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The most popular test for pneumonia, a serious health threat to children, is chest X-ray imaging. However, the diagnosis of
pneumonia relies on the expertise of experienced radiologists, and the scarcity of medical resources has forced us to conduct
research on CAD (computer-aided diagnosis). In this study, we propose MP-ViT, the Multisemantic Level Patch Merger
Vision Transformer, to achieve automatic diagnosis of pneumonia in chest X-ray images. We introduce Patch Merger to
reduce the computational cost of ViT. Meanwhile, the intermediate results calculated by Patch Merger participate in the final
classification in a concise way, so as to make full use of the intermediate information of the high-level semantic space to learn
from local to overall and to avoid information loss caused by Patch Merger. We conducted experiments on a dataset with
3,883 chest X-ray images described as pneumonia and 1,349 images labeled as normal, and the results show that even without
pretraining ViT on a large dataset, our model can achieve the accuracy of 0.91, the precision of 0.92, the recall of 0.89, and the
F1-score of 0.90, which is better than Patch Merger on a small dataset. The model can provide CAD for physicians and
improve diagnostic reliability.

1. Introduction

Pneumonia is an infectious inflammation of the alveoli, dis-
tal airways, and interstitial spaces of the lungs and is mainly
triggered by bacteria and viruses. It is the number one killer
of children under 5 years old and poses a major threat to
children’s health, causing more deaths than malaria,
tuberculosis, and AIDS combined [1–3]. The World Health
Organization (WHO, Geneva) states that childhood pneu-
monia leads to approximately 1.4 million deaths per year,
accounting for about 18% of deaths among children under
5 years old worldwide [4]. This has prompted an increasing
interest in fast and low-cost pneumonia detection means.

There are many common tests for pneumonia in chil-
dren, such as chest X-ray, chest computerized tomography
(CT), and magnetic resonance imaging (MRI). Although less
accurate than CT and MRI, X-ray is the cheapest, the most
easily accessible and the most needed examination for devel-
oping countries, where medical resources are relatively in

short supply [5, 6]. The correct diagnosis by chest X-ray
depends on the knowledge of experienced physicians, who
are also scarce in developing countries. Therefore, how to
help physicians improve diagnosis accuracy by computer-
aided diagnosis (CAD) technology is a meaningful topic.

Deep learning technology can be used to provide CAD
and improve the accuracy and efficiency of clinical diagno-
sis. It automatically extracts features layer by layer from
the raw data and finally builds mathematical models. Those
models that have achieved advantages in various competi-
tions (such as ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [7]) in the field of computer vision
(CV) are applied on medical images to provide advice on
diagnosis.

In 2012, Krizhevsky et al. [8] used convolutional neural
network (CNN) and achieved overwhelming success in the
ImageNet challenge, which attracts extensive research atten-
tion. After the success of CNN models [8–10], the literature
[11] used CNN to analyze medical images; the literature [12]
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used CNN-based EfficientNet to train a classifier by transfer
learning and fine-tuning for diagnosis of pneumonia. In
2020, Dosovitskiy et al. proposed the Vision Transformer
(ViT) model [13], which achieves comparable or even better
classification performance than CNN with lower computa-
tional cost, making ViT model a hot research topic in CV
field. Some studies have tried to apply it on the medical
image tasks, e.g., comparing the performance between ViT
and some other models and proposing to use ViT for pneu-
monia diagnosis [14], or improving ViT for COVID-19
detection [15]. To reduce the computational efforts of ViT,
in 2022, Renggli et al. [16] proposed the Patch Merger,
which significantly reduces the computational efforts of
ViT while maintaining the model performance basically
unchanged. However, there are some risks in applying Patch
Merger, because some patches containing important infor-
mation may be discarded during merging, which may be a
problem especially for medical image datasets.

Inspired by that work, we propose the Multisemantic
Level Patch Merger Vision Transformer (MP-ViT). It moves
the Patch Merger Block forward and preserves the interme-
diate results participated in the final classification.

The main contributions of this study are listed as below:

(1) We proposed the Patch Fuser, a concise method for
memorizing and utilizing intermediate information
in the semantic transformation process of the Patch
Merger model, thus, making full use of feature infor-
mation in the semantic space of different levels

(2) We further reduced the computational efforts of ViT
by moving the Patch Merger Block forward, while
keeping the classification performance of the model

(3) Through experiments, we showed that MP-ViT can
maintain the advantages of Patch Merger, while
avoiding the risk of losing the higher-level semantic
information in Patch Merger

The structure of the body in this paper is as follows.
In Related Work, we briefly reviewed the related

researches on Transformer, ViT, and Patch Merger and
introduced their applications in CV and medical imaging
tasks. Meanwhile, the deficiencies and risks of these models
were also raised.

In Methods, we described the principles and structures
of Transformer, ViT, and Patch Merger and detailed our
Patch Fuser and MP-ViT models that have been proposed,
as well as the label smoothing technique.

In Experiments, we introduced the dataset, the image
enhancement method, and our experimental details. We
compared the performance of those models together with
ResNet50, which played the role of baseline, and showed
that our model has won the best performance in the experi-
ment. We analyzed these models while taking comparison
between them.

In Conclusion and Future Work, we summarized the
advantages of our proposed model and also analyzed the
shortcomings of our current work while proposing the next
step of future research work.

2. Related Work

Medical imaging technology has made tremendous progress
in the past few decades. Traditional machine learning
methods for solving medical imaging tasks mainly rely on
the expertise of medical experts to carry out mathematical
modeling [17], but these methods cannot take full advantage
of the expressive power of large image datasets and have not
yet met the requirements for doctors to improve diagnostic
accuracy and workflow efficiency. As deep learning has
become the state-of-the-art machine learning approach,
especially after the overwhelming victory of CNN in CV
competitions, there have been more and more cases using
deep learning methods to analyze medical images, such as
classification tasks to distinguish normal and diseased tis-
sues, benign and malignant tumors, and image segmentation
tasks to extract the boundaries of normal or diseased tissues
or organs to obtain normal or diseased regions [18–20].
However, these cases have not yet fully analyzed and
exploited the relationship of pixels at long distances on the
image. The costs are also quite expensive.

The Transformer model [21] originated in the field of
Natural Language Processing (NLP), which avoids model
architectures of recursion and CNN and completely relies
on attention mechanisms to obtain global dependencies
between inputs and outputs. This architecture significantly
increases parallelization level, thus achieving better transla-
tion quality while substantially improving the speed of com-
putation. Once proposed, it quickly dominated the NLP
field.

Based on the Transformer’s success in field of NLP, the
CV community has also tried to assimilate Transformer’s
ideas by integrating attention mechanisms [21–23] into
CNN-like architectures [24, 25], which either applies atten-
tion with CNN or replaces some certain architectures of
CNN with attention. Cordonnier et al. [26] proposed to
apply a complete self-attentive mechanism in 2 × 2 image
patches. In 2020, Dosovitskiy et al. [13] argued that applying
the attention mechanism while maintaining the overall
architecture of CNN is unnecessary and that the Trans-
former model can be applied directly to the sequence of
image patches segmented from the original image, thus,
completely replacing the standard convolution in deep neu-
ral networks, and proposed the Vision Transformer model.
Since its proposal, the ViT has shown to be the most
advanced model in many tasks in CV. In addition to the
aforementioned image classification task, for object detec-
tion, Zhu et al. [27] proposed Deformable Transformer
(DETR), which improves the self-attention mechanism of
ViT by focusing only on a small number of critical samples
near the reference point. In the field of semantic segmenta-
tion, Zheng et al. [28] replaced the convolutional network
with a pure Transformer to build Segmentation Transformer
(SETR), which achieved better performance than CNN
approaches. In the area of image colorization, Kumar et al.
[29] used a conditional autoregressive axial transformer to
implement the coarse colorization of grayscale images at
low resolution, which was proved to achieve better results
than previous means with lower computational complexity.
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In low-level CV tasks (e.g., denoising, superresolution, and
deduplication), instead of directly slicing the original image
into patches, Chen et al. [30] first fed the image to a specific
header, then segmented the generated features into small
patches that were passed to Transformer, and finally devel-
oped a pretrained model, whose performance is better than
that of all models before Transformer’s advent by utilizing
Transformer’s powerful representation capabilities on
large-scale datasets. In the video understanding task, Arnab
et al. [31] used several Transformer layers to process the
time-spacial markers extracted from the input video and
resolved the problem of long time-spacial marker input
sequences through several different methods and achieved
the state-of-the-art results on five popular video datasets.
Matsoukas et al. [32] collected three medical imaging data-
sets and compared the classification performance of CNN
and ViT with different parameter initialization strategies
and found that CNN outperformed ViT when the data vol-
ume was small, which was attributed to the lack of inductive
bias in ViT. While using the ViT model pretrained on Ima-
geNet, the performance is comparable to CNN. If self-
supervised pretraining is used, ViT outperforms CNN. They
finally concluded that in medical imaging, it is reliable to
replace CNN with ViT.

Although many studies have shown that deep models
such as ViT have achieved remarkable performance on CV
tasks, the application of ViT still requires huge computa-
tional costs. An effective way to improve model performance
is to use larger datasets and increase the size of the model.
Brown et al. [33] built a transformer-based GPT-3 model
with 175 billion parameters, which is 10 times more than
the previous largest nonsparse language model, and achieved
strong performance on several NLP datasets. Zhai et al. [34]
trained a ViT model with a parameter size of 2 billion, which
achieved a record-breaking 90.45% on ImageNet. Applying
ViT models generally requires pretraining on large datasets
and then fine-tuning for (smaller) downstream tasks.
Whereas large-scale training implies expensive computing
power requirements, so reducing computing power while
maintaining the model performance unchanged is a mean-
ingful research direction. For the classical ViT model, the
dimension size of each Transformer Encoder input and out-
put is constant. Therefore, some researches tried to reduce
the amount of transmitted data between Transformer
Encoders. Pyramid ViT proposed by Wang et al. [35] con-
structs a sequence of Transformer Encoders, whose patch
scales are reduced layer by layer, and introduces a Spacial
Reduction Attention Layer before the attention module
inside each encoder, which greatly reduces the computa-
tional complexity of ViT. Jaegle et al. [36] proposed the Per-
ceiver to perform the attention mechanism in a latent space,
whose size is usually smaller than the input and output, and
implements the decoupling of three links of reading-process-
ing-output, making it adaptable to inputs and outputs of dif-
ferent scales. Ryoo et al. [37] established a series of learned
tokenizer functions, each of which converts the input image
into a vector in a spacial attention calculation, thus, a set of
adaptively changing informative combinations containing
the pixels or spatial locations of the original image is con-

structed and the TokenLearner is implemented and inserted
between two transformer encoders, so that the inputs of the
subsequent encoders are that set of vectors instead of
original patches, which greatly reduced the input size of
the subsequent encoders. Meanwhile, Riquelme et al. [38]
proposed Vision Mixture of Experts, a sparse version of
ViT that can achieve higher performance at roughly the
same computational cost, which shows that not every patch
segmented off from the original image are necessary. On this
basis, Renggli et al. [16] proposed Patch Merger, which
amalgamates the features between different tokens in a con-
cise way, reduces the absolute number of patches in the cal-
culation process, and takes the reduced patch sequence as
the input to the subsequent transformer encoders, thereby
reducing the computational effort. This study significantly
reduces the computational cost of ViT and improves the
computational speed at different model sizes while main-
taining the ViT performance nearly unchanged. Although
Patch Merger technique shows advantages as above, the clas-
sification performance may be degraded when it is applied to
medical image datasets. The reason may be that some
patches containing important information may experience
information loss during the conversion process. Especially
for medical images, a large number of image patches may
have high content similarity, while the lesion sites that play
an important role in diagnosis may be relatively small, mak-
ing it difficult to map the information contained in these
patches to the output patches. Therefore, it is a meaningful
research topic to avoid the risk of information loss brought
by Patch Merger technique so that it can be more easily
applied to medical imaging scenarios.

3. Methods

This study proposes Patch Fuser, a multisemantic level patch
merger technique. It accepts enhanced training images and
outputs fusioned features, which are used to perform the
training of MP-ViT. Based on the self-attention mechanism
of ViT, this model takes advantage of the feature dimension
reduction of Patch Merger in a simple and fast way and
enables the intermediate information of the Patch Merger
operation to participate in the final classification. It reduces
the risk of information loss that may occur in Patch Merger
and further reduces the computational cost of ViT, which
can promote the application of ViT in medical imaging
scenarios.

The overall establishing and using pipeline of MP-ViT is
described as Figure 1.

3.1. Transformer. The Transformer model [21] has now
become one of the most popular models in the field of
NLP and is widely used in the field of machine translation
and achieves better performance than traditional models
such as recurrent neural network (RNN) and CNN while
requiring fewer computational resources. It is based on a
self-attention mechanism that improves parallelization and
reduces the computational difficulty of learning the similar-
ity between distant locations to a constant level.
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3.1.1. Architecture. The Transformer model is based on an
encoder-decoder structure. The encoder maps the input
sequence x = ðx1,⋯, xnÞ into the sequence z = ðz1,⋯, znÞ.
Then, an autoregressive decoder [39] generates a symbolic
output sequence of the elements ðy1,⋯, ynÞ. Each time the
next output is generated, the previous output is transmitted
to the decoder as part of the input.

The encoder-decoder structure of the Transformer
model is shown in Figure 2.

(1) Encoder. The encoder is composed of N identical blocks.
The first block accepts the embedded input, and the input of
each subsequent block is the output of the previous block.
Each block has 2 residual sublayers inside.

The first residual sublayer passes the embedded input to
a multihead self-attention model, and the output of this
model is summed with the input (i.e., residual structure).
Then, layer normalization is performed to obtain the output
of the first residual sublayer. The second residual sublayer
receives the output of the first residual sublayer and then
obtains the output through a simple position-wise fully-
connected feedforward network. The output is also summed
with its input and layer normalized to obtain the output of
the second residual sublayer.

(2) Decoder. The structure of the decoder is similar to the
encoder. It is also made up of N identical blocks stacked
on top of each other. The decoder inserts another sublayer
between the 2 residual sublayers of the encoder, which
receives the multihead self-attention of the encoder output.
Each sublayer is a residual structure, and the output is
summed with the input and then the layer normalization is
performed.

The self-attention model in the decoder stack structure is
masked, i.e., it only receives the known outputs of positions
smaller than i as input when calculating the self-attention of
position i.

3.1.2. Self-Attention Mechanism. Attention is used to
describe the assigned weights of multiple elements of an
input sequence, and it reflects the difference in influence of
different input elements on the result. The attention function

is used to map a query and a key-value pair to an output,
where the query, key, value, and output are all vectors. This
output is a weighted sum of the inputs, where the weight
assigned to each value is the attention score which is com-
puted from the similarity function of the query to the corre-
sponding key.

The Transformer model takes a multihead scaled dot-
product attention calculation method with the structure
shown in Figure 3.

(1) Scaled Dot-Product Attention. The input of the model is a
query, a key of length dk, and a value of length dv. The dot
product of query and key is calculated first, and the result
is divided by

ffiffiffiffiffi
dk

p
, then, the softmax function is applied to

compute the weight of the result and then multiplied by
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Figure 1: The overall establishing and using pipeline of MP-ViT Model. The raw images are input to the Patch Fuser after image
enhancement and layer normalization, and then the fusioned features are obtained after model process. Those fusioned features are
trained together with smoothed labels to build MP-ViT Model, and then it is used for prediction.
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the value. In the actual calculation, the vectors of query, key,
and value are each combined into matrices Q, K , and V . The
formula is listed as below:

Attention Q, K , Vð Þ = softmax
QKTffiffiffiffiffi

dk
p

 !
V : ð1Þ

When dk is relatively large, the result of dot product after
softmax calculation will be more biased towards the region
with very small gradient [40], so it is divided by

ffiffiffiffiffi
dk

p
.

(2) Multiheaded Self-Attentiveness. To allow the model to
learn information from different representation subspaces
at different locations, a multihead self-attention mechanism
is used. This mechanism projects query, key, and value with
different, learned liner projection layers for h times, obtain-
ing h smaller matrices of Q, K , and V with dimensions dk,
dk, and dv. After hAttentionðQ, K , VÞs are generated, they
are concatenated and the final AttentionðQ, K , VÞ is
obtained. The formula is as follows:

MultiHead Q, K , Vð Þ = Concat head1,⋯, headhð ÞWO, ð2Þ

where headi = AttentionðQWQ
i , KWK

i , VWV
i Þ.

And the linear projection layers are matrices of parame-
ters:

WQ
i ∈ℝdmodel×dk ,WK

i ∈ℝdmodel×dk , ð3Þ

WV
i ∈ℝdmodel×dv ,WO

i ∈ℝhdv×dmodel : ð4Þ
There are 3 self-attention structures in the Transformer

model. The self-attention model from encoder gets its query,
key, and value from the same place, i.e., the output of the
previous encoder. The masked self-attention model from
decoder receives the decoder’s output as input in an autore-

gressive approach, and the information to the right of cur-
rent position will be masked (implemented by setting the
input to −∞ to mask the input that should be masked).
The self-attention model in the encoder-decoder layer
receives the key and value from encoder and the query from
masked self-attention model. This structure allows each
position in the decoder to focus on all positions in the input
sequence. This simulates the typical encoder-decoder atten-
tion mechanism in the seq2seq model, as in [41–43].

3.1.3. Position Encoding. The self-attention mechanism calcu-
lates the weight distribution between each individual elements
of a sequence regardless of the sequence order. Therefore, in
order for the model to take advantage of the sequence’s order,
the transformer model adds position encoding information to
the inputs of the encoder and decoder.

The position encoding has the dimensionality dmodel
which is the same as the input word embedding vector,
and the result obtained by summing the position encoding
and the word embedding vector is passed to the encoder
and decoder as input. There are many approaches to gener-
ate position encoding including the learned way and the
fixed way [42]. The Transformer model uses sine and cosine
functions of different frequencies as position encoding.

PE pos,2ið Þ = sin
pos

100002i/dmodel

� �
, ð5Þ

PE pos,2i+1ð Þ = cos
pos

100002i/dmodel

� �
, ð6Þ

where pos is the position and i is the dimension. For each
element of the input sequence, the formula generates a vec-
tor of length dmodel, which uses a sine function for the even
bits and a cosine function for the odd bits, so that each bit
of the position-encoded vector corresponds to a sine wave
and the wavelength forms a geometric progression from 2π
to 10000 × 2π. For any fixed offset k, PEpos+k can be
expressed as a linear function of PEpos.
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Linear
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Linear Linear Linear
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Figure 3: (a) The calculation of scaled dot-product attention. (b) Structure of multihead attention calculation in parallel.
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3.1.4. Position-Wise Feed-Forward Networks. The self-
attention sublayer output results of the encoder and decoder
are passed to a position-wise feedforward neural network,
which is a simple fully connected layer structure that is
applied to each position separately and whose structure is
identical but with different parameters. It consists of two lin-
ear transformations with a ReLU activation in between.

FFN xð Þ =max 0, xW1 + b1ð ÞW2 + b2, ð7Þ

where FFN is feed-forward networks.

3.1.5. Normalizations

(1) Internal Covariate Shift and Normalizations. In statistics-
based machine learning theory, there is a basic assumption
that the source space and target space should meet the
requirement of independent and identical distribution. In
deep neural network, the parameters’ update in each layer
will lead to the change of the input data distribution of the
upper layer, and through the superposition of layers, the
lower space and the upper space will satisfy the assumption
of “independent and identical distribution” less and less.
This makes the training process difficult to converge and
generates gradient explosion, gradient disappearance, over-
fitting, and other problems. This is the phenomenon of
internal covariate shift. To solve this problem, a learnable,
parameterized network layer can be introduced before or
after each network layer to perform normalization.

Suppose a set of input vectors are X = fx1, x2,⋯, xdg.
Take the normalizing transformation on it so that it follows
a normal distribution:

Xnorm =
x − μ

σ
, ð8Þ

where μ is the mean of the original data sample and σ is
the variance. After another reshift and rescale performed,
there will be a transformed input vector:

Xfinal = g ∗ Xnorm + b, ð9Þ

where g and b are the parameters to be learned.

(2) Batch Normalization (BN). It selects a part of the samples
and as a mini-batch and then normalizes a feature of all
samples in the same mini-batch on a single neuron unit:

μi =
1
M

〠xi, σi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

〠 xi − μið Þ2 + ε

r
, ð10Þ

where M is the number of samples in the mini-batch.

BN normalizes each dimension xi independently, so the
ideal BN requires that the statistic quantity of each mini-
batch is an approximate estimation of the overall statistic
quantity, or each mini-batch should be approximately iden-
tically distributed with each other and with the overall data.

It is suitable for scenarios where the mini-batch is relatively
large and the data distribution is relatively similar to each
other. However, if the mini-batch size is small, or the net-
work structure is dynamic (e.g., RNN), or the length of the
input and output sequences of each layer is not consistent,
the BN results may be poor.

(3) Layer Normalization (LN) [44]. Its formula is similar to
BN, but the axis of the statistics is different:

μl =
1
H
〠n

i=1a
l
i, σ

l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
H
〠n

i=1 ali − μl
� �2r

, ð11Þ

where H is the number of neurons in that layer of the
neural network.

The LN performs normalization to all features of the
same sample, and all neurons in that layer share this normal-
ized mean and standard deviation. Therefore, LN is not
affected by the data distribution in the mini-batch, regardless
of the mini-batch size or the number of samples in the input
sequence. It is suitable for scenarios such as small mini-
batch, dynamic network structure, and RNN, and it is used
in Transformer model.

3.2. Vision Transformer. Transformer works well in NLP
domain. In 2020, Dosovitskiy et al. [13] applied Transformer
from NLP to CV with the least change and built Vision
Transformer (ViT) model to verify the effectiveness of
Transformer use in CV. Experiments show that the perfor-
mance of ViT is comparable to the best CNN on large data-
sets and consumes less computational resources (it is a little
lower than CNN on medium datasets, which is attributed to
the lack of inductive bias that CNNs have).

3.2.1. The Difficulty of Taking Usage of Transformer in CV.
Transformer is based on the self-attention mechanism, and
the computational complexity is Oðn2Þ, in which n means
the sequence length. The image information is the input
sequence. If a 2D image is directly spread by pixel, a 224 ×
224 image can be expanded to a sequence of 50,176 pixel
points, which is too large to be computed under existing
hardware conditions.

3.2.2. The Solution. To reduce the computational effort, the
size of input data should be controlled. Since it is too long
when the image is expanded by pixel, if a large image is
divided into several patches, each is transferred to the Trans-
former model as input, the sequence length can be reduced.
E.g., for a 224 × 224 image, we divide it into 14 × 14 = 196
small patches, the sequence length 196 is acceptable, and
the resolution of each patch is 16 × 16 = 256.

3.2.3. Model Architecture. The ViT model nearly keeps the
Transformer structure the same and utilizes the encoder
part, and the input data is processed by encoder and then
directly used to classification without the decoder part. Its
structure is shown in Figure 4.
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(1) Data Preprocessing. First, the image is divided into sev-
eral small patches, and each patch is transformed into a
patch embedding by the linear projection layer, so that an
image is transformed into a sequence. Then, similar to the
Transformer model, the position embedding of each patch
and the features of the image is added together to form a
sequence of length n, here, n =H ∗W/npatch ∗ C, where H
∗W is the image resolution, npatch is the number of nuggets,
and C is the number of channels.

Similar to BERT [22], patches are linearly projected, and
a classification token is appended with position embedding
(fixed to 0) and transmitted to the Transformer encoder as
input. This classification token is a learnable embedding
result for the final classification usage.

(2) ViT Encoder. Similar to Transformer, the encoder con-
sists of L blocks, and each block has two residual sublayers
which are used to perform the calculation of multihead
self-attention mechanism and the MLP. The main difference
is that in Transformer, the data is computed first before layer
normalization, while the ViT model performs layer normali-
zation first and then performs the computation of multihead
self-attention or MLP. The MLP has two hidden layers and
uses the GELU nonlinear activation function. The computa-
tion process is shown in the following equation:

z0 = xclass ; x1pE ; x2pE ;⋯ ; xNp E
h i
+ Epos, E ∈ℝ P2·Cð Þ×d , Epos ∈ℝ

N+1ð Þ×D,
ð12Þ

zl′=MSA LN zl − 1ð Þð Þ + zl−1, l = 1, 2,⋯, L, ð13Þ

zl =MLP LN zl′
� �� �

+ zl′, l = 1, 2,⋯, L, ð14Þ

y = LN z0L
� �

, ð15Þ
where xclass is the classification token, E means input

embedding, Epos means the position embedding, MSA is mul-

tiheaded self-attention model, MLP is the perceptron, LN is
layer normalization, and y is the image representation com-
puted from the output result of the last ViT encoder.

(3) Classification Head. After the computation in ViT
encoder finished, the output vector corresponding to the
classification token is used as the basis for classification. It
is passed to the classification head for classification. The
classification head is an MLP with a hidden layer in pretrain-
ing and a simple linear layer in fine-tuning.

(4) Position Embedding. The position encoding in Trans-
former encodes position information using sine and cosine
functions. Unlike this, ViT uses a learnable one-dimensional
position embedding.

3.2.4. Model Application Method. After the initial ViT model
is obtained by pretraining on a large dataset, it can be fine-
tuned for smaller downstream task datasets. In fine-tuning,
the classification head of the pretrained ViT is removed
and replaced by a zero-initialized D × K feed-forward layer,
where K is the number of classifications in the target dataset.
When the resolution of the target dataset gets higher, the
resolution of each patch is maintained, so that more image
patches are obtained, and therefore, the original position
embedding information is meaningless. Thus, it needs to
perform two-dimensional interpolation of the pretrained
positional embeddings according to their positions in the
original images.

3.2.5. Why ViT on Medical Images.Medical X-ray images are
characterized by the fact that the images are usually gray-
scale distributions with similar styles in most areas. The
key of classification is to find out the structure of the lesion
site and to identify the boundary between the lesion and the
surrounding tissue. The main difference between normal
images and lesion images lies in the lesion part, which may
be relatively small.

+

+

Vision transformer (ViT)

Class
bird
ball
car
...

MLP
head

Transformer encoder

Patch + position
embedding
Extra learnable

(Class) embedding Linear projection of flattened patches

0 1 2 3 4 5 6 7 8 9⁎

Transformer encoder

L ×

MLP

Norm

Multi-headed
attention

Norm

Embedded
patches

Figure 4: The input image is split to several patches and then linearly embedded; then, the position embedding is added to the result
sequence. The sequence is fed to several Transformer encoders. An extra learnable classification token is also added into the input sequence.
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These features make it possible for ViT to achieve better
results on medical X-ray images. ViT divides the image into
small patches, and its self-attention mechanism provides the
following advantages:

(1) It is able to capture long-distance dependencies and
learn efficient feature representations [45] to model
the relationships between spatially distant patches

(2) It computes attention scores among image patches
and uses them as weights to model the input adap-
tively, determining the individual image patch
importance relative to other patches, thus, capturing
the relationship between two image patch and pre-
venting the model from influences of a large number
of similar patch on the classification

(3) It learns the correspondence between the global con-
text and the key patches that distinguish normal and
diseased tissues, thus, preventing the model from
misclassification

3.3. Label Smoothing. Label smoothing is a technology to
prevent neural networks from overconfidence that leads to
overfitting and has been widely used by advanced models
in many fields. It has been shown that label smoothing can
improve the generalization ability of the model and help to
improve the performance [46, 47].

In classification tasks, the category label yi of training
data is generally represented by 0 or 1 in one-hot encoding
as below:

yi =
1, i = target,

0, i ≠ target:

(
ð16Þ

The cross-entropy loss function is

H y, pð Þ = −〠
K

i

yi log Pi, ð17Þ

where pi is the value of the logit vector zi’s function cal-
culated by softmax, and zi is generated from the penultimate
layer vector outputs of the model:

pi =
exp zið Þ

σKj exp zj
� � : ð18Þ

3.3.1. The 0-1 Labeling Problem. In the learning process of
neural networks, the “0 or 1” label drives the model to learn
in the direction that the probability of the target category
tends to 1, and the probability of non-target category tends
to 0. This makes the final predicted logits vector zi’s value
of the target category tend to infinity (so that the probability
distribution of the softmax output is more extreme and
tends to be more bipolar), resulting in the model’s unadap-
tiveness and overconfidence in its predictions. The training
data is insufficient to cover all cases, and with some labeled

data not necessarily accurate, this can easily lead to overfit-
ting of the network and poor generalization ability.

3.3.2. Label Smoothing. It takes label vectors instead of one-
hot encoded 0 or 1 labels ŷ:

ŷi = yhot 1 − αð Þ + α

K
, ð19Þ

where K is the total number of classifications and α is a
tunable hyperparameter (e.g., 0.1), i.e.,

ŷi =
1 − α, i = target,

α/K , i ≠ target:

(
ð20Þ

The cross-entropy loss function is also changed accord-
ingly as follows:

Loss = −〠
K

i=1
pi log qi ⇒ Lossi =

1 − αð Þ ∗ Loss, , if i = yð Þ,
α ∗ Loss, , if i ≠ yð Þ:

(

ð21Þ

This reduces the output values difference between the
predicted positive and negative samples, prevents the model
from being overconfident on the correct labels, and makes
the clusters of different classifications more compact. It also
increases the interclass distance and decreases the intraclass
distance, thus, avoiding overfitting and improving the gener-
alization ability of the model.

3.4. Patch Merger. Compared to traditional networks like
CNNs, ViT has reduced the computational cost but still
require a large computational effort. In NLP, the Sparse Mix-
ture of Experts (MoE) [48] model extends the number of
model parameters to the trillion level, while for each input
sample, only a small subset of the sparse parameters is
applied to compute. This idea of conditional computation
was extended to CV by Riquelme et al. [38]. They established
the Vision Mixture of Experts (V-MoE) model, which pro-
poses the Batch Prioritized Routing (BPR) algorithm to pri-
oritize each token (a token is a patch input to encoder) and
discard some least important tokens. Based on that, Patch
Merger proposed by Renggli et al. [16] significantly reduces
the number of image patches required for classification at
the early stages of the ViT operation with minimal addi-
tional computational cost, while keeping performance essen-
tially constant.

3.4.1. Model Architecture. Patch Merger is applied between 2
transformer encoders. It takes an input of any dimensional-
ity and produces an output of the specified dimensionality
(which is generally smaller than the input dimensionality).
The subsequent ViT encoders receive the input of the new
(smaller) dimensionality.

The architecture of Patch Merger is shown in Figure 5.
Patch Merger is a learned D ×M matrix W (where M is

the number of output patches and D is the number of
embedding dimensionality). After layer normalization, the
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input matrix X ∈ℝN×D (i.e., N input patches, each with
embedding dimension D) is multiplied with W. The result
is transposed and then normalized by softmax and multi-
plied with matrix X to obtain the score-weighting matrix
X ∈ℝN×D of all output patches:

Y = softmax XWð ÞT
� �

X = softmax WTXT� �
X: ð22Þ

This formula is similar to the self-attention formula of
Transformer:

Attention Q, K , Vð Þ = softmax QKT� �
V : ð23Þ

This is equivalent to simply learning a fixed set of
queries for each input patch, using the input patch as
key and value.

Patch Merger is located between two neighboring ViT
encoders.

3.4.2. Why Patch Merger Works and the Risk. The processing
of Patch Merger is to map the input features to the high-level
semantic space and then take dimensionality reduction in
the high-level space to reduce the number of features while
preserving the original semantic features as much as possi-
ble, thus, reducing the computational effort and maintaining
the basic model performance at the same time. Each output
patch contains the weighted information of all input patches,
and the weights (i.e., matrix elements of patch merger) indi-
cate the influence degree of each input patch on the output
patch.

Input patches with high similarity and low impact on the
classification are similarly routed, i.e., they are eventually
contributed or output to the same subset of output patches.
This mechanism is useful, for example, in object-centric
images, where the semantics of repeated and similar back-
ground patches are compressed into the same output
patches, thus, reducing the redundant computation amount
in subsequent ViT encoders. The input patches, which play a
key role in classification, affect the other output patches
more. This may be an advantageous factor for applying
patch merger to medical images, because some medical
images (e.g., normal and pneumonia chest images in this
paper) may have most patches similar to each other, and

the lesions account for a small percentage, so these output
patches containing more semantic information of lesions
are more likely to be influenced by the input patches of
lesions. This may be the reason why Patch Merger can work.

In addition, Patch Merger has some interesting features.
For example, the way input patch is assigned to output patch
is independent of the original position of input patch. What
is more, we can freely change the number of input patches
while keeping the learned parameters unchanged.

The main risk that may arise from applying patch
merger is the loss of semantic information. Some input
patches contain diverse information, where features that
have a significant impact on classification may not be obvi-
ous. After mapping them to the high-level semantic space
for dimensionality reduction and then process them in sub-
sequent multiple ViT encoder, these features may decay to a
very weak and unnoticeable level (especially when there are
too many ViT encoders), which causes semantic loss. Espe-
cially for some medical images, it is possible that semantic
information is lost when it is not obvious to determine
whether the image indicates a lesion for a certain disease
or not.

3.4.3. Patch Merger Design Choice. Because Patch Merger
reduces the number of input patches for the subsequent
ViT encoder, it also reduces the computational cost. If Patch
Merger is added too early, the computation effort can be
reduced greatly, but the performance of the model may not
be ideal. If it is added too late, however, there will be little
effect on the computation effort.

The study of Renggli et al. [16] chose to add Patch
Merger blocks in the middle of two half parts of the original
network (ViT or V-MoE). For example, if the original net-
work has 8, 12, 24, and 32 ViT encoders, Patch Merger is
added after the 4th, 6th, 12th, and 16th ViT encoder. The
number of output patches of Patch Merger is always set to
8. Experiments show that this design greatly reduces the
computational cost of the second half of the original net-
work and maintains comparable performance of the original
model.

3.5. Patch Fuser. Based on Patch Merger, we propose the
Patch Fuser for ViT in order to reduce the risk of semantic
information loss while taking advantage of the reduced
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Figure 5: (a) Overview of Patch Merger architecture and the input/output streams. It receives an input sequence of length n and produces
an output sequence of length M (usually M < n). (b) The location of the application of Patch Merger.

9Computational and Mathematical Methods in Medicine



computational cost introduced by the application of Patch
Merger. Considering that the risk is mainly brought by the
Patch Merger’s output patches being processed by subse-
quent ViT encoders, and the Patch Merger’s output patches
can be regarded as the intermediate result which still contain
the semantic information that may get weaker and weaker in
the subsequent processing and eventually be lost, we expect
to utilize these intermediate results and let them participate
in the final classification, thus, avoiding semantic loss.

The architecture of Patch Fuser is described in Figure 6.
The model contains L ViT encoders (numbered 1 to L,

respectively), and a Patch Merger is added after each of the
two trilaterals (i.e., the L/3th and the 2L/3th encoder). The
output patches from these two Patch Mergers are not only
processed further by the subsequent ViT encoders but also
fused with the output of the last encoder to obtain the
fusioned features. These features contain intermediate infor-
mation for data processing.

Assuming that the original input patches consist of an
N ×D matrix, where N is the number of patches and D is
the size of the hidden dimension (that is, the dimension size
of the embedding of each patch), the input and output of
each ViT encoder are both N ×D matrix. After processed
by the first Patch Merger, the result is changed to an M ×

D matrix, which is the 1st intermediate result, where the
hyperparameter M is the number of output patches of the
Patch Merger. The input of each subsequent ViT encoder
and the 2nd Patch Merger is MÃ—D matrices. The second
Patch Merger outputs the 2nd intermediate result. Finally,
the two intermediate results are concatenated with the out-
put of the last ViT encoder to form an M ×D × 3 tensor,
and then the tensor is fused by a one-dimensional convolu-
tion with kernel size = 1 to produce an M ×D matrix as the
fusioned features.

The main consideration of this design is that the inter-
mediate results of output patches of Patch Merger contain
semantic information that may be decayed, so the interme-
diate results are kept and allowed to fuse directly with the
output results of the last ViT encoder, thus, avoiding the loss
of semantic information. It is also inspired by ResNet: if the
whole model is delimited into 3 modules by Patch Merger, it
is equivalent to let the input of the first two modules enter
the next operation step together with the output of the last
module. This helps to preserve as much semantic informa-
tion as possible and allows a smoother backward and for-
ward propagation of the model.

The MP-ViT contains our Patch Fuser. The fusioned
features generated by Patch Fuser are fed to the final MLP
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Encoder
result
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Figure 6: Overview of Patch Fuser architecture. The output patches of each Patch Merger are saved as intermediate results that participate
in the final feature fusion.
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Head for classification along with the smoothed labels, and
the output is the final classification result. Thus, the training
process of MP-ViT is completed.

4. Experiments

In this section, through experiments, we demonstrated that
the MP-ViT proposed by us with application of label
smoothing and image enhancement techniques results in
better performance compared to baseline (ResNet50), ViT,
ViT + PatchMerger, etc.

4.1. Dataset. The dataset used in this study was presented by
Kermany et al. in 2018 [49], and it contains 5,232 chest X-
ray images from children under 5 years of age. Among them,
there are 1,349 normal chest samples and 3,883 samples
identified as pneumonia, which are used as the training set.
The test set consists of another 624 images from other
patients, including 234 normal samples and 390 pneumonia
samples. The negative and positive categories in the training
and test sets are 1 : 2.878 and 1 : 1.667, respectively.

4.2. Image Enhancement. X-ray images are obtained by pro-
ducing pixels of different brightness according to the absorp-
tion values of the individual voxels. For example, in a chest
radiograph, X-rays pass through the lungs with little attenu-
ation, while they are strongly absorbed through the thoracic
spine, thus, they show different brightness on different pixels
of the image. The disease diagnosis relies on the doctors’
findings of very fine details in the image, such as lesions of
lung nodule. And image enhancement can make some
details more visible, helping doctors improve diagnosis and
making CAD more accurate. Unsharp Masking (UM), one
of the image enhancement methods widely used in medical
imaging, sharpens the mid and high frequency components
of an image and preserves the low frequency components,
so that details with weaker contrast are more visible while
keeping the intensity of the large areas of the image [50].
To enhance the image quality and allow the computer to rec-
ognize pneumonia more easily, this study applied UM to all
images and compared them. Radius is used to indicate the
blurring intensity to 1, and the amount is used to indicate
the intensity of the edges (how much dark or light it will
be) to 15. The comparison between the UM-enhanced
images and the original images is shown in Figure 7.

(a) Normal, origin (b) Normal, UM enhanced

(c) Pneumonia, origin (d) Pneumonia, UM enhanced

Figure 7: Comparison of original and UM-enhanced images. (a) is the original chest image of a normal sample and (b) is the corresponding
UM-enhanced image; (c) is the original chest image of a sample diagnosed with pneumonia and (d) is the corresponding UM-enhanced
image.
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4.3. Training Details.We uploaded the original images as the
model input to cloud environment, on which we first trained
with ResNet50 as a baseline for comparison. Then ViT
model, ViT + PatchMergermodel, and MP-ViT model were
trained with the same dataset. Finally, the MP-ViT proposed
by us was trained again with the UM-enhanced images as
input and the label smoothing technique was introduced in
order to compare the performance of the 5 different models
as well as the image enhancement and label smoothing.

4.3.1. Hardware. The training process took place in the
cloud environment, and the cloud server hardware configu-
ration is listed below. The CPU is 7-core Intel (R) Xeon (R)
CPU E5-2680 v4 @ 2.40GHz, while the GPUs are 2 RTX
3090 (24GB) graphic cards, and the RAM is 32GB.

4.3.2. Training Configs. The Python version used for training
is 3.8, the machine learning framework is PyTorch 1.10.0,
and the CUDA version is 11.3. The maximum number of
training epoch for all models is 200. Learning rate is set to
0.00001, and the epsilon value for label smoothing is 0.01
in the final model.

4.4. Results. We performed classification on the test set with
the models obtained from training and compared the perfor-
mance of these models using statistical metrics such as accu-
racy, precision, recall, and F1-score, which are widely used
to measure the performance of classifiers and also showed
the variation of the loss curves.

4.4.1. Accuracy. For a classification task, each classification
prediction may be one of the following four results: (1) it
is predicted as positive and the result is positive, i.e., true
positive (TP); (2) it is predicted as negative and the result
is negative, i.e., true negative (TN); (3) it is predicted as pos-
itive but the result is negative, i.e., false positive (FP), which
is called statistical type I error; (4) it is predicted as negative
but the result is positive, i.e., false negative (FN), which is
called statistical type II error. Among them, TP and TN
are predicted correctly, and FP and FN are predicted
wrongly. The accuracy rate is the ratio of the number of cor-
rect predictions to the total number of predictions, and the
formula is as follows:

Accuracy = TP + TN
TP + TN + FP + FN

: ð24Þ

4.4.2. Other Statistical Metrics. In addition to accuracy, other
metrics are also used to evaluate the performance of clas-
sifiers. The most common ones are precision, recall, and
F1-score.

Precision refers to the ratio of the number of samples
that are actually positive to the number of samples that are
predicted to be positive. A high precision indicates that the
classifier predicts a positive result with high reliability, but
there may be actual positive samples that have been missed.
The formula is as follows:

Precision =
TP

TP + FP
: ð25Þ

Recall refers to the ratio of the number of samples pre-
dicted to be positive to the total number of samples that is
actually positive. A high recall means that the classifier will
miss as few positive samples as possible, but samples that
are actually negative may also be predicted to be positive.
The formula is as follows:

Recall =
TP

TP + FN
, ð26Þ

As can be seen, precision and recall are sometimes contra-
dictory, and raising one may lower the other. The F-measure
is a comprehensive indicator, which is the weighted summed
average of precision and recall, and its calculation formula is
as follows:

F =
α2 + 1
� �

∗ precision ∗ recall
α2 ∗ precision + recallð Þ , ð27Þ

where α is the importance weighted index of recall relative
to precision, and depending on its value, the F-measure is a
different F-score. For example, the F2 score gives 2 times the
importance of recall compared to the F1 score. The commonly
used F-measure is the F1-score, which is calculated as follows:

F1 =
2 ∗ precision ∗ recall
precision + recall

: ð28Þ

4.4.3. Model Performance Comparison. In general, the dataset
of this study did not suffer from severe class imbalance, and
the metrics showed consistent trends among the models. To
simply compare the performance of these models, we did
not use any special trick to train themodels. The detailed com-
parison of several models is shown in Tables 1 and 2, where
M1, M2, and M3 mean baseline, ViT, and Patch Merger,
respectively.

The baseline (M1) accuracy is 86.86% with an F1-score
of 85.14%, which is an ideal result. Its initial training and
testing losses are around 0.7, and their values changed
smoothly with epoch increasing, and they finally converge
to around 0.27 and 0.35, respectively. Its loss curve is listed
as Figure 8.

ViT (M2) had the lowest metrics with an accuracy of
77.72% and an F1-score of 74.46%, which is significantly
lower than the baseline. The training and testing losses of
ViT experienced a significant increase after the first 10 or
so epochs of rapid reduction and then continued to decrease.
The final training and testing losses of ViT (0.42 and 0.5) are
significantly higher than other models. As described in
Methods, the less ideal performance of ViT directly trained
on small datasets may be attributed to the lack of priori
inductive bias compared to CNN. The loss curve is listed
in Figure 9.

The accuracy of Patch Merger (M3) reaches 88.94%, and
the F1-score is 87.85%, which is slightly higher than the
baseline. The change trend of its loss curves is similar to that
of ViT, which experienced a process of a rapid decrease and
then an increase and a decrease again. The final training and
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test losses are 0.23 and 0.38, respectively. As can be seen,
Patch Merger can sometimes display better performance
than ViT, which may be brought by the feature amalgam-
ation performed by Patch Merger: the redundant informa-
tion is discarded, and the more expressive part is retained.
Its loss curve variation is shown in Figure 10.

The accuracy of our proposed MP-ViT is improved to
89.74%, and the F1-score is also improved to 88.67%. The
loss curve tends to be smooth again with less oscillation,
and the training and testing losses eventually drop to 0.24
and 0.3, which was better than the previous model. This
may be attributed to MP-ViT’s ability to learn across seman-
tic levels and to model from local to global. The change of its
loss curve is shown in Figure 11.

Finally, with the application of image enhancement and
label smoothing technology to our MP-ViT model, the accu-
racy is improved to 91.19%, and F1-score is also improved
to 90.34%. The training and testing loss values are further
reduced to 0.23 and 0.29, respectively. It is shown that the
image enhancement and label smoothing are indeed benefi-
cial to improve the model performance. The loss curve of the
final model is demonstrated in Figure 12.

5. Conclusion and Future Work

In this study, we propose MP-ViT to perform classification
on medical images and compare it with ResNet50 (baseline),
ViT, and Patch Merger and also tried to apply label

Table 1: Result comparison between models: accuracy.

Model ViT Patch merger Patch fuser Label smoothing Image enhancement Accuracy

M1 X X X X X 0.868590

M2 ✓ X X X X 0.777244

M3 ✓ ✓ X X X 0.889423

MP-ViT ✓ ✓ ✓ X X 0.897436

Final model ✓ ✓ ✓ ✓ ✓ 0.911859

Table 2: Result comparison between models: precision, recall, and F1-score center.

Model ViT Patch merger Patch fuser Label smoothing Image enhancement Precision Recall F1-score
M1 X X X X X 0.886129 0.835897 0.851442

M2 ✓ X X X X 0.779524 0.733761 0.744629

M3 ✓ ✓ X X X 0.893820 0.868803 0.878513

MP-ViT ✓ ✓ ✓ X X 0.905961 0.875214 0.886710

Final model ✓ ✓ ✓ ✓ ✓ 0.918173 0.893590 0.903365
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Figure 8: The loss curve change of baseline (M1).
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smoothing and image enhancement technology to further
improve the model performance. Without using other tricks,
the accuracy and F1-score of the baseline are 0.868590 and
0.851442, respectively, while those of our model are
0.911859 and 0.903365, respectively. Our model achieved
better performance than the baseline, ViT, and Patch
Merger. Meanwhile, label smoothing and image enhance-
ment technologies also achieved better results.

Our proposed model attempts to utilize the intermediate
results of ViT and Patch Merger to retain information from
the transformation process of the high-level semantic space
to participate in the final classification. This can not only
take advantage of the self-attention mechanism of ViT but
can also maintain the advantage of low computational cost
of Patch Merger and also avoid the risk of semantic informa-
tion loss. The application of label smoothing and image
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Figure 9: The loss curve change of ViT (M2).
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Figure 10: The loss curve change of Patch Merger (M3).
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enhancement techniques further improves the model per-
formance. For medical imaging, these advantages are espe-
cially useful, because most of the areas in medical images
may not be useful for disease diagnosis and have high sim-
ilarity, while the actually useful parts may be small and
unclear, so the semantic intermediate information of the
spatial transformation preserved can be a key point in

maintaining model performance. In addition, the produc-
tion cost of medical imaging datasets is high because it
requires a lot of expert judgments. Our model can show
high performance on smaller medical imaging datasets
without pretraining, which demonstrates that our model is
not expensive. These advantages can work well for CAD
of medical images.
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Figure 11: The loss curve change of MP-ViT.

0.7

0.6

0.5

0.4

0.3

0.2

0 25 50 75 100 125 150 175 200

Training epochs

Lo
ss

Train
Test

Figure 12: The loss curve change of MP-ViT with image enhancement and label smoothing.
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Although our model has achieved better results than ViT
and Patch Merger, there are still some shortcomings listed as
below:

(1) The number of patches output from each Patch
Fuser is currently set as a hyperparameter, and there
is no adaptive mechanism of setting patch number

(2) There is no exploration on whether the number of
output patches from Patch Fusers at different seman-
tic level should be set to be the same

(3) Further experiments performed on more and larger
datasets are needed

In future research work, we will search for a more rea-
sonable mechanism for setting the number of patches and
also run more experiment on larger-scale image datasets to
improve our model.
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