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During the evaluation of body surface area (BSA), precise measurement of psoriasis is crucial for assessing disease severity and
modulating treatment strategies. Physicians usually evaluate patients subjectively through direct visual evaluation. However,
judgment based on the naked eye is not reliable. This study is aimed at evaluating the use of machine learning methods,
specifically U-net models, and developing an artificial neural network prediction model for automated psoriasis lesion
segmentation and BSA measurement. The segmentation of psoriasis lesions using deep learning is adopted to measure the BSA
of psoriasis so that the severity can be evaluated automatically in patients. An automated psoriasis lesion segmentation method
based on the U-net architecture was used with a focus on high-resolution images and estimation of the BSA. The proposed
method trained the model with the same patch size of 512 x 512 and predicted testing images with different patch sizes. We
collected 255 high-resolution psoriasis images representing large anatomical sites, such as the trunk and extremities. The
average residual of the ground truth image and the predicted image was approximately 0.033. The interclass correlation
coefficient between the U-net and dermatologist’s segmentations measured in the ratio of affected psoriasis over the body area
in the test dataset was 0.966 (95% CI: 0.981-0.937), indicating strong agreement. Herein, the proposed U-net model achieved

dermatologist-level performance in estimating the involved BSA for psoriasis.

1. Introduction

Psoriasis is a chronic immune-mediated skin disease with a
global prevalence rate of approximately 2% [1]. It is a life-
long, metabolic, immunological disorder characterized by
raised areas of abnormal skin that wax and wane in the
long-term course. The body surface area (BSA) of involve-
ment is an important indicator during the evaluation of pso-
riasis severity. There are several treatment modalities,
including topical medications, systemic immunomodulators,
and phototherapies. Precise measurement of the affected
BSA is important for clinicians to evaluate the treatment
response when switching or combining these treatment

options. It is also important for the clinical-trial investigators
to monitor psoriasis severity when developing new thera-
peutic strategies [2]. Physicians usually evaluate the patient
subjectively through direct visual evaluation, specifically
the most widely used psoriasis area and severity index
(PASI), and a recent tool, a product of the physician global
assessment and BSA (PGA x BSA), which has the advan-
tages of being more intuitive and easier to use than PASIL
BSA is a crucial factor in the calculation of both methods
when evaluating disease severity [3, 4]. Previous studies
reported a high degree of variability during evaluation, and
multiple interventional educational programs need to be
conducted before starting the evaluation to achieve better
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FIGURE 1: U-net architecture.

accuracy and reliability [5, 6]. The increase of affected BSA
also revealed the increasing burdens of overall medical and
specific comorbid diseases, including cardiovascular, cere-
brovascular, and diabetes risks [7, 8]. However, despite being
such an important indicator, the affected BSA judgments are
primarily based on the naked eye and previous physician
impressions, which are both subjective and time-consuming.

There are different automatic segmentation methods for
psoriasis lesions in the literature [9-16]. These include
neuro-fuzzy classifiers [9, 10], K-means [11, 12], Gaussian
mixture models [13], geometric active contours [14], sup-
port vector machines [15], and traditional shallow neural
networks [16]. More recently, deeper neural network struc-
tures such as U-net have also been proposed to automate
the segmentation of skin lesions in psoriasis images [17].
U-net was originally developed for biomedical image seg-
mentation [18]. It is a relatively new technology based on a
fully convolutional network [19] that can classify each pixel
in an image into a specific label. Since its publication in
2015, it has quickly become one of the most popular tools
for image segmentation with more than 24000 citations. Its
success can be attributed primarily to its multiresolution
structure encoder-decoder design, which can capture both
large- and small-scale features for generating optimal seg-
mentation results even with small training datasets [18].
Recently, researchers examined the U-net architecture and
various developments and provided observations on recent
trends [20].

In these studies, the authors chose the training and
testing sets based on the same patch sizes with limited
small fields [21-23]. However, test images from each
patient are usually captured using various scales for clini-
cal applications. In this study, the U-net model is adopted
to develop an efficient way to estimate the psoriasis-to-
total skin ratio by estimating the relevant BSA using the
proposed methods.

2. Materials and Methods

2.1. Patient Collection. Adult patients over 20 years of age
were recruited in this study, with a definite diagnosis of
moderate-to-severe plaque-type psoriasis for over six
months, and were candidates for phototherapy or systemic
psoriasis treatment. The images were collected during
follow-up schedules of psoriasis treatments according to
the medical guidelines of the National Health Insurance of
Taiwan. Photographs were obtained using a 22-megapixel
digital single-lens reflex camera (5D Mark II, Canon Corpo-
ration, Tokyo, Japan) with 100 mm F2.8L microlens (Canon
Corporation, Tokyo, Japan).

The ambient light was provided by two studio flood-
lights, D-Lite RX 4/4 softbox to go (Elinchrom SA, Renens,
Switzerland) diffused by soft boxes positioned on both cam-
era sides at 45° angles to the patient, and lights were posi-
tioned 1 m in front of the patient with a voltage of 5.5V. A
fixed distance of 2m between the patient and the camera
ensured standard reproduction ratios for whole-body imag-
ing to monitor psoriasis treatment outcomes.

All patients provided written consent for image use,
under privacy considerations. We separated facial images
from others and excluded all facial images in this study. A
dermatologist (W-Y C, with 16 years of experience) carefully
reviewed the images and marked the psoriasis lesion border
as the gold standard.

2.2. U-net Architecture. The U-net architecture for the seg-
mentation of psoriasis skin lesions is illustrated in Figure 1.
Based on the original U-net topology, it consists of the con-
traction path (or encoding path) and expansion path (or
decoding path). The proposed architecture uses 24 convolu-
tional layers, four max-pooling operations, four upsampling
operations, and four concatenations. The contraction path
uses eight convolution layers in conjunction with batch
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TaBLE 1: Architectural details of the U-net.

TaBLE 2: Description of the dataset.

# of layer Layers in encoding path Filter size ~ Output shape

Contraction path

L Input (512x 512 % 3)

L, Conv-1 3x3 (512 x 512 x 64)
L, Cony-2 3x3  (512x512x64)
L, Maxpool-1 2x2 (256 x 256 x 64)
Ls Conv-3 3x3 (256 %256 % 128)
Lg Conv-4 3x3 (256 X256 x 128)
L, Maxpool-2 2x2  (128x128x128)
Ly Conv-5 3x3  (128x128x256)
Ly Conv-6 3x3 (128 128 x 256)
Ly, Maxpool-3 2%2 (64 x 64 x 256)

Ly Conv-7 3x3  (64x64x512)

Ly, Conv-8 3x3  (64x64x512)

Ly Maxpool-4 2x2 (3232 x512)

Expansion path

Ly Conv-9 3x3  (32x32x1024)
Ly Conv-10 3x3  (32x32x1024)
L Upsampling-1 3x3 (64 x64x1024)
Ly Conv-11 3x3 (64 x 64 x 512)

Ly Cat-1 (64 x 64 x 1024)
Ly Conv-12 3x3  (64x64x512)

Ly Conv-13 3x3 (64 x 64 x 512)

Ly Upsampling-2 3x3  (128x128x512)
Ly Conv-14 3x3 (128 x 128 x 256)
Ly Cat-2 (128 x 128 x 512)
Ly, Conv-15 3x3  (128x 128 x 256)
Lys Conv-16 3x3 (128 x 128 x 256)
Ly Upsampling-3 3x3 (256 X256 x 256)
Ly Conv-17 3x3 (256 %256 x128)
Lyg Cat-3 (256 x 256 x 256)
Ly Conv-18 3x3 (256 %256 x 128)
Ly Conv-19 3x3  (256%256 x 128)
Ly Upsampling-4 3x3  (512x512x128)
Ly, Conv-20 3x3  (512x512x64)
Ly Cat-4 3x3  (512x512x128)
Ly, Conv-21 3x3  (512x512x64)
Lss Conv-22 3x3  (512x512x64)
Ly Conv-23 3x3  (512x512x32)
Ly, Output 1x1 (512 x 512 x 3)

Number of images by

. . Training Validation Testing Total
anatomical regions

Extremities 106 26 38 170
Trunk 59 15 11 85
Number of total images 165 41 49 255

TaBLE 3: Partition of dataset.

Conv = convolution; Maxpool = max-pooling; Upsampling = upsampling;
Cat = concatenation.

Training dataset Training Validation Testlng
patches patches images

Number of 7809 2048 X
patches
Number of « « 49
images

TaBLE 4: Performance of testing datasets.

Psoriasis

AcC i DSC SE sP
Count 49 47 47 47 49
Mean 0.976 0.536 0.655 0.657 0.988
Std 0.046 0.267 0.256 0.227 0.033
Min 0.729 0.008 0.016 0.128 0.768
Q1 0.980 0.347 0.514 0.498 0.987
Q2 0.992 0.520 0.684 0.658 0.996
Q3 0.996 0.782 0.878 0.873 0.999
Max 0.999 0.958 0.979 0.983 1.000

normalization and the ReLU activation function, followed
by max-pooling. The max-pooling operation is performed
after every two convolution operations. In the expansion
path, upsampling is followed by 3 x 3 padded convolution,
batch normalization, and activation layers, implemented
sequentially to achieve better segmentation outcomes. A
detailed explanation of each layer is provided in Table 1.
The number of trainable weights in the proposed U-net is
31,035,971. Notably, “Cat-1” concatenates Conv-11 and
Conv-8, “Cat-2” concatenates Conv-14 and Conv-6, “Cat-
3” concatenates Conv-17 and Conv-4, and “Cat-4” concate-
nates Conv-20 and Conv-2.

Notably, in the U-net architecture, the convolution oper-
ation from the encoder and the deconvolution operation
from the decoder are independent of both the input and out-
put image sizes. In the testing process, the test image does
not have to be resized to the size of the training image.
Therefore, the model can be trained using one patch size
and predict testing images of different sizes.

The performance of the proposed method was evaluated
using five different indices, that is, accuracy (ACC), Dice
coefficient (DSC), Jaccard index (JI), sensitivity (SE), and
specificity (SP), in comparison with the ground truth. The
overall pixel accuracy was measured for the skin, psoriasis,
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FIGURE 2: Performance for training and validation datasets.

TaBLE 5: Performance indices with the smallest residual percentage.

ACC 1 DSC SE SP
Large scale 0.997 0.829 0.907 0.886 0.999
Small scale 0.969 0.869 0.93 0.921 0.982

Input image

Large scale
(4448 x 2304) h
|

Small scale
(512 x 512)

[

Ground truth image

Predicted image

FIGURE 3: Simulation results of the lowest residual percentage on different scales.

and background regions. The formulas for the performance
indices are as follows:

ACC = TP + TN (1)
T TP+ TN+ FP+FN’
2TP
DSC= — -~ | 2
S¢ 2TP + EN + FP @)
TP
= 0 —, (3)
TP + FP + FN
TP
SE=—— | 4
TP + FN ()
TP
P=_ 5
S TN + EP )

where TP denotes the true positives, FN denotes the false

negatives, FP denotes the false positives, and TN denotes
the true negatives.

In the experiments, we used 255 images of psoriasis lesions
collected from 16 psoriasis patients, nine for training and
seven for testing, by a dermatologist for various scales and
working distances. Each image represents an anatomical site,
and the final dataset includes 170 images of the extremities
and 85 images of the truncal area (Table 2). The largest and
smallest image sizes are 3744 x 5616 and 2017 x 1913, respec-
tively. In our experiments, we first partitioned the dataset into
training, validation, and testing datasets. The testing dataset
consisted of newly collected data.

In our experiments, all training and validation images
consisted of nonoverlapping patches of size 512 x 512. In
other words, the size and stride of all extracted patches were
512 x 512 and 512, respectively. In these patches, there was
an unequal distribution of skin, psoriasis, and background.
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To avoid the imbalance problem, we removed more
background-only patches (i.e., the background patches con-
taining no skin and psoriasis regions) using manual visuali-
zation from 9456 training and 2912 validation patches. The
remaining 7809 training patches were used to train the
model that included images of different body parts and qual-
ity, while the remaining 2048 validating images were used to
validate the trained model. We wish to point out that we
retained 49 testing images in their original sizes. The details
are presented in Table 3.

Unet segmentation (ratio of psoriasis to body area)

FiGure 6: Correlation scatterplots for U-net and dermatologist’s
segmentations.

3. Experimental Results

This section simulates and verifies the psoriasis estimation of
the full-body surface using the proposed methods and the U-
net model. Deep networks usually require a large amount of
training data to achieve good performance. Data



6

0.2
& . +1.965D
2 01 -
Q
=)
2 Q o
z 0@ o o ® o
,% Mean
g -01 - o
3 o
s o - S .. ~1.965D
5 -02 o
3 -0.3 -
5

-0.4 T T T G

0 0.2 0.4 0.6 0.8 1

Average of Unet and dermatologist’s measures

Computational and Mathematical Methods in Medicine

2 3
2 002 - +1.96SD
g o 5 L .
g
Z 0014, ©o°
2 [e) o
=}
Ei Mean
g 0Fo 0O
3 o
! o
g -0.01 -@8 o
g o®@ o
E o2 ] o ~1.96SD
g 0T :
5

-0.03 T T T T

0 0.1 0.2 0.3 0.4 0.5

Average of Unet and dermatologist’s measures

FIGURE 7: Bland-Altman plots.

augmentation is a domain-specific technique that artificially
creates new training data from preexisting training data. Our
experiments used data augmentation with normalization,
vertical and horizontal flips. The trajectories of the loss
and accuracy for the training and validating data are shown
in Figure 2. To evaluate the performance of the trained
model, we used five performance indices defined in Equa-
tions (1)-(5) in comparison with the ground truth. The
accuracy was measured for the skin, psoriasis, and back-
ground regions, while the remaining four indices were con-
cerned only with psoriasis. To explain the performance
more clearly, the resulting experimental images in both large
scale (zoom out) and small scale (zoom in) are shown.

The summary statistics of the experimental results are
listed in Table 4. In our experiments, we used 49 test images.
However, to avoid division by zero in the calculation of the
JI and DSC indices, we included 47 testing images for anal-
ysis. The mean and standard deviation of accuracy was
0.976 + 0.046. The JI, DSC, SE, and SP of segmentation of
psoriasis lesions were 0.536, 0.655, 0.657, and 0.988, respec-
tively. The main reason for misclassification when segment-
ing the psoriasis area may be related to the small area of the
diseased skin in general. By contrast, the high specificity
could be attributed to the large areas of the skin and
background.

Table 5 shows the values of the different metrics for the
image with the lowest residual percentage. The accuracies of
the large and small scales were 0.997 and 0.969, respectively.
The values of JI, DSC, SE, and SP are listed from the third to
the sixth columns. The images with the smallest residual
percentage at different scales are shown in Figure 3.
Figure 3 depicts the predicted image of psoriasis segmenta-
tion on a large scale for the lowest residual percentage, with
the image inside the blue bounding box representing the
small-scale image.

Images with the three largest residual percentages are
shown in Figure 4. The figure clearly shows that the psoriasis
area and severity are high. We could find severe psoriasis
cases of patients in the testing image dataset but not in the
training image dataset. Consequently, misclassifications can

easily occur. Hence, it is advisable to collect more severe pso-
riasis data.

The distribution of the residual percentage of the psori-
asis area estimation is shown in Figure 5. The five largest
residual percentages are shown with green arrows, and the
top three are shown with green dots. The lowest residual
percentage is indicated in red. Statistics of the residual per-
centages for all the test images are listed in Table 6.

The ICC (two-way mixed model for absolute agreement,
single measurement) was performed to conduct correlation
agreement analysis for the U-net model versus dermatolo-
gist’s manual segmentation for a test dataset of 49 images.
Figure 6 shows the resultant correlation scatterplots for U-
net and dermatologist’s segmentations measured in the ratio
of affected psoriasis over the body area. The ICC of the test
dataset was 0.966 (95% CI: 0.981-0.937). The concordance
between the two estimation methods showed an excellent
agreement (>0.90). Figure 6 shows that when the psoriasis
area extends over 40% of the body surface, most of the data
points are above the line of agreement, demonstrating that
the dermatologist segmented a larger psoriasis area at the
high end of the scale than the U-net model.

The magnitude of agreement between U-net and derma-
tologist’s measures was further quantified using Bland-
Altman plots using all 49 test images. Figure 7(a) shows that
with all 49 test images, an average difference of -0.0266 (95%
CI: 0.1283-0.1816, mean + 1.96 SD) indicates a noticeable
estimated bias, and the large bounds of the 95% confidence
interval are caused by the reduced agreement for large body
surface measurements. As the percentage of BSA increased,
more estimation data of the U-net model fell below the
expected 95% lower bound of agreement. By excluding the
images with high psoriasis surface ratio and using only the
psoriasis surface ratio lower than 50% to construct Bland-
Altman plots, the average difference was improved to
-0.00084 (95% CI: 0.0198-0.0215) (Figure 7(b)).

To provide a comparative analysis with the most recent
approaches, apart from the proposed method, we used
R2U-net [24], attention U-net [25], and attention R2U-net
[26] for the problem under study. Table 7 shows the number
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TaBLE 7: Parameters and file size for the proposed U-net, R2U-net, attention U-net, and attention R2U-net models.

Proposed U-net R2U-net Attention U-net Attention R2U-net
Parameters of model 31,035,971 32,086,440 31,902,759 32,261,767
Model file size 355 Mbytes 367 Mbytes 365 Mbytes 369 Mbytes

TaBLE 8: Performances of testing datasets for the proposed U-net, R2U-net, attention U-net, and attention R2U-net models.

Proposed U-net R2U-net

Attention U-net Attention R2U-net

Accuracy 0.976 (0.046)*
) 0.536 (0.267)

0.967 (0.082)
0.511 (0.244)

0.960 (0.095)
0.471 (0.230)
0.607 (0.223)
0.523 (0.238)
0.997 (0.004)

0.969 (0.073)
0.512 (0.258)
0.636 (0.247)
0.599 (0.236)
0.995 (0.006)

DSC 0.655 (0.256) 0.640 (0.233)
Sensitivity 0.657 (0.227) 0.550 (0.241)
Specificity 0.988 (0.033) 0.998 (0.003)

m (s)", m is the mean value, and s is the standard deviation.

TaBLE 9: Residual percentage with test images for the proposed U-
net, R2U-net, attention U-net, and attention R2U-net models.

Proposed U- R2U-  Attention U-  Attention R2U-
net net net net
Count 49 49 49 49
Mean 0.033 0.070 0.094 0.067
Std 0.076 0.148 0.187 0.152
Min 0.000 0.000 0.000 0.000
Q1 0.002 0.004 0.004 0.003
Q2 0.007 0.010 0.008 0.009
Q3 0.016 0.054 0.079 0.029
Max 0.398 0.722 0.799 0.658

of parameters and file sizes for each learning model. For a
more reasonable comparison, the learning models were con-
figured such that their numbers of adjustable filters were
approximately the same. The performances of the testing
datasets for the proposed U-net, R2U-net, attention U-net,
and attention R2U-net models are listed in Tables 8 and 9.
The proposed model performs slightly better than the other
three learning models. From a practical application view-
point, all four learning models listed in Table 7 perform
equally well, but the number of parameters in our proposed
model is the smallest, which is usually desirable for practical
implementation of the learning model, particularly on edge
computing devices.

4. Discussion

This study makes several main contributions to the litera-
ture. In previous studies, most training and testing images
were cropped into many small-scale patches with a few pap-
ules or plaques [17, 21, 22]. In our research, all testing
images were captured using a digital camera under the med-
ical practice guidelines. The proposed U-net model was used
to estimate large-scale images of anatomical regions rather
than a few focal lesions. This contributes to the applicability
of direct and massive use in future clinical studies.

We selected the U-net model because of its popularity
and easy accessibility. This study demonstrated that the JI
and DSC of this model performed moderately. However,
the U-net model-generated segmentation shows excellent
agreement with the dermatologist-generated manual seg-
mentation for estimating the BSA percentage, supporting
the applicability of the tool for clinical use. We observed that
the U-net model tends to underestimate 11 severe cases with
psoriasis areas larger than 40%. The margins of psoriasis are
not always clear owing to ongoing pathophysiological
changes between the diseased and normal skin. This could
be because of the nature of the inflammatory skin disease.
In severe cases, psoriasis is often unstable and is composed
of variable lesions, including borderline erythema, thin fine
scaly skin-colored to erythematous papules, erythematous
thick plaques, and thick plaques with silver-white scales.
This may also be one of the main causes of discordance
between dermatologists when evaluating the area of involve-
ment. When evaluating a large image of a specific anatomi-
cal region, such as the trunk or extremities, these lesions all
together in an individual image become truly complicated
for machine learning. The excellent correlation of the esti-
mated percentage of BSA involved between this U-net model
and the dermatologist guides its promising use in clinical
applications. We also proposed that, when developing a
method for evaluating clinical applicability, the percentage
of involvement, in addition to common parameters such as
JI and DSC, be considered.

5. Conclusion

The area percentage of involvement is a crucial component
of the calculation during systemic skin disease severity eval-
uation. Assessment is important during the treatment
response evaluation. It is difficult for patients or physicians
to accurately estimate the area of involvement by visual
examination. Herein, the proposed methods with the U-net
model are adopted to develop an efficient way to yield the
result of the ratio of psoriasis-to-total skin as a percentage
of involvement and to estimate the involved BSA, which
shows a promising result.



The developed U-net model achieved dermatologist-
level performance in estimating the BSA ratio for psoriasis.
More data collection and benefits with respect to clinical
decision-making should be performed in future studies.
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