sures are being studied. The basic reproduction number R0
as an epidemiological threshold can be examined to character-
ize the stability of system equilibrium points. In this regard, by
examining the existence of the global attractor, two different
states for R0 have been investigated. When R0 < 1, by using
the Fluctuation Lemma, the disease-free equilibrium is glob-
ally asymptotically stable. On the other hand, when R0 > 1,
then the system is uniformly persistent [18].

In the event of an epidemic, the effect of unreported
individuals on the analysis of disease behavior cannot be
ignored. Based on this fact, a mathematical model is pre-
sented to investigate the effect of mobility restrictions on
active infected individuals in three countries: Algeria, Egypt,
and Morocco [19]. The proposed model has been used to
estimate the number of unreported patients, people required
for hospitalization, and the second wave of outbreaks in the
mentioned countries. Shadi et al. [20] proposed an extended
SEIR model considering the state of vaccination in order to
investigate the effect of pharmaceutical measures in sup-
pressing the progression of novel coronavirus in Iran. Also,
to validate the proposed model, it is fitted with the approved
daily data reported. A simple analytical expression of the
SEIR model has been done by Piovella [21] to investigate
the peak number of people in the community and time char-
acteristics affected by the novel coronavirus. Djilali and
Bentout [22] presented the SVIR model with weak delay
(distributed delay) along with the vaccination state as phar-
macological measures to control the spread of the outbreak.
In addition, a global compact attractor is determined to
investigate the dynamic behavior of the system based on
the different numerical values ofR0. Similar to the modeling
approach for infection transmission dynamics, this tech-
nique can also be applied to modeling drug consumption
patterns such as heroin. Like infectious diseases, it is
assumed that addiction can be transmitted to nondrug indi-
viduals by way of the consumer. The remission of consump-
tion is considered a delay, and the phenomena of Hopf and
backward bifurcation have been investigated for the pro-
posed models [23, 24].
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In this study, the effects of nonpharmaceutical protocols
such as physical distancing regulation, quarantine/self-isola-
tion of patients with clinical symptoms, and tracing of
exposed individuals on the spread of COVID-19 using the
extended version of the SEIR dynamic model are investi-
gated. In order to evaluate the model, a good fit of the pro-
posed model to the daily confirmed infected cases in Egypt
is provided. Other objectives of this paper include investigat-
ing the analytical expression and estimating the parameters
of the model based on fitted parameters and sensitivity anal-
ysis of the basic reproduction number R0. The rest of this
study is organized as follows: The model implementation is
presented in Section 2. The basic analysis of the model,
including the results of local and global stability of the
disease-free and endemic equilibrium points, positivity and
boundedness of all trajectories of the proposed model, and
the calculation of the basic reproduction number R0 are
examined in Section 3. The model fitting to daily reported
cases and estimation of parameters are explained in section
4. Numerical results and discussion are presented in Section
5. Finally, the conclusion is given in Section 6.

2. COVID-19 Model Formulation

In this section, the proposed deterministic model, including
demographic effects, to study the transmission of the
COVID-19 outbreak is presented. To develop the model,
the total human population size NðtÞ is subdivided into
seven epidemiological compartments denoted by susceptible
SðtÞ (they are not infected yet), exposed EðtÞ (they are
infected but not yet infectious), asymptomatic infectious Ia
ðtÞ (infectious but undetected), symptomatic infectious Isðt
Þ (symptomatic with infectious capacity), quarantined QðtÞ,
under treatment HðtÞ (hospitalized), and recovered RðtÞ
individuals. The total population at time t, denoted by Nðt
Þ, is given by NðtÞ = SðtÞ + EðtÞ + IaðtÞ + IsðtÞ +QðtÞ +HðtÞ
+ RðtÞ. A susceptible person can be infected by direct con-
tact with an infected person from another class. Studies
show that asymptomatic patients have a higher viral load

than those with symptoms and are capable of transmitting
the infection [25, 26]. On the other hand, due to the defi-
ciency of medical infrastructure in Egypt, some people who
have a positive PCR test are forced into home quarantine.

Popularly, it is assumed that a self-quarantined person is
unable to be a carrier of the disease. However, it is observed
that people who are under in-home quarantine and disobey
the prevention guidelines are also infected. Practically, fam-
ily members of these people can also be infected. Let the
modification parameter 0 ≤ ε1 ≤ 1 be considered the effective
transmission rate of infection from asymptomatic individ-
uals. Also, the modification parameter 0 ≤ ε2 ≤ 1 is used for
the infection transmission rate owing to self-quarantined
COVID-19 patients. After interacting with infected individ-
uals from other groups, a person from the susceptible group
can move to the exposed group. The mechanism of how an
epidemic is transmitted among all members of a community
is expressed by an epidemiological parameter called the force
of infection (FOI). According to the aforementioned state-
ments, FOI associated with the model is considered as:

λ = β Is + ε1Ia + ε2Qð Þ
N

, ð1Þ

where the β parameter indicates the rate of effective human-
to-human contacts that can lead to infection transmission.
The parameter Π comprises the recruitment rate of the
human population per unit value of time, and μd is the nat-
ural death rate of humans in all classes. The incubation
period (the time between exposure to the virus and symp-
tom onset) of COVID-19 disease is 2 days to 2 weeks. After
this period, individuals in the exposed compartment become
infected at a rate φ and, depending on the clinical signs, can
move to Ia or Is classes at ς or ð1 − ςÞ rates, respectively. In
addition, the remaining exposed individuals who have been
in contact with infected individuals are identified via the
contact-tracing process, and if their test is positive, they join
the quarantine compartment at the ν rate. The hospitaliza-
tion rates of symptomatic and quarantined individuals are
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Figure 1: Compartmental flow diagram of COVID-19 transmission in Egypt, where λ = βðIs + ε1Ia + ε2QÞ/N .
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expressed by δ and q, respectively. After the infection, the
immune system protects the body and mounts a response
against that disease [12]. As a result of natural immunity
and receiving treatment services in the hospital, symptom-
atic, asymptomatic, quarantined, and undertreated individ-
uals progress to recover compartments at the rates of
α, θ, r, h, respectively. Finally, the COVID-19-induced death
rate for individuals in the Is,Q, and H is, respectively, shown
by σ,w, and ξ.

Based on the aforementioned statements and descrip-
tions, a flow diagram for the COVID-19 transmission model
is illustrated in Figure 1. Consequently, the transmission
dynamics of the COVID-19 epidemic is given by a determin-
istic system of nonlinear differential equations as follows:

dS
dt =Π − λS − μdS

dE
dt = λS − ν + φ + μdð ÞE
dIa
dt = ςφE − α + μdð ÞIa

dIs
dt = 1 − ςð ÞφE − θ + δ + σ + μdð ÞIs

dQ
dt = νE − w + q + r + μdð ÞQ

dH
dt = δIs + qQ − ξ + h + μdð ÞH

dR
dt = αIa + θIs + rQ + hH − μdR,

ð2Þ

with initial conditions S0 ≥ 0, E0 ≥ 0, Ia0 ≥ 0, Is0 ≥ 0,Q0 ≥ 0,
H0 ≥ 0, and R0 ≥ 0. It is assumed that all the parameters used
in the proposed model are nonnegative, and the biological
descriptions related to each one are given in Table 1.

3. Basic Analysis of the Model

In this section, some basic analytical outcomes of the
COVID-19 model (2), including positivity and boundedness
of solution, theoretical presentation of the basic reproduc-
tion number R0 as an epidemiological concept to curb the
spread of infectious disease, and stability of disease-free
equilibrium (DFE), and endemic equilibrium points in terms
of R0, are provided.

Table 1: Interpretation of the COVID-19 model parameters.

Parameters Biological description

N Total human population size

μd Per capita death rate (inverse of life expectancy)

Π Recruitment rate of people

ε1 Effective transmission rate of infection from asymptomatic individuals

ε2 Proportion of quarantine effect on effective contact rate

φ−1 Incubation period of coronavirus

ς Proportion of asymptomatically infected cases after the incubation period

σ COVID-19-induced mortality rate in Is class

δ Hospitalization rate of symptomatic individuals

r Recovery rate from quarantined individuals

α Rate of recovery for asymptomatic individuals

θ Recovery rate from symptomatic individuals

h Rate of recovery for hospitalized patients

ν Quarantine rate of exposed individuals

β Virus transmission coefficient

q Rate of hospitalization from quarantined infected populations

w COVID-19-induced mortality rate in Q class

ξ COVID-19-induced death rate in H class

Table 2: Sign of sensitivity indices for R0:

Notation Sensitivity indices

ε1 +ve

ε2 +ve

β +ve

ς +ve

φ -ve

δ -ve

α -ve

θ -ve

ν -ve
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3.1. Positivity and Boundedness of the Solution. In order to
verify that model (2) is well-posed epidemiologically, it must
be shown that all trajectories of the model (2) will remain
nonnegative for all t > 0 and following nonnegative initial
conditions

S 0ð Þ, E 0ð Þ, Ia 0ð Þ, Is 0ð Þ,Q 0ð Þ,H 0ð Þ, R 0ð Þð ÞT ∈ℝ7
+: ð3Þ

Lemma 1 (positivity). Assuming that ZðtÞ = ðSðtÞ, EðtÞ, Iað
tÞ, IsðtÞ,QðtÞ,HðtÞ, RðtÞÞ are state variabels of model and
Zð0Þ ≥ 0 indicates the initial conditions, then all trajectories
of the COVID-19 model (2) are nonnegative if they exist for
all t ≥ 0. Furthermore, limt⟶∞ sup NðtÞ ≤Π/μd .

Proof. Consider t1 = sup ft > 0 : ZðtÞ > 0 ∈ ½0, t�g; then mul-
tiplying the first equation of the model (2) by the integrating
factor exp fμdt +

Ð t
0λðτÞdτg, we get that

d
dt S tð Þ exp μdt +

ðt
0
λ τð Þdτ

� �� �
=Π exp μdt +

ðt
0
λ τð Þdτ

� �
:

ð4Þ

Hence,

S t1ð Þ exp μdt1 +
ðt1
0
λ τð Þdτ

� �
− S 0ð Þ =Π

ðt1
0
exp μdy +

ðy
0
λ τð Þdτ

� �
dy:

ð5Þ

From solving Equation (5), we have

S t1ð Þ = S 0ð Þ exp − μdt1 +
ðt1
0
λ τð Þdτ

� �� �
+ exp − μdt1 +

ðt1
0
λ τð Þdτ

� �� �
×Π

ðt1
0
exp μdy +

ðy
0
λ τð Þdτ

� �
dy > 0:

ð6Þ

Hence, the first equation of model (2) for t > 0 is non-
negative. Accordingly, via a similar approach, it can be
shown that Zð0Þ > 0 for all t > 0.

3.2. Invariant Region. In the following, the dynamics of the
COVID-19 model (2) will be examined in a feasible and
closed region with respect to biological considerations:

Ω = S tð Þ, E tð Þ, Ia tð Þ, Is tð Þ,Q tð Þ,H tð Þ, R tð Þð Þ ∈ℝ7
+ : 0 <N tð Þ ≤ Π

μd

� �
:

ð7Þ

Lemma 2 (boundedness). The model (2) with nonnegative
initial conditions in ℝ7

+ is bounded in the region Ω. In other
words, the region Ω ∈ℝ7

+ is positively invariant for the
COVID-19 model (2) with nonnegative initial conditions
in ℝ7

+.
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Figure 2: Model fitting to the cumulative reported cases from 14 February to 23 May 2020 in Egypt.
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Proof. Adding up all the differential equations in the model
(2) leads to

dN tð Þ
dt =Π − μdN tð Þ − σIs tð Þ −wQ tð Þ − ξH tð Þ ≤Π − μdN tð Þ:

ð8Þ

It is obvious that dNðtÞ/dt ≤ 0 if NðtÞ ≥Π/μd .
Using the Grönwall-Bellman inequality and arranging

the equation, the solution of (8) is given as follows:

N tð Þ ≤N 0ð Þ exp −μdtð Þ + Π

μd
1 − exp −μdtð Þð Þ: ð9Þ

In particular, if Nð0Þ ≤Π/μd , then it follows from (9)
that

N tð Þ ≤ lim
t⟶∞

sup N 0ð Þ exp −μdtð Þ + Π

μd
1 − exp −μdtð Þð Þ = Π

μd
:

ð10Þ

Further, if Nð0Þ >Π/μd , then NðtÞ approaches Π/μd
asymptotically, and the number of infected subpopulations
enters Ω over time. Therefore, all model solutions are
attracted by the region Ω eventually.

3.3. The Disease-Free Equilibrium State. In epidemiology, a
disease-free equilibrium can be established when there is
no disease in the community. The proposed model (2) has

a disease-free equilibrium ϵ0, given by

ϵ0 = S0, 0, 0, 0, 0, 0, 0ð Þ = Π

μd
, 0, 0, 0, 0, 0, 0

� �
: ð11Þ

3.4. The Basic Reproduction Number R0. Mathematically,
the basic reproduction number is known as a threshold
quantity for the stability of the system. In a particular suffer-
ing community, the numerical value of R0 plays a signifi-
cant role in how to spread the burden of disease. From an
epidemiological viewpoint, the reproduction number is
defined as the average number of secondary infections when
a typical infection enters an entirely susceptible individual
[7, 10]. The idea of flattening the curve lies in the basic
reproduction number. This means that if R0 < 1, then the
disease can be suppressed and unable to outbreak. However,
if R0 exceeds 1, the disease is an epidemic and can persist.
Based on the next-generation operator method [27], by
decomposing the RHS of the system (2) corresponding to
the infected compartments (i.e., E, Ia, Is,Q,H), the relevant
matrices to calculate R0 are given by

F =

β Is + ε1Ia + ε2Qð ÞS
N
0
0
0
0

0BBBBBBBBB@

1CCCCCCCCCA
,V =

k1E

k2Ia − ςφE

k3Is − 1 − ςð ÞφE
k4Q − νE

k5H − δIs − qQ

0BBBBBBBB@

1CCCCCCCCA
, ð12Þ

Table 3: Values of biological parameters used in simulations of the COVID-19 model in Egypt 2020.

Parameters Biological interpretation Value (unit) Reference

N 0ð Þ Total human population size 102,334,404 (individual) [32]

μd Per capita death rate (inverse of life expectancy) 1/72:54 × 365 (1/day) [32]

Π Recruitment rate of people N × μd (1/day) Estimated

σ COVID-19-induced mortality rate in Is class 0:05801 (1/day) Fitted

ε1 Effective transmission rate of infection from asymptomatic individuals 0:13980 Fitted

ε2 Proportion of quarantine effect on effective contact rate 0:10941 Fitted

δ Hospitalization rate of symptomatic individuals 2:814 × 10−5 (1/day) Fitted

ς Proportion of asymptomatically infected cases after the incubation period 0:30078 Fitted

φ−1 Average incubation period of coronavirus 1/0:14285 (day) Fitted

r Recovery rate from quarantined individuals 0:80338 (1/day) Fitted

α Rate of recovery for asymptomatic individuals 9:54 × 10−3 (1/day) Fitted

θ Recovery rate from symptomatic individuals 0:14285 (1/day) Fitted

h Rate of recovery for hospitalized patients 0:49839 (1/day) Fitted

ν Quarantine rate of exposed individuals 0:13134 (1/day) Fitted

β Virus transmission coefficient 0:65317 (1/day) Fitted

q Rate of hospitalization from quarantined infected populations 0:44649 (1/day) Fitted

w COVID-19-induced mortality rate in Q class 0:05781 (1/day) Fitted

ξ COVID-19-induced death rate in H class 0:05801 (1/day) Fitted
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where the nonnegative matrix, F , denotes new infection
terms, the nonsingular matrix, V , represents remaining
transfer terms, and

k1 = ν + φ + μdð Þ, ð13Þ

k2 = α + μdð Þ, ð14Þ
k3 = θ + δ + σ + μdð Þ, ð15Þ
k4 = w + q + r + μdð Þ, ð16Þ
k5 = ξ + h + μdð Þ: ð17Þ

The Jacobian matrices of F and V at ε0 are obtained as

follows:

F = ∂F
∂ xi

� �����
ϵ0

=

0 βε1 β βε2 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0BBBBBBBBBB@

1CCCCCCCCCCA
, andV = ∂V

∂ xi

� �����
ϵ0

=

k1 0 0 0 0

−φς k2 0 0 0

− 1 − ςð Þφ 0 k3 0 0

−ν 0 0 k4 0

0 0 −δ −q k5

0BBBBBBBBBB@

1CCCCCCCCCCA
,

ð18Þ

for xi = E, Ia, Is,Q,H.
Using the definition R0 = ρðFV−1Þ, where ρ is the spec-

tral radius of FV−1, the following interpretation is inferred
for the basic reproduction number of the proposed model:

R0 =
βφςε1
k1k2

+ βφ 1 − ςð Þ
k1k3

+ βε2ν

k1k4
=RIa

+RIs
+RQ, ð19Þ

whereRIa
,RIs

, andRQ are constituents ofR0 and are con-
tributed by asymptomatic infected individuals, symptomatic
infected individuals, and quarantined individuals,
respectively.
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Figure 3: Comparison and prediction of cumulative symptomatic infectious cases with real data (red circles) in Egypt until Sep 1, 2020.
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3.5. Stability Analysis of DFE. In this section, we intend to
prove the local and global stability of ODE with regard to
R0. Epidemiologically, the meaning of the stability outcome
of DFE is that, if R0 < 1, then a small onset of COVID-19
infections cases will not lead to a COVID-19 persisting in
the community. Steady-state analysis has been inspected in
the following theorem.

Theorem 3. The disease-free equilibrium ϵ0 of the COVID-19
model (2) is locally asymptotically stable (LAS) if and only if
R0 < 1 and unstable if R0 > 1.

The Jacobian matrix corresponding to the system (2) at
the ε0 is as follows:

J ε0ð Þ =

−μd 0 −βε1 −β −βε2 0 0

0 −k1 βε1 β βε2 0 0

0 ςφ −k2 0 0 0 0

0 1 − ςð Þφ 0 −k3 0 0 0

0 ν 0 0 −k4 0 0

0 0 0 δ q −k5 0

0 0 α θ r h −μd

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
:

ð20Þ

It is clear that s1 = s2 = −μd , s3 = −k5 have negative real
parts. The remaining eigenvalues (four) can be obtained
through the roots of the following characteristic equation:

Δ sð Þ = s4 + a3s
3 + a2s

2 + a1s + a0 = 0, ð21Þ

where

a3 = k1 + k2 + k3 + k4, ð22Þ

a2 = k1k2 1 −RIa

	 

+ k1k3 1 −RIs

	 

+ k1k4 1 −RQ

	 

+ k2k3

+ k2k4 + k3k4,
ð23Þ
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Figure 5: Effect of contact rate β on the variation of confirmed
COVID-19 cases in Egypt.
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Figure 6: Effect of transmission rate (ε1) from asymptomatic
individuals on the variation of confirmed COVID-19 cases in
Egypt.
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Figure 7: Effect of transmission rate (ε2) related to quarantine/self-
isolation individuals on the variation of confirmed COVID-19 cases
in Egypt.
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a1 = k1k2k3 1 −RIa
−RIs

	 

+ k1k2k4 1 −RQ −RIa

	 

+ k1k3k4 1 −RQ −RIs

	 

+ k2k3k4,

ð24Þ

a0 = k1k2k3k4 1 −R0ð Þ: ð25Þ
Since RIa

, RIs
, and RQ are all positive and R0 =RIa

+RIs
+RQ, it is obvious that the coefficients ai for i = 0, 1,

2, 3 are positive and the last statement is positive whenever
R0 < 1. Furthermore, the Routh-Hurwitz stability criterion

can be used to ensure the stability of model (2) at the DFE.
Since all the parameters of the proposed model are positive,
it can be easily seen that, if R0 < 1, then the Routh-Hurwitz
conditions are met, a0 > 0, a0a1 − a2 > 0, ða0a1 − a2Þa2 − a20
a3 > 0, and a3 > 0. Accordingly, the DFE ε0 is locally asymp-
totically stable if R0 < 1.

To show that the mitigate of the COVID-19 pandemic is
independent of the initial number of infected cases in a partic-
ular community, it must be demonstrated that the disease-
free equilibrium is globally asymptotically stable (GAS), if
R0 < 1.

Theorem 4. The DFE ϵ0 is globally asymptotically stable for
the model (2), if R0 < 1.

Proof. Consider the following Lyapunov function candidate
for the COVID-19 model (2) defined by

Y tð Þ = A1E tð Þ + A2Ia tð Þ + A3Is tð Þ + A4Q tð Þ, ð26Þ

where Ai, i = 1, 2, 3, 4, are positive coefficients that are deter-
mined later.

Making the time derivative of (26) and substituting the
expressions from system (2), into the Lyapunov derivative
_YðtÞ, we have

dY tð Þ
dt = A1 _E tð Þ + A2 _Ia tð Þ + A3 _Is tð Þ + A4 _Q tð Þ

= A1
β Is + ε1Ia + ε2Qð Þ

N

� �
S − k1E

� �
+ A2 ςφE − k2Ia½ �

+ A3 1 − ςð ÞφE − k3Is½ � + A4 νE − k4Q½ � ; Since N ≥ Sð Þ,
≤ A1 β Is + ε1Ia + ε2Qðð Þ − k1E½ � + A2 ςφE − k2Ia½ �

+ A3 1 − ςð ÞφE − k3Is½ � + A4 νE − k4Q½ �
= A2ςφ + A3 1 − ςð Þφ + A4ν − A1k1½ �E + A1βε1 − A2k2½ �Ia

+ A1β − A3k3½ �Is + A1βε2 − A4k4½ �Q
= A1k1

A2ςφ

A1k1
+ A3 1 − ςð Þφ

A1k1
+ A4ν

A1k1
− 1

� �
E

+ A1βε1 − A2k2½ �Ia + A1β − A3k3½ �Is + A1βε2 − A4k4½ �Q:
ð27Þ

Now choosing A1 = 1, A2 = βε1/k2, A3 = β/k3, and A4 =
βε2/k4 and carrying out some algebraic manipulations and
simplifications, we obtained

dY tð Þ
dt ≤ k1 R0 − 1ð ÞE: ð28Þ

It results that, if R0 < 1, then dYðtÞ/dt ≤ 0. Further, with
equality dYðtÞ/dt = 0, if and only if E = 0, Ia = 0, Is = 0, and
Q = 0. Eventually, due to the LaSalle’s Invariance Principle
[28], it can be concluded that the largest compact invariant
set in Ω is the singleton set ε0. According to this, ε0 is glob-
ally asymptotically stable in Ω. The result of this theory will
be depicted graphically.
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Figure 8: Effect of increasing the quarantine rate (ν) of exposed
individuals on the variation of confirmed COVID-19 cases in
Egypt.
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Figure 9: Effect of increasing hospitalization rate of symptomatic
individuals (δ) on the variation of confirmed COVID-19 cases in
Egypt.

9Computational and Mathematical Methods in Medicine



00
0.10.1

ϵ2

ϵ1

R
0

0.2
0.2 0.3

0.3
1

2

3

4

5

(a)

1.4 1.4 1.4

1.68 1.68 1.68

1.96 1.96 1.96

2.24 2.24 2.24

2.52 2.52 2.52

2.8 2.8 2.8

3.08 3.08 3.08

3.36 3.36 3.36

3.64 3.64 3.64

3.92 3.92 3.92

4.2 4.2 4.2

0
0

0.05

0.05

0.1

0.1

0.15ϵ 1

ϵ2

0.15

0.2

0.2

0.25

0.25

0.3

0.3

1.5

2

2.5

3

3.5

4

(b)

Figure 10: The behavior of the basic reproduction number (a) surface plot and (b) contour plot, in terms of ε1 and ε2. Given that, the rest of
the parameters are fixed and are taken from Table 3. The color bar represents the numerical value of R0.
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Figure 11: The behavior of the basic reproduction number (a) surface plot and (b) contour plot, in terms of δ and φ. Given that, the rest of
the parameters are fixed and are taken from Table 3. The color bar represents the numerical value of R0.
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3.6. Existence of Endemic Equilibrium Point. In this subsec-
tion, the existence of the endemic equilibrium point (EEP)
is examined.

Lemma 5. Let Π = μdN. For the proposed model (2), there is
a positive endemic equilibrium point if R0 > 1.

Proof. The EEP of the proposed model at εEEP = ðS∗, E∗, I∗a ,
I∗s ,Q∗,H∗, R∗Þ is obtained by equalizing the right-hand side
of model (2) with zero; hence

S∗ = N
R0

,

E∗ = μdN R0 − 1ð Þ
R0 ν + φ + μdð Þ ,

I∗a =
ςφμdN R0 − 1ð Þ

R0 ν + φ + μdð Þ α + μdð Þf g ,

I∗s =
1 − ςð ÞφμdN R0 − 1ð Þ

R0 ν + φ + μdð Þ θ + δ + σ + μdð Þf g ,

Q∗ = νμdN R0 − 1ð Þ
R0 ν + φ + μdð Þ w + q + r + μdð Þf g ,

H∗ = δ 1 − ςð ÞφμdN R0 − 1ð Þ
R0 ν + φ + μdð Þ θ + δ + σ + μdð Þ ξ + h + μdð Þf g

+ qνμdN R0 − 1ð Þ
R0 ν + φ + μdð Þ w + q + r + μdð Þ ξ + h + μdð Þf g ,

R∗ = αI∗a + θI∗s + rQ∗ + hH∗

μd
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
ð29Þ

It can be seen that a positive EEP exists for R0 > 1.
Hence, model (2) has an endemic equilibrium point if and
only if R0 exceeds 1.

3.7. Local Stability of Endemic Equilibrium Point. The local
stability analysis of EEP is investigated by the following
statement:

Theorem 6. The EEP of the proposed model (2) at ϵEEP is
locally asymptotically stable, when R0 > 1.

Proof. The Jacobian matrix corresponding to the model (2)
at endemic equilibrium point εEEP is obtained as follows:

J εEEPð Þ =

−k6 − μd 0 −ε1k7 −k7 −ε2k7 0 0
k6 −k1 ε1k7 k7 ε2k7 0 0
0 ςφ −k2 0 0 0 0
0 1 − ςð Þφ 0 −k3 0 0 0
0 ν 0 0 −k4 0 0
0 0 0 δ q −k5 0
0 0 α θ r h −μd

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
,

ð30Þ

where k6 = βðI∗s + ε1I
∗
a + ε2Q

∗Þ/N and k7 = βðS∗/NÞ.
In the aforementioned Jacobian matrix, the two eigen-

values e1 = −μd , e2 = −k5 have the negative sign of the real
part. The sign of the other eigenvalues is determined by
characteristic polynomial (31) as follows:

Δ eð Þ = e5 + b4e
4 + b3e

3 + b2e
2 + b1e + b0 = 0, ð31Þ

where the coefficients bi, i = 0,⋯, 4, are positive and given
by

b4 = k1 + k2 + k3 + k4 + k6 + μd > 0,
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Figure 13: The behavior of the basic reproduction number (a) surface plot and (b) contour plot, in terms of β and δ. Given that, the rest of
the parameters are fixed and are taken from Table 3. The color bar represents the numerical value of R0.
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b3 =
k1k2 RIs

+RQ

	 

+ k1k3 RIa

+RQ

	 

+ k1k4 RIa

+RIs

	 

R0

+ k2k3 + k2k4 + k3k4 + k1k6 + k2k6 + k3k6 + k4k6 + k1μd
+ k2μd + k3μd + k4μd > 0,

b2 = k1k2k3
RQ

R0

� �
+ k1k2k4

RIs

R0

� �
+ k1k3k4

RIa

R0

� �
+
k1k2μd RIs

+RQ

	 

+ k1k3μd RIa

+RQ

	 

+ k1k4μd RIa

+RIs

	 

R0

+ k1k2k6 + k2k3k4 + k1k3k6 + k1k4k6 + k2k3k6 + k2k4k6 + k3k4k6
+ k2k3μd + k2k4μd + k3k4μd > 0,

b1 = k1k2k3μd
RQ

R0

� �
+ k1k2k4μd

RIs

R0

� �
+ k1k3k4μd

RIa

R0

� �
+ k1k2k3k6 + k1k2k4k6 + k1k3k4k6 + k2k3k4k6 + k2k3k4μd > 0,

b0 = k1k2k3k4k6 > 0: ð32Þ

Based on (19) and fulfilling the Routh-Hurwitz stability
criteria, all eigenvalues of the characteristic Equation (31)
have a negative real part, and the EEP of the proposed model
(2) is locally asymptotically stable if R0 > 1.

3.8. Global Stability of Endemic Equilibrium Point. The fol-
lowing statement implies the global stability analysis of the
endemic equilibrium point:

Theorem 7. The EEP of the proposed model (2) is globally
asymptotically stable in the region Ω, if R0 > 1.

Proof. In this regard, consider the following Lyapunov func-
tion:

Γ S, E, Ia, Is,Q,H, Rð Þ = S − S∗ − S∗ ln S
S∗

� �
+ E − E∗ − E∗ ln E

E∗

� �
+ Ia − I∗a − I∗a ln

Ia
I∗a

� �
+ Is − I∗s − I∗s ln

Is
I∗s

� �
+ Q −Q∗ −Q∗ ln Q

Q∗

� �
+ H −H∗ −H∗ ln H

H∗

� �
+ R − R∗ − R∗ ln R

R∗

� �
:

ð33Þ

Taking the time derivative of (33) with respect to time

and replacing the expressions of model (2) lead to

dΓ
dt =

S − S∗

S

� �
_S + E − E∗

E

� �
_E + Ia − I∗a

Ia

� �
_Ia +

Is − I∗s
Is

� �
_Is +

Q −Q∗

Q

� �
_Q

+ H −H∗

H

� �
_H + R − R∗

R

� �
_R

= 1 − S∗

S

� �
Π −

β Is + ε1Ia + ε2Qð Þ S − S∗ð Þ
N

− μd S − S∗ð Þ
�

−
β Is + ε1Ia + ε2Qð ÞS∗

N
+ μdS

∗
� ��

+ 1 − E∗

E

� �
β Is + ε1Ia + ε2Qð ÞS

N

�
− ν + φ + μdð Þ E − E∗ð Þ − ν + φ + μdð ÞE∗Þ + 1 − I∗a

Ia

� �
ςφE − α + μdð Þ Ia − I∗að Þð

− α + μdð ÞI∗aÞ + 1 − I∗s
Is

� �
1 − ςð ÞφE − θ + δ + σ + μdð Þ Is − I∗sð Þð

− θ + δ + σ + μdð ÞI∗s Þ + 1 − Q ∗
Q

� �
νE − w + q + r + μdð Þ Q −Q∗ð Þð

− w + q + r + μdð ÞQ∗Þ + 1 − H ∗
H

� �
δIs + qQ − ξ + h + μdð Þ H −H∗ð Þð

− ξ + h + μdð ÞH∗Þ + 1 − R ∗
R

� �
αIa + θIs + rQ + hH − μd R − R∗ð Þ − μdR

∗ð Þ:

ð34Þ

By manipulating and rearranging terms, we obtain

dΓ
dt =Π −

S∗

S
Π + S∗λ + S∗μd

� �
+ S∗2

S
λ + μdð Þ

−
S − S∗ð Þ2

S
λ + μdð Þ + λS −

E∗

E
λS − k1E

∗ + E∗2

E
k1

−
E − E∗ð Þ2

E
k1 + ςφE −

I∗a
Ia
ςφE − k2I

∗
a +

I∗a
2

Ia
k2

−
Ia − I∗að Þ2

Ia
k2 + 1 − ςð ÞφE −

I∗s
Is

1 − ςð ÞφE − k3I
∗
s

+ I∗s
2

Is
k3 −

Is − I∗sð Þ2
Is

k3 + νE −
Q∗

Q
νE − k4Q

∗ + Q∗2

Q
k4

−
Q −Q∗ð Þ2

Q
k4 + δIs + qQð Þ − H∗

H
δIs + qQð Þ − k5H

∗

+ H∗2

H
k5 −

H −H∗ð Þ2
H

k5 + αIa + θIs + rQ + hHð Þ

−
R∗

R
αIa + θIs + rQ + hHð Þ − μdR

∗ + R∗2

R
μd −

R − R∗ð Þ2
R

μd:

ð35Þ

Next, we can write dΓ/dt = χ1 − χ2, where

χ1 =Π + S∗2

S
λ + μdð Þ + λS + E∗2

E
k1 + ςφE + I∗a

2

Ia
k2

+ 1 − ςð ÞφE + I∗s
2

Is
k3 + νE + Q∗2

Q
k4 + δIs + qQð Þ

+ H∗2

H
k5 + αIa + θIs + rQ + hHð Þ + R∗2

R
μd ,
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χ2 =
S∗

S
Π + S∗λ + S∗μd

� �
+ S − S∗ð Þ2

S
λ + μdð Þ

+ E∗

E
λS + k1E

∗ + E − E∗ð Þ2
E

k1 +
I∗a
Ia
ςφE + k2I

∗
a

+ Ia − I∗að Þ2
Ia

k2 +
I∗s
Is

1 − ςð ÞφE + k3I
∗
s +

Is − I∗sð Þ2
Is

k3

+ Q∗

Q
νE + k4Q

∗ + Q −Q∗ð Þ2
Q

k4 +
H∗

H
δIs + qQð Þ

+ k5H
∗ + H −H∗ð Þ2

H
k5 +

R∗

R
αIa + θIs + rQ + hHð Þ

+ μdR
∗ + R − R∗ð Þ2

R
μd:

ð36Þ

Since it is assumed that all parameters of model (2) are
nonnegative, we have dΓ/dt ≤ 0 for χ1 ≤ χ2. Furthermore,

when χ1 = χ2, then dΓ/dt = 0. In other words, if t⟶∞, it
can be stated that ðS, E, Ia, Is,Q,H, RÞ⟶ ðS∗, E∗, I∗a , I∗s ,
Q∗,H∗, R∗Þ. Finally, by using LaSalle’s Invariance Principle
[28], the EEP of the proposed model is globally asymptoti-
cally stable.

Theory 7 states that without considering the number of
infected people at the onset, when R0 > 1, the virus will per-
sist and spread widely in the community.

3.9. Sensitivity Analysis and Discussion. In this part, the rel-
ative contribution of model parameters to how the disease
persists in the population is investigated. Sensitivity analysis
leads to clear insights for a precise focus on targeted preven-
tive interventions (pharmacological treatments and non-
pharmaceutical protocols) to control the prevalence of
disease transmission in order to reduce disease-induced
deaths.

In order to evaluate the efficacy of model parameters in
preventive and therapeutic strategies, the normalized for-
ward sensitivity index of basic reproduction number can be
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Figure 14: Dynamical behavior of model trajectories corresponding to (a) asymptomatic individuals, (b) symptomatic individuals, and (c)
exposed individuals at different initial conditions, according to Theorem 4. For this purpose, all parameters are taken from Table 3, except
β = 0:19416 and δ = 0:02035; therefore, R0 = 0:7860 < 1.
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performed to measure the relative changes of R0 with
respect to the vital parameters of the model [29, 30].

Definition 9. The normalized forward sensitivity index ofR0
, which depends differentiably on the parameter Θ, is
defined by

SR0
Θ ≔

Θ

R0
× ∂R0

∂Θ
: ð37Þ

In (37), if the sign of the sensitivity index is positive for a
parameter, the rate of infection transmission grows with the
relevant parameter. The index with a higher magnitude can
be considered a controlling factor in disease transmission. It
should be noted that some parameters are beyond human
control and cannot be considered measures to control dis-
ease transmission, such as the death rate and population
growth rate.

The sign of the calculated sensitivity indices of R0 with
respect to some parameters of model (2), using the formula
given in (37), is tabulated in Table 2. Our findings show that
the parameters β, ε1, ε2, and ς have a positive sign, implying
that the value of R0 will increase as these parameters are
increased. While the remaining parameters have a negative
sign, it means that the value of R0 will decrease for higher
values of these parameters.

4. Parameter Estimation and Model Validation

The model validation process determines how accurate a
mathematical model is in representing real data. Due to
the fact that many aspects of the onset of the novel corona-
virus are still unknown, the parameter estimation process
has an effective contribution to forecasting the dynamical
behavior of the COVID-19 pandemic. In this section, the
data fitting using model (2) to the confirmed COVID-19-
infected cases in Egypt is investigated. In order to achieve a
better fit of the model solution to the actual data, the biolog-
ical parameters of the model are estimated via a nonlinear
least-square fitting approach. To do this, we consider the
daily cumulative number of reported cases from February
14, 2020, to May 23, 2020, reported in Egypt. The confirmed
reported data was obtained from [31].

For the proposed model, the demographic parameters
can be estimated, for example, the natural death rate μd for
an Egyptian citizen is 1/72:54 per year (3:777 × 10−5 per
day) according to the WHO report (year 2020). The total
population of Egypt in 2020 is Nð0Þ = 102,334,404 [32]. In
this study, we assume that the population size is noncon-
stant, and thus, the birth rate is estimated to be Π =Nð0Þ
× μd ≈ 3865.

The nonlinear differential equations of model (2) can be
exhaustively deemed to be as follows:

dZ
dt =G t,Z ,Φð Þ,Z t0ð Þ =Z0, ð38Þ

where G is a time-dependent function, Z is the vector of

state variables, and Φ is a set of model parameters to be
estimated.

In this study, during the specified time period, the non-
linear differential equations of model (2) are solved numeri-
cally via the ode45 package, and the resulting solutions are
used to determine the best fit of the model parameters using
an optimal estimation lsqcurvefit routine with the trust-
region-reflective algorithm in the MATLAB© software [15,
30, 33]. This approach minimizes the sum of the squared
residuals:

bΦ = 〠
n

i=1
yti − ~yti

� �2
, ð39Þ

where n denotes the total number of available actual data
points for the fitting process. In the objective function (39),
yti is the confirmed reported data, and ~yti is the solution of
the model associated with the model parameters Φ. Accord-
ingly, to obtain the best-fit model parameters, the following
objective function should be minimized:

min bΦ
subject to 38ð Þ:

(
ð40Þ

The model fitting with daily confirmed reported cases is
illustrated in Figure 2. It can be seen that the model fitting is
good for the real data. The estimated parameters for
COVID-19 disease in Egypt are given in Table 3. Taking into
account the estimated parameters, the approximate value of
the basic reproduction number for Egypt is R0 ≈ 2:6408.
Also, the two metrics for evaluating the accuracy of the
model fitting process are considered: mean absolute error
(MAE) and root mean squared error (RMSE). For model fit-
ting of Egypt, the values obtained are RMSE = 54:64 and
MAE = 290:92. Accordingly, the numerical values obtained
for the two relevant indicators demonstrate that the data fit-
ting process is quite good.

In the following, some numerical simulations are investi-
gated in order to validate the model and evaluate the effect of
some nonpharmaceutical protocol parameters on the persis-
tence or eradication of the infectious COVID-19 communi-
cable disease. Figure 3 shows the estimated number of
symptomatic COVID-19 cases with the daily confirmed
reported data in Egypt. Using the numerical values of fixed
parameters from Table 3, the sensitivity indices for model
(2) are depicted in Figure 4. It can be observed that the
parameter β has the highest sensitivity value with a high
positive influence compared to all other parameters. This
means that an alteration of 1% (increase or decrease) in
the value of parameter β will lead to a variation (increase
or decrease) of the R0 by 1%.

5. Numerical Results and Discussion

In order to perform numerical simulations, we consider the
total population of Egypt in 2020 as Nð0Þ = 102,334,404.
Furthermore, at the onset of the COVID-19 outbreak, the
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initial populations of exposed and asymptomatic individuals
were assumed to be Eð0Þ = 500 and Iað0Þ = 150, respectively.
The initial symptomatic infected population as given in the
confirmed data is Isð0Þ = 1. It should be noted that there
were no treated, self-quarantined, and recovered individuals
initially, so Hð0Þ = 0, Qð0Þ = 0, and Rð0Þ = 0, respectively.
Hence, the initial size of the susceptible population is given
as Sð0Þ =Nð0Þ − Eð0Þ − Iað0Þ − Isð0Þ −Qð0Þ −Hð0Þ − Rð0Þ:

In order to investigate the effect of the contact rate β on
the burden of the COVID-19 communicable epidemic, var-
ious numerical values of this parameter have been consid-
ered. The dynamic behavior of the infectious population
due to an increase in physical distancing (reduction in β)
is shown in Figure 5. Clearly, by decreasing the disease con-
tact rate from baseline social distancing (keeping a distance
of at least 2 meters away from others) to strict social distanc-
ing regulation at least a 40% reduction in β (staying at home
or, more preferably, lockdown), the total number of
COVID-19 infective individuals will decrease substantially.
Accordingly, in the first stage of applying preventive policies
and preventive interventions, the Egyptian government must
eliminate effective contact rates and comply with social dis-
tancing regulations during the COVID-19 crisis as far as
possible.

The novel coronavirus can be transmitted by people who
are infected but never have clinical characteristics (or who
experience very mild or almost unrecognizable symptoms).
Undoubtedly, these people have a significant role in contrib-
uting to the disease burden without their own knowledge.
Asymptomatic carriers are an important source of infection,
and they are known as silent carriers. The effect of ε1 param-
eter is depicted in Figure 6. The total number of infected
individuals decreases when ε1 decreases. On the other hand,
the effect of ε2 parameter on how infection is transmitted
from quarantined/self-isolated patients is illustrated in
Figure 7. It is observed that reducing this parameter does
not have much effect on the epidemic’s burden. Obviously,
those COVID-19 patients who are in compulsory quarantine
or self-isolation are separated from other people, and no one
is allowed to meet them. Therefore, this class of infected
people does not help to curtail the burden of the disease as
long as they are in compulsory quarantine and home
isolation.

In the fight against the novel coronavirus, contact tracing
is regarded as critical in attempting to prevent the onset of
an outbreak. When a patient with suspected COVID-19 is
identified, the patient should be immediately isolated from
the rest of the population. Figure 8 states that identifying
exposed individuals and strictly enforcing the contact track-
ing policy can reduce further transmission dramatically. In
Figure 9, the effects of the hospitalization rate of symptom-
atic individuals at different values are illustrated. It is pro-
jected that an increase in the hospitalization rate of people
with clinical signs and symptoms has no significant effect
on the disease burden.

According to the results, the impact of ε2 parameter is
not as effective as taking efforts to curb disease contact rates
among infectious (β) and asymptomatic (ε1) ones. Since, in
the case of the novel coronavirus, a large fraction of trans-

mission occurs before the onset of clinical symptoms, a
mandatory quarantine or stringent contact-tracing measure
(ν) to identify exposed people will be required to tackle the
disease burden in Egypt.

It should be noted that R0 is not a fixed number in gen-
eral, and the basic reproductive number is a function of
some biological parameters. Hence, the behavior of R0
according to variations of two arbitrary parameters simulta-
neously can be depicted in contour plots (Figures 10–13).
Figure 10 represents an increase inR0 with increasing effec-
tive rates for both asymptomatic and quarantined individ-
uals. It implies that, to make sure R0 < 1, reducing the
values of the effective contact rates ε1 and ε2 must be strictly
considered in the suffering community. It is clear from
Figure 11 that reducing the incubation period of the new
coronavirus, while improving the hospitalization rate of
symptomatic people, can reduce the R0 value below 1.
According to the results obtained from Figures 12 and 13,
it can be said that compliance with social distancing (reduc-
tion of effective contact rate β) by about 40%, along with
increasing preventive measures such as contact-tracing pro-
cess and self-quarantine at home for exposed individuals (ν)
as well as an increased hospitalization rate (δ), can mitigate
the burden of the epidemic.

In order to graphically evaluate the global stability of the
COVID-19 transmission model (2), we examine the conver-
gence of model trajectories at disease-free equilibrium
regardless of the initial condition of the infected individuals.
The results in Figure 14 confirm the predefined Theorem 4.

6. Conclusion

In this study, a deterministic mathematical model has been
presented to analyze the dynamical behavior of the
COVID-19 epidemic in Egypt, and it has been used to eval-
uate the impact of preventive strategies and reduce the bur-
den of infection in the suffering community. To achieve this
aim, we extend the compartmental SEIR model by consider-
ing some nonpharmaceutical interventions to enable the
effective and standard means of curbing the COVID-19 pan-
demic. To gain a more accurate view, mathematical analysis
including positivity, boundedness, disease-free, and endemic
equilibrium stability points is investigated for the dynamics
of the model. Numerical simulations illustrate that the
model fitting is in good agreement with the actual data of
COVID-19-infected cases in Egypt. The basic reproduction
number R0, as an epidemic threshold to determine how
the disease is transmitted, is calculated for the proposed
model via the next-generation matrix method. We have
examined the locally and globally asymptotically stable of
the disease-free and endemic equilibrium points via the
Routh-Hurwitz stability criterion and Lyapunov function
candidate in terms of R0. Accordingly, in the case of R0
< 1, the disease can be eradicated. Otherwise, ifR0 > 1, then
the disease will persist and spread in the community. The
parameters used in the model simulations are estimated
using the nonlinear least squares approach for the best fit
between the reported cumulative data of COVID-19 from
14 February to 23 May, 2020, in Egypt and the solution of
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the proposed model. Based on the obtained numerical values
of the model parameters, the estimated value of R0 is
2.6408, which includes the effects of different infected com-
partments as RIa

≈ 1:4292, RIs
≈ 1:1855, and RQ ≈ 0:0261.

The impact of some model parameters that are consid-
ered preventive interventions in order to meet the flattening
curve for COVID-19 is examined. Based on our findings,
three nonpharmaceutical prevention measures, including
increasing the physical distance to reduce the contact rate,
performing the contact-tracing process, and imposing com-
pulsory quarantine on exposed individuals, are the most
influential policies and play an effective role in improving
the idea of fitting curves in society and reducing treatment
costs substantially. The sensitivity analysis revealed that rig-
orous compliance with social distancing regulations (at least
a 40% decrease in β compared to its baseline value) is the
most effective parameter in mitigating disease spread,
followed by ε1 and the quarantine rate for exposed individ-
uals, denoted by ν. In addition, the effect of changes in a pair
of model parameters simultaneously on the numerical value
of R0 has been depicted. The results confirm that in the
absence of pharmacological measures such as vaccine alloca-
tion and administration, strict physical distancing, self-
isolation intervention, and improvement of the quality of
medical infrastructure in order to reduce the peak number
of infected people are a priority.

However, due to the deficiency of basic infrastructure in
developing countries such as Egypt, the rigorous implemen-
tation of preventive protocols simultaneously is always chal-
lenging for the government. Therefore, by rigorous
implementation of social distancing measures, proper mon-
itoring of exposed people, and self-quarantine at home, the
burden of the disease can be tackled on the suffering com-
munity. In future work, we will enhance the proposed model
by introducing the effect of vaccination allocation and
designing the time-dependent optimal control strategy as
effective treatment measures. In this case, the effects of the
basic nonpharmaceutical protocols (constant control) and
therapeutic measures (optimal control) will be examined,
and the results will be compared.
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