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Due to the black box model nature of convolutional neural networks, computer-aided diagnosis methods based on depth learning
are usually poorly interpretable. Therefore, the diagnosis results obtained by these unexplained methods are difficult to gain the
trust of patients and doctors, which limits their application in the medical field. To solve this problem, an interpretable depth
learning image segmentation framework is proposed in this paper for processing brain tumor magnetic resonance images. A
gradient-based class activation mapping method is introduced into the segmentation model based on pyramid structure to
visually explain it. The pyramid structure constructs global context information with features after multiple pooling layers to
improve image segmentation performance. Therefore, class activation mapping is used to visualize the features concerned by
each layer of pyramid structure and realize the interpretation of PSPNet. After training and testing the model on the public
dataset BraTS2018, several sets of visualization results were obtained. By analyzing these visualization results, the effectiveness
of pyramid structure in brain tumor segmentation task is proved, and some improvements are made to the structure of
pyramid model based on the shortcomings of the model shown in the visualization results. In summary, the interpretable brain
tumor image segmentation method proposed in this paper can well explain the role of pyramid structure in brain tumor image
segmentation, which provides a certain idea for the application of interpretable method in brain tumor segmentation and has
certain practical value for the evaluation and optimization of brain tumor segmentation model.

1. Introduction

The results of brain tumor image segmentation can clearly show
the category, location, and volume of lesion areas [1, 2]. There-
fore, introducing an automatic image segmentation model into
the computer-aided diagnosis (CAD) system for brain tumor
images can reduce the workload of doctors [3]. As a result,
the research on brain tumor image segmentation methods has
become a hotspot, so more and more brain tumor image seg-
mentation methods [4–6] have been proposed.

Although some image segmentation frameworks [7–9]
based on convolutional neural networks (CNN) have shown

very high performance in various CAD systems [10–14], the
complexity of these machine learning models is often greatly
increased in order to improve the accuracy. Complex models
represented by CNN can extract image features through
multilevel abstract reasoning to deal with the very complex
relationship between dependent variables and independent
variables, which can achieve very high accuracy. However,
this complex feature extraction method not only improves
the accuracy of the model but also leads to the inability to
know the relationship between the prediction results gener-
ated by the model and all the features extracted by CNN,
making CNN a black box model that is difficult for human
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beings to understand [15]. After ResNet was proposed, the
depth of CNN increased significantly from the original,
making the already incomprehensible model even more
inexplicable. Therefore, only result-oriented evaluation cri-
teria such as accuracy rate and error rate can be used to eval-
uate the credibility of the model, which is unreliable [16].

Because CNN is a black box model, the CAD system
based on CNN cannot give the diagnosis basis while giving
the diagnosis results, which leads to the unreliable diagnosis
results [17]. Therefore, such a diagnosis method lacking
human-computer interaction is difficult to be affirmed by
doctors and patients [18]. At the same time, such CAD
methods may also make wrong diagnosis when the instru-
ment is subjected to some disturbances that are difficult to
be detected by human beings but will affect the diagnosis
results, causing serious consequences [19]. This phenome-
non seriously hinders the practical application of CNN in
CAD and other fields with high reliability requirements [20].

Although the CNN model has high complexity, it is not
inexplicable. Using the interpretation model can improve
the transparency of the black box model and give the judg-
ment basis of the model in a way that human beings can
understand [21]. The methods for interpreting the model
can be divided into ante-hoc and post-hoc [22]. Among
them, the post hoc method can explain the training results
of the model, which is of great significance [23].

Therefore, it is particularly important for the practical
application of CNN in CAD field to explain the CNN model
to improve its reliability [24–26]. With the continuous
development of research in the field of deep learning, some
special architectures are often embedded in the newly pro-
posed CNN model as an improvement of the model. Taking
the PSPNet used in this paper as an example, the PSP struc-
ture is used to parse the scene context in the model. How-
ever, it is difficult to verify whether such a special
architecture can play a role in the corresponding tasks, and
it can only be evaluated by improving the accuracy of pre-
diction results. Although the introduced special model archi-
tecture can usually improve the accuracy, these complex
structures may lead to overfitting, which makes the model
achieve high accuracy on the test set, but it does not have
the corresponding generalization and cannot be put into
practical application. Therefore, it is necessary to verify the
reasons for the improvement of accuracy and ensure the rel-
evance between the model and the task. Therefore, the inter-
mediate results of PSP structure in PSPNet are visualized, so
that the reasoning process of CNN model can be seen to
users. The GradCAM method visualizes the attention of
the model to features in the way of heat map and uses it to
generate intermediate results in the process of model predic-
tion, which is suitable for analyzing the prediction process of
the model. In this paper, an interpretable brain tumor image
segmentation framework is proposed. In the framework,
PSPNet is used to segment brain tumor images, and the
visualization method based on GradCAM is used to explain
the pyramid structure in PSPNet. The visualization results
obtained from it prove the ability of pyramid structure to
extract multiscale features. Based on the visualization results,
some adjustments have been made to the pyramid structure.

The remainder of this paper is structured as follows. In
Section 2, the method is described in detail, including the
brain tumor image segmentation module based on PSPNet
and the interpretation module based on GradCAM. Section
3 describes the experimental process and result comparison
in detail, including experiments on segmentation and exper-
iments on interpretability. And a series of discussions are
carried out on the interpretability experiments. In Section
4, a conclusion is drawn.

2. Methods

2.1. Overview. The processing method for brain tumor MRI
images under this framework includes an image segmenta-
tion module using PSPNet [9] and an interpretation module
using GradCAM [27]. The process is shown in Figure 1. In
the image segmentation module, CNN is used to extract fea-
tures from the input brain tumors MRI images. After that,
global context information can be constructed from these
CNN features by using the pyramid pool structure in
PSPNet, which can be used to establish global scene analysis
on the feature map of the last layer of CNN. Then, through
the upsampling operation of convolution layer, the segmen-
tation results of MRI images of brain tumors are obtained.
At the same time, in the interpretation module, GradCAM
is used to visualize the global context scene analysis informa-
tion constructed in pyramid pooling structure. As a feature
visualization method based on gradient information, Grad-
CAM assigns weights to each neuron according to the gradi-
ent information flowing into the last convolution layer of
CNN to extract the specific semantic information retained
by each neuron. In this way, GradCAM can obtain the fea-
tures concerned by CNN and display these features on the
original image in the form of heat map as a visualization of
CNN. By analyzing the visualization results of GradCAM
and the image segmentation results of PSPNet, the interpre-
tation of the segmentation model can be obtained.

2.2. Using PSPNet for Brain Tumor MRI Image
Segmentation. For an input brain tumor MRI image, the
process of image segmentation in PSPNet is shown in
Figure 2.

Firstly, the pretrained residual network ResNet is used to
extract the features of brain tumor from the image. ResNet
consists of a set of residual modules, which can learn resid-
uals to prevent gradient explosion and overfitting phenom-
ena caused by the increasing of depth. For each residual
module, setting the input of the residual module as x and
the output of the residual module as y. Then, the definition
of a residual block can be obtained:

y = F x, Wif gð Þ +Wsx, ð1Þ

where the function Fðx, fWigÞ represents the learned resid-
ual mapping and Ws means matching x and y when the
number of channels is different.

After the feature extraction of the last convolution layer
in ResNet, the obtained feature map is sent to the PSP-
Module. The processing of features in PSP-Module is
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divided into four stages, which are used to analyze the con-
text information in the CNN features. In each stage, pooling
kernels with sizes of 1 × 1, 2 × 2, 3 × 3, and 6 × 6 are used to
pool the feature map. The pooling result of the feature map
is used as the representation of four different scale-level sub-
regions, and then, these feature maps need to be
concatenated. However, since pooling layers of different
sizes are used in each stage, the sizes of feature maps that
output by each stage are also inconsistent, making it impos-
sible to directly concatenate these feature maps. Therefore,
in the PSP-Module, after the pooling layer of each stage, a
1 × 1 convolution layer is used to reduce the dimension of
the output of the pooling layer, and then, four feature maps
with the same size as the original feature map are obtained
by interpolation. Therefore, different levels of features are
concatenated to obtain the final pyramid pool features,
which carry both local and global context information.

For the context information obtained by PSP-Module,
three deconvolution layers are used to upsample the feature
map. Finally, these feature maps are input into a 1 × 1 con-
volution layer to obtain the final pixel-by-pixel prediction
results for brain tumors and complete the segmentation of
brain tumor MRI images.

2.3. Using GradCAM to Interpret the Model. In order to
explain the PSPNet segmentation model trained with brain
tumors MRI images, the processing of visual interpretation
using GradCAM is applied on it, which is shown in
Figure 3. The visualization process on the PSPNet can be
mainly divided into the visualization on the CNN features,
the visualization on the four multiscale features, and the

visualization on the context features obtained by the final
concatenation.

Although the high complexity of PSPNet model usually
requires a large GPU memory and takes a long time to train
a high-precision model, it takes little time and computa-
tional effort to visualize the PSPNet model by GradCAM.
GradCAM uses gradient to calculate the heat map during
the prediction process of the model. Therefore, GradCAM
does not need to modify the structure of the original model
or retrain the model, so it can quickly get visual results for
analysis.

2.3.1. Visualization on the CNN Features. For the CNN fea-
tures extracted by ResNet from brain tumors MRI images,
GradCAM can be directly used to visualize them, which is
shown in Figure 4. In brain tumor segmentation using
PSPNet, the model will focus on the category of brain tumor,
while the neurons contained in the last convolution layer in
ResNet retain semantic information for identifying this cat-
egory. GradCAM can be used to assign weights to each neu-
ron in this convolution layer according to gradient
information flowing into it. The semantic information in
these neurons determines whether ResNet can successfully
identify the category of brain tumors, and these weights rep-
resent how much influence each neuron can make on the
decisions given by ResNet. In order to calculate these
weights, the class of brain tumor is set as C, and then yc is
the semantic information for ResNet to judge the class as
C. In GradCAM, the gradient information of yc to feature
map Ak is calculated by back propagation, which is ∂yc/∂
Ak. Then, the global-average-pooling is carried out on
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on Grad-CAM
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Figure 1: The process of interpretable segmentation for brain tumors MRI image.
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Figure 2: Using PSPNet for brain tumor MRI image segmentation.
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gradient information in the width and height dimensions
(indexed by i and j, respectively) of the feature map Ak. So
the weight of the kth neuron for class C is obtained, which
is αck:

αck =
1
Z
〠

i
〠

j

global average pooling
∂yc

∂Ak
ij

|{z}

gradients via backprop

: ð2Þ

Next, weighted linear fusion is performed on the feature
maps in all neurons with these weights. Then, ReLU is per-
formed on the fusion results to activate the feature map
which has a positive impact on the brain tumor category
concerned by the ResNet model, thereby obtaining the
class-discriminative localization map of Grade-CAM, which
is LcGradCAM:

LcGradCAM = ReLU 〠
k
αckA

k
� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

linear combination

: ð3Þ

Therefore, by using gradient information to calculate,

GradCAM method can realize visual interpretation of
CNN features extracted from the model without modifying
and retraining the PSPNet model.

2.3.2. Visualization on the Four Multiscale Features. The
visualization result of CNN features is only to draw a certain
area on the original image with thermal map, which lacks
specific and useful semantic information and is difficult to
summarize into concepts that human beings can under-
stand. Such a simple explanation result makes the model
which is still a black box, which has limited significance for
brain tumor segmentation. Therefore, GradCAM needs to
be used to visualize the features with context semantics in
PSP-Module, so that the model can be interpreted with more
specific feature information. The process of visualization on
the PSP-Module features using GradCAM is shown in
Figure 5.

In PSP-Module, in order to extract global context infor-
mation from CNN features of brain tumors extracted by
ResNet, the process of extracting multiscale features is
divided into four stages. Therefore, it is necessary to use
GradCAM to visualize the results of CNN features in the
four stages, so as to verify that each stage can extract features
of different scales accordingly and contribute to the context
features finally concatenated by PSP-Module. By visualizing
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M
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Visualization on CNN features Visualization on four multi-scales features Visualization on PSP context features

Figure 3: Using GradCAM to interpret PSPNet.
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Figure 4: Visualization on the CNN features using GradCAM.
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the PSP-Features, more detailed interpretation results can be
obtained from it than from the visualization of CNN
features.

GradCAM itself is proposed to explain the process of
extracting CNN features, so it can visualize the features
extracted by ResNet in the interpretation of brain tumor seg-
mentation However, in PSP-Module, GradCAM cannot be
directly used to visualize these four multiscale features,
because practical visualization results cannot be obtained
through such processing. In PSP-Module, through the pro-
cess of pooling and interpolation to filter the information,
only the CNN features at the current scale are retained in
each stage. After that, the process of concatenating the orig-
inal CNN features and the CNN features at a certain scale is
equivalent to weighting the original CNN features at a cer-
tain scale. This model design makes these CNN features at
a certain scale show practical significance only when they
are fused with the original CNN features, and it is difficult
to be visualized separately. Therefore, the visualization of
multiscale features is replaced by an equivalent way. In each
stage, the CNN features at this scale are fused with the orig-
inal CNN features, and then, the fused features are visualized
by GradCAM, so that the visualization on the four multi-
scale features can be obtained.

2.3.3. Visualization on the PSP Context Features. For the
context features obtained by concatenated in PSP-Module,
GradCAM is used to visualize them directly, which is similar
to those described in Section 2.3.1. Combined with the fea-
tures extracted from ResNet and the visualization results of
multiscale features under the four stages in the pyramid
structure, the visual interpretation of the multiscale feature
fusion process of PSPNet can be realized.

3. Experiments

3.1. Datasets. The public brain tumor segmentation dataset
BRATS2018 [28] was used in the experiment. Three seg-
mentation targets are set in the dataset according to the type
of the tumor region, including whole tumor (WT), tumor
core (TC), and enhancing tumor (ET). The dataset contains
351 cases, and each case contains data collected in four

modes, including T1, T2, Flair, and T1ce. Flair is used for
WT and TC segmentation, and T1ce is used for ET segmen-
tation. The data of each modality of each case is a 3D MRI
image with sizes of (155, 240, and 240). The 3D brain MRI
images are cut into 155 2D images, and the gray-scale value
of the ground truth (GT) is used as the threshold to separate
the GT of the three segmentation targets. In the experiment,
PSPNet is used for brain tumor image segmentation, and
dice coefficient between GT and segmentation result is taken
as optimization objective and evaluation index:

Dice = 2 X ∩ Yj j + smooth
Xj j + Yj j + smooth , ð4Þ

where smooth = 1:0,X is GT, and Y is the segmentation result.

3.2. Experiments on Segmentation. In order to get consistent
and clear segmentation results, whole tumor lesion is chosen
as the segmentation target, which is more convenient for anal-
ysis and more suitable for the visual interpretation. Addition-
ally, in order to explain the model from multiple angles
including good results and poor results and leave a certain
space for the improvement ideas based on the interpretation
results, the experiment uses few iterations and small batch size
to limit the performance of the segmentation model in a cer-
tain extent. Therefore, in the experiment, batch size is set to
8 and epoch is set to 10. In addition, all the experiments use
the learning-rate of 10−4 and the drop rate of 0.01. The com-
parison of the segmentation results is shown in Table 1.

3.3. Experiments on Interpretation

3.3.1. Explanation on the Validity of Pyramid Structure

(1) Visualization of Pyramid Structure. In order to illustrate
the effectiveness of pyramid structure, the input and output,
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Figure 5: Visualization on the PSP-Features using GradCAM.

Table 1: The comparison of the segmentation results.

WT TC ET

UNet 0.2979 0.3410 0.2812

PSPNet 0.4719 0.3763 0.2886
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as well as the intermediate results of pyramid structure, are
visualized. The experimental results are shown in Figure 6,
which visualizes and compares the poor and the good seg-
mentation result, respectively. As shown in the figure, the
visualization results of different scales show consistency in
easily identified tumor core parts, while focusing on different
regions in other details. For example, the 3 × 3 pooling in
Figure 6(a) and the 6 × 6 pooling in Figure 6(b) are both
focused on the bottom right region of the tumor. In contrast,
other stages of the pyramid model pay less attention to this
area and pay more attention to other areas. By comparing
the visualization results and the label, it can be concluded
that these regions are the lesions. Therefore, these stages
make their contribution to the final concatenated features
as shown in the PSP-Features in the figure. The experimental
result interpretably proves that the pyramid structure can
extract features of different scales from the input image by
pooling the extracted features in multiple dimensions and
then concatenate these features to obtain the final multiscale
features. The output obtained by concatenated features is
also very close to the label of the input image, which proves
the effectiveness of pyramid structure on extracting multi-
scale features in an interpretable way. Therefore, introducing
the pyramid structure into the model does have a positive
effect on the performance improvement of the model.

(2) Comparison between PSPNet and UNet. Similar to multi-
scale feature structure of PSPNet, UNet [8] also has the abil-
ity to extract multiscale features, so the performances and
visualization results of the two models are also compared
in the experiment. According to the multiscale structure
characteristics of UNet, a visualization method similar to
PSPNet is adopted, which is interpreted based on Grad-
CAM. The visualization results are shown in Figure 7.
Through observation, it can be found that only conv_1 layer
is the most similar to label in the multiscale feature extrac-
tion process of UNet, which affects the segmentation results
through horizontal connection structure. Although other

convolution layers can extract high-level semantic features,
the features have nothing to do with both the label and out-
put, which have no positive effect on tumor segmentation.
This result proves that although UNet can extract and fuse
multiscale features with the U-shape structure, the multi-
scale feature structure of PSPNet is much better than that
of UNet in the heat map of GradCAM, and the segmentation
result of PSPNet is indeed better than that of UNet.

3.3.2. Analysis on the Segmentation Error

(1) Interpretation and Analysis of Segmentation Errors. In
addition to explaining the performance of pyramid struc-
ture, it is necessary to study the reason of segmentation error
in the experiment. As shown in the visualization results of
PSPNet in Figure 8, the visualization result of PSP-Features
is similar to GT and Output in the case of good segmenta-
tion. However, in the case of poor segmentation, the visual-
ization result of PSP-Features is more similar to GT. It can
be suspected that this phenomenon leads to the fact that
most lesion areas are not accurately identified and seg-
mented in images with poor segmentation results. The
PSP-Module feature maps contain these lesion regions in a
certain extent. However, the visualization results of the fea-
ture maps output by PSP-Module include these lesion
regions to a certain extent, but the extracted relevant features
are sparse due to reasons such as insufficient obvious fea-
tures of the lesion regions, resulting in errors in the follow-
ing pixel-level segmentation process. This defect of the
model makes it difficult to recognize and segment these
brain tumor images accurately.

In order to understand and analyze this phenomenon,
this paper uses an evaluation method to further evaluate it
quantitatively. Use PSNR between PSP-Features and Out-
put, PSP-Features, and GT to measure whether the visualiza-
tion result of PSP-Features is more similar to Output or GT.
Therefore, it is necessary to binarize the heat map of PSP-

(a)

(b)

(c)

(d)

Input CNN-Features 1×1 2×2 3×3 6×6 PSP-Features Output GT

Figure 6: Four groups are selected from the visualization results of PSPNet for analysis, including the ones with poor segmentation
performance (a, b) and the ones with good segmentation performance (c, d). Among them, 1 × 1, 2 × 2, 3 × 3, and 6 × 6, respectively,
represent the visualization of the pooling results under the four feature scales, while PSP-Features represents the fusion results of the
four pooling scales in PSPNet.
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Features. By using different thresholds to limit the range of
features selected from the heat map, multiple groups of
PSP-Features processed by binarization are obtained. Then,
PSP-Features processed by binarization is used to calculate
the PSNR value with Output and GT, respectively, and take
the average value to obtain the data shown in Table 2, which
is plotted as shown in Figure 9. This evaluation method
makes it possible to correlate the threshold in the binariza-

tion process with the weights in CNN features to simulate
the heat map that can be obtained when the weights of all
features are increased in PSP-Features and quantify the
effect of increasing the weights on the segmentation results.

Comparing the data in the table and the statistical chart,
it can be found that when it is close to the initial weight of
the features in the heat map, which means threshold = 0:45
, it is more similar between PSP-Features and GT than

Input Conv_1 Conv_2 Conv_3 Conv_4 Conv_5 UNet-Output GT PSPNet-Output

Figure 7: Visual interpretation of multiscale features of UNet.

PSP-Features Output GT

(a)

PSP-Features Output GT

(b)

Figure 8: Comparison of PSPNet visualization results with output and label is divided into the groups with poor performance (a) and good
performance (b).

Table 2: Comparison of PSNR between PSP-Features and Output, PSNR between PSP-Features, and GT under binarization treatment with
different thresholds.

Threshold 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Output 12.57 14.49 15.93 17.39 18.87 20.21 21.28 21.54 21.45

GT 13.34 15.46 16.96 18.28 19.03 18.98 18.53 17.90 17.38

24

22

20

18

16

14

12

10
0.1 0.2 0.3 0.4 threshold

psnr(dB)

Output
GT

Figure 9: Comparison of PSNR between PSP-Features and Output, PSNR between PSP-Features, and GT under binarization treatment with
different thresholds.
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PSP-Features and Output. However, as the threshold
decreases, the weights of other features in the heat map grad-
ually increase, and PSP-Features gradually becomes more
similar to Output from being similar to GT. Especially when
the threshold is reduced to 0.25, the PSNR of PSP-Features
and GT reaches the highest and starts to be higher than that
of PSP-Features and Output. This situation shows that at
this threshold, the features of PSP-Features are the most
similar to GT and more similar than Output. If the subse-
quent processing can be performed with the PSP-Features
under this threshold, better segmentation results can be
obtained. Therefore, it can be considered that PSPModule
can extract the inconspicuous features of these areas and
locate these focus areas to a certain extent. However, due
to the defects of the model, there are problems in pixel rec-
ognition of these areas, and this defect can be improved by
increasing the weight of features.

(2) Improvement and Optimization Based on Visualization.
Since the segmentation errors in PSPNet, an idea can be
applied to improve the pyramid structure to improve its per-
formance. Because the multiscale features extracted by some
stages of the pyramid structure are better in the visualization
results, the weights of these scales are increased in the exper-
iment, which makes them have more influence on the output
results of pyramid structure. It can be considered that 2 × 2
and 3 × 3 are similar to GT, but the fusion process dilutes
these features, resulting in darker colors and poor feature
concentration in the heat map under the segmentation error
in Figure 8(a). Increasing their weights can fill this deficiency
and provide more appropriate scene analysis ability. How-
ever, the characteristics of 1 × 1 and 6 × 6 are less important
in comparison but still need to be preserved. Therefore, in
the experiment, the ratio of 1 × 1, 2 × 2, 3 × 3, and 6 × 6
was set to 1 : 2 : 2 : 1. After increasing the weight of the 2 × 2
and 3 × 3 stage in PSPNet, the dice coefficient rises to

0.5702. The visualization results are shown in Figure 10. It
can be observed that increasing the weight of the scale
through the concatenated features can make the feature
map which is much closer to GT, thus obtaining better seg-
mentation results. Similarly, it is not difficult to find that the
color of these regions in the heat map tends to be brighten
after weighting, and the segmentation result is also greatly
improved. After the comparison of visualization results
and the improvement of segmentation effect, it can be con-
sidered that increasing the weight of these feature scales is
beneficial to improve the accuracy of brain tumor
segmentation.

3.3.3. Analysis on the Structure of PSPNet

(1) The Number of Scales in Multiscale Features. Considering
the improvement of feature fusion results by increasing the
weight of scales according to feature extraction ability, it is
considered that the influence of changing the number of
scales on feature fusion and segmentation results should also
be paid attention to as another improvement idea. There-
fore, in order to find a more suitable number of feature
dimensions in the pyramid structure, some attempts are
made to change the model by increasing or decreasing the
number of scales to control the extracted features, thus seek-
ing to improve the performance of the model. The visualiza-
tion results of this experiment are shown in Figure 11.
Increasing the number of scales makes the pooling scales
into [1–3, 6, 8, 12], respectively. According to the visualiza-
tion results, it is considered that increasing the number of
scales will make the pyramid structure’s ability to extract
multiscale features invalid, and the features extracted by
each scale tend to be consistent, resulting in a decline in
model performance. However, reducing the number of
scales makes the pooling scales into 2 × 2 and 3 × 3, respec-
tively. Observing the visualization results of each scale and

Input CNN-Features 1×1 2×2 3×3 6×6 PSP-Features Output GT

Input CNN-Features 1×1 2×2 3×3 6×6 PSP-Features Output GT

Figure 10: Visual interpretation of the weighted pyramid structure.

Input CNN-Features 1×1 2×2 3×3 6×6 8×8 12×12 PSP-Features Output GT

(a)

(b)

Figure 11: Visualization result of increasing the number of stages in pyramid structure.
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feature fusion in Figure 12, it can be found that reducing
scales will make the pooled features of each scale scattered,
unable to focus on the target tumor itself, and also make
the pyramid model invalid. This problem leads to the inabil-
ity to clearly locate the outline of tumor in the result of fea-
ture fusion. Therefore, the segmentation visualization results
show that scale = 4 is the best number of dimensions of pyr-
amid structure. Increasing or decreasing the number of
scales on this basis will have a negative impact on the feature
extraction ability of pyramid structure model.

(2) Overfitting Problem of Pyramid Structure. In the process
of model training with 6 stages, it is inevitable that the multi-
scale features extracted in each scale tend to be consistent,
which means that the multiscale feature structure tends to
be overfitted. In order to increase the number of training
iterations and apply various methods to improve the model
and at the same time ensure the effectiveness of extracting
multiscale features from pyramid structure, it may be neces-
sary to introduce a penalty function based on visualization
results in the training process. When the scale features
extracted by pyramid structure are basically the same, it is
urged to extract other neglected features to limit the overfit-
ting degree of the model.

4. Conclusion

In this paper, a visualization-based interpretation method is
proposed to explain the image segmentation network based
on the multiscale feature model, which is used to segment
MRI images of brain tumors. After training and testing the
model on the public brain tumor MRI image dataset, the
interpretation results prove the effectiveness of the pyramid
structure, and a series of experiments are carried out based
on the interpretation results to improve the performance of
pyramid structure.
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