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Slime mould algorithm (SMA) is a new metaheuristic algorithm, which simulates the behavior and morphology changes of slime
mould during foraging. The slime mould algorithm has good performance; however, the basic version of SMA still has some
problems. When faced with some complex problems, it may fall into local optimum and cannot find the optimal solution.
Aiming at this problem, an improved SMA is proposed to alleviate the disadvantages of SMA. Based on the original SMA,
Gaussian mutation and Levy flight are introduced to improve the global search performance of the SMA. Adding Gaussian
mutation to SMA can improve the diversity of the population, and Levy flight can alleviate the local optimum of SMA, so that
the algorithm can find the optimal solution as soon as possible. In order to verify the effectiveness of the proposed algorithm, a
continuous version of the proposed algorithm, GLSMA, is tested on 33 classical continuous optimization problems. Then, on
14 high-dimensional gene datasets, the effectiveness of the proposed discrete version, namely, BGLSMA, is verified by
comparing with other feature selection algorithm. Experimental results reveal that the performance of the continuous version
of the algorithm is better than the original algorithm, and the defects of the original algorithm are alleviated. Besides, the
discrete version of the algorithm has a higher classification accuracy when fewer features are selected. This proves that the
improved algorithm has practical value in high-dimensional gene feature selection.

1. Introduction

With the development of modern social science and technol-
ogy, a variety of problems have arisen in the society, requir-
ing researchers to design more efficient and novel methods
to put forward feasible solutions. In recent years, some meta-
heuristic algorithms have been developed to solve various
optimization problems. Some studies also show that meta-
heuristic methods are more effective than traditional
gradient-based methods [1]. Metaheuristic algorithms can
be divided into several categories according to their causes:
evolutionary algorithm (EAs), such as genetic algorithm
(GA) [2] and differential evolution (DE) [3], and swarm
intelligence algorithms (SI), such as particle swarm optimi-
zation (PSO) [4], Harris hawks algorithm (HHO) [5],
RUNge Kutta optimizer (RUN) [6], hunger games search

(HGS) [7], slime mould algorithm (SMA) [8], monarch but-
terfly optimization (MBO) [9], moth search algorithm
(MSA) [10], colony predation algorithm (CPA) [11], and
weighted mean of vectors (INFO) [12]. In addition, they
have been widely used in various fields, such as solar cell
parameter Identification [13], economic emission dispatch
problem [14], image segmentation [15, 16], plant disease
recognition [17], medical diagnosis [18, 19], scheduling
problems [20–22], optimization of machine learning model
[23], multiobjective problem [24, 25], fault diagnosis [26],
object tracking [27, 28], expensive optimization problems
[29, 30], medical diagnosis [31, 32], combination optimiza-
tion problems [33], feature selection [34, 35], practical engi-
neering problems [36, 37], and robust optimization [38, 39].

Among all the algorithms, SMA is a new one proposed
in recent years. Because of its excellent performance in
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dealing with complex problems and simple implementation,
SMA has been widely applied in recent years. Because of its
exploration and exploitation capabilities, it has been widely
used in various fields to solve specific practical problems.
For example, Kouadri et al. [40] proposed to use SMA in
the actual power system to solve the optimal power problem
and minimize the total cost of conventional and random
power generation under the constraints of the power system.
Khunkitti et al. [41] proposed the multiobjective optimal
power flow (MOOPF) problem based on SMA, taking cost
emission and transmission line loss as part of the objective
function of the power system. Simulation results show that
SMA has better solutions than other algorithms in the liter-
ature. Jafari-Asl et al. [42] proposed a method combining LS
(line sampling) method with slime mould algorithm to solve
the reliability problem under highly nonlinear and implicit
limit states. Izci and Ekinci [43] evaluated the optimization
ability of SMA by using a proportional integral derivative
(PID) controller to adjust the speed of dc motor and main-
tain the terminal output of automatic voltage regulator
(AVR) system and compared the performance of SMA with
that of other controllers designed by competitive algorithms.
Houssein et al. [44] proposed a multiobjective optimization
algorithm based on SMA. The reliability of the proposed
MOSMA was verified by the actual multiobjective optimiza-
tion of automotive helical springs, and the effectiveness of
MOSMA was evaluated by the Wilcoxon test and perfor-
mance indicators. Houssein et al. [45] proposed a method
combining SMA with adaptive guided differential evolution
algorithm (AGDE) (SM-AGDE) to solve some of the defects
of SMA. Gupta et al. [46] proposed a SMA to solve the esti-
mation problem of proton exchange membrane fuel cell
(PEMFC) model, which showed good performance in jump-
ing out of local optimum, and the predicted results were
basically consistent with the actual results. Therefore, SMA
can be used for fuel cell problems. Elsayed et al. [47] used
SMA to identify the parameters of transformer equivalent
circuit and verified the ability and accuracy of SMA in
parameter estimation of single-three-phase transformer, as
well as its high performance and stability in determining
the optimal parameters.

Hassan et al. [48] proposed an improved SMA (ISMA)
to solve the problem of target and dual target economy
and emission scheduling (EED) considering the valve point
effect, in which the best solution was obtained by updating
the position of the solution by using two equations in the
sine and cosine algorithm. At the same time, on the basis
of Pareto dominance concept and fuzzy decision, multiob-
jective ISMA is proposed, which has good performance
and robustness. Jia et al. [49] optimized the SMA by intro-
ducing compound mutation strategy (CMS) and restart
strategy (RS). CMS was used to increase population diver-
sity, RS was used to avoid local optimization, and the effec-
tiveness of the proposed CMSRSSMA was tested on the
benchmark function. Meanwhile, the CMSRSSMA_SVM
model was proposed and used for feature selection and
parameter optimization. Altay [50] utilized 10 different cha-
otic mappings to generate chaotic rather than random values
in SMA. By using chaotic mapping, the global convergence

rate of SMA is improved and the local solution is avoided.
Abdel-Basset et al. [51] integrated SMA and WOA algo-
rithms to maximize Kapur’s entropy and applied them in
the field of image segmentation, achieving good results.
Chauhan et al. [52] proposed a method combining arith-
metic optimizer algorithm (AOA) and slime mould algo-
rithm (SMA), namely, HAOASMA algorithm, which
solved the problems of slime mould algorithm’s insufficient
memory and slow local convergence speed.

Since SMA was proposed, it has been applied in various
fields and used to solve various problems, showing good per-
formance. However, in the face of some complex optimiza-
tion tasks, there are still problems of falling into local
optimum and slow convergence. In order to cope with this
situation and improve the performance of the algorithm, a
combinatorial optimization method (GLSMA) based on
Gaussian mutation and Levy flight is proposed in this paper.
In GLSMA, the global exploration and local exploitation
capabilities of the original algorithm are improved by intro-
ducing Gaussian mutation and Levy flight mechanism. In
the optimization iteration process, the original position of
slime moulds in the population was modified by Gaussian
to enhance the diversity of the population and improve the
global exploration ability of the algorithm, so that the algo-
rithm could achieve a balance between global exploration
and local exploitation. After that, Levy flight was used to
improve the randomness of SMA and to jump out of local
optimum. Benchmark function test results show that the
improved version of GLSMA has better global search and
local exploration ability compared with other advanced algo-
rithms. The discrete version based on GLSMA also shows an
ideal effect on feature selection.

The contributions and highlights of this paper are sum-
marized below:

(1) An improved slime mould algorithm (GLSMA)
based on Gaussian mutation and Levy flight is pro-
posed to solve continuous optimization problems
and high-dimensional gene feature selection
problems

(2) The superiority of GLSMA is proved by comparing
with several well-known algorithms on public data-
sets and achieved good results

(3) Proposed binary GLSMA to solve high-dimensional
gene feature selection problems

(4) The developed GLSMA has faster exploration speed
and convergence speed in the global optimization
task

(5) Binary GLSMA has the highest classification accu-
racy and the least number of features in high-
dimensional gene feature selection task

The remainder of this paper is organized as follows: the
second part introduces the original SMA. The third part
introduces Gaussian mutation mechanism and Levy flight
in detail, as well as the improved SMA based on the two
mechanisms. The fourth part introduces a series of
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comparison experiments between GLSMA and other similar
algorithms, including comparison experiments on continu-
ous function and discrete function. The fifth part reviews
and discusses of the proposed work. The sixth part summa-
rizes the conclusions of this paper and gives several direc-
tions of future work.

2. Slime Mould Algorithm

Li et al. [8] established a mathematical model based on the
oscillation behavior of slime moulds and thus proposed a
metaheuristic slime mould algorithm (SMA).

The mathematical formula of slime moulds is shown in

X t + 1ð Þ =
rand∙ UB − LBð Þ + LB, rand < z,
Xb tð Þ + vb tð Þ∙ W∙XA tð Þ − XB tð Þð Þ, r < p,
vc tð Þ∙X tð Þ, r ≥ p,

8>><
>>:

ð1Þ

where vb represents a random value in the interval ½−a, a�.
Parameter vc ranges in the interval ½−b, b�, which decreases
with the number of iterations. Through the cooperative
interaction between vb and vc, the selection behavior of
slime moulds can be simulated and the optimal solution
can be selected. Maxt indicates the maximum number of
iterations. UB and LB represent the upper and lower bound-
aries of the search space, respectively. Xb represents the posi-
tion vector of the current highest fitness (highest
concentration) individual. XAðtÞ and XBðtÞ represent the
position vectors of random individuals selected from the
slime moulds in the t iteration. rand and r are the random
values between 0 and 1. Parameter z is set to 0.03. XðtÞ
and Xðt + 1Þ represent position vectors of slime moulds at
the t and ðt + 1Þ iterations, respectively.

a = arctanh 1 − t
Maxt

� �� �
, ð2Þ

b = 1 − t
Maxt

� �
: ð3Þ

In addition, the decision parameter p can be calculated
as follows:

p = tanh S ið Þ −DFj j, ð4Þ

where SðiÞ indicates the fitness of the ith individual in the
slime mould, i ∈ 1, 2,⋯,N ; N denotes the size of population;
and DF represents the best fitness, which is attained during
all of the iterations.

W SmellIndex ið Þð Þ =
1 + r∙log bF − SmellOrder ið Þ

bF −wF + 1
� �

, condition,

1 − r∙log bF − SmellOrder ið Þ
bF −wF + 1

� �
, otherwise,

8>>><
>>>:

 

ð5Þ

SmellOrder, SmellIndex½ � = sort Sð Þ, ð6Þ
where W is the weight vector of slime moulds and bF and
wF are the best and worst fitness obtained in the current
iteration, respectively. SmellIndex and SmellOrder represent
fitness ordering order (minimum problems are sorted in
ascending order) and corresponding fitness values, respec-
tively. condition represents the first half of SmellOrder.

3. Description of the GLSMA

3.1. Gaussian Mutation. Gaussian mutation (GM) operator
is derived from Gaussian normal distribution, which is dis-
tinguished from Cauchy distribution. In the vertical direc-
tion, the Gaussian distribution is larger than the Cauchy
distribution, and in the horizontal direction, the Gaussian
distribution is smaller than the Cauchy distribution. Gauss
mutations are more likely to produce new offspring in this
part because of their narrow tail. In response, the search
equation takes smaller steps to explore every corner of the
search space in a better way. The Gaussian density function
can be described as

f Gaussian 0,σ2ð Þ ∝ð Þ = 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−σ
2/2σ2 , ð7Þ

where σ2 is the variance of each member of the population.
By setting the mean to 0 and the standard deviation to 1, this
function is further simplified to generate an N-dimensional
random variable. The generated random variables were
applied to the exploration stage of slime moulds, as shown
below:

Xi′= Xi × 1 +G ∝ð Þð Þ, ð8Þ

where Gð∝Þ is a uniformly distributed random number
derived from Gaussian distribution, Xi is a position in
SMA during the current iteration, and Xi′ is the position cor-
responding to Xi after Gaussian mutation. The introduction
of Gaussian mutation mechanism enhances the diversity of
population and improves the quality of SMA solution.

3.2. Levy Flight. Levy flight (LF) was first proposed by French
mathematician Paul Levy in 1937, after which researchers
used Levy statistics to describe various natural phenomena.
Levy flight operator improves slime mould search capability
by helping all search agents advance to better, more promis-
ing positions. A simple description of the Levy distribution
is as follows:

Levy βð Þ ~ u = t−1−β, 0 < β ≤ 2, ð9Þ

where β is an important index of regulatory stability. Levy
random numbers can be described by the following formula:

Levy βð Þ ~ φ × μ

vj j1/β
, ð10Þ

where μ and v are standard normal distributions, Γ is a
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standard gamma function, β is set to 1.5, and φ is defined as
follows:

φ = Γ 1 + βð Þ × sin π × β/2ð Þ
Γ 1 + βð Þ/2ð Þ × β × 2 β−1ð Þ/2À Á
" #1/β

: ð11Þ

In the exploration phase of slime mould algorithm, Levy
strategy was used to update the location of search agents, so
as to better balance exploration and search capabilities. The
update formula is as follows:

Xi′= Xi × 1 + Levy βð Þð Þ: ð12Þ

In the formula, LevyðβÞ is taken from the Levy distribu-
tion and is the number of random distribution. Xi′ is the new
location of the i-th search agent Xi after the update. The
introduction of Levy flight can help all individuals to jump
out of local optimum and improve the quality of the
population.

3.3. Framework of Proposed GLSMA. In this section, we will
describe GLSMA based on the Gaussian mutation mecha-
nism and Levy flight strategy in detail. In the process of algo-
rithm improvement, adding a mechanism can generally
improve the algorithm in only one aspect but cannot
improve the global exploration and local exploitation ability
at the same time. By adding the Gaussian mutation mecha-
nism, the corresponding value can be obtained from the cur-
rent solution, but this can only improve the local

exploitation ability and will fall into local optimal. The Levy
flight mechanism can expand the search range of solutions,
increase the possibility of obtaining the optimal solution,
and avoid falling into local optimal. As a result, in the orig-
inal SMA, two strategies (GM and LF) were introduced to
facilitate the coordination of global exploration and local
exploitation, forming a new SMA variant.

In the process of iterative optimization, Gaussian muta-
tion was considered for individuals in the slime mould indi-
viduals after initial updating. The individuals obtained after
mutation were compared with the individuals without that.
If the fitness of the individuals in the mutation state was
not improved, the original individuals were retained and
the mutant individuals were discarded to ensure the quality
of the population. Considering that the algorithm is easy to
fall into local optimum, levy flight strategy is introduced to
improve the randomness of SMA and the ability of jumping
out of local optimum. The flowchart of GLSMA is shown in
Figure 1. Experimental results show that compared with
other swarm intelligence algorithms, GLSMA not only has
stronger global exploration ability but also contributes to
increase the quality of solutions and speed up convergence.
The structure of the proposed GLSMA optimizer is shown
in Algorithm 1.

3.4. Computational Complexity Analysis. According to the
structure of GLSMA, it mainly includes initialization, fitness
evaluation, fitness ranking, weight updating, position updat-
ing based on SMA strategy, position adjustment based on
Gaussian mutation mechanism, and position updating based

Update population by Eq.(1)

Use Gaussian mutation
strategy to update the optimal

solution

If no change in ten
generations?

Use Levy fight strategy to
update the optimal solution

If t > Max_iter?

Return the best solution

EndStart

Initialize the parameters

Initialize the population of SMA

Calculate the ftness values of
population

Sort the worst and the best
ftness in the population

Calculate the W, a, b

Update p, vb, vc

No

No

Yes

Yes

Select the best population X

Figure 1: Flowchart of the proposed GLSMA.
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on Levy flight strategy, where N is the number of slime
moulds, D is the function’s dimension, and T is the maxi-
mum number of iterations. The calculation is as follows:

The time complexity for initialization is OðDÞ. In evalu-
ating and ordering fitness, the computational complexity is
O ðN +N log NÞ. The computational complexity of the
update weight is OðN ×DÞ. The computational complexity
of position updating process based on SMA is OðN ×DÞ.
Similarly, the computational complexity of position updat-
ing process based on Gaussian mutation mechanism is Oð
N ×DÞ. The computational complexity of the position
update process based on Levy flight is OðN log DÞ. There-
fore, the total computational complexity of GLSMA is OðD
+ T ×N × ð1 + 3D + log D + log NÞÞ.

4. Experiments and Results

In the experiment, to evaluate the continuous and discrete ver-
sions of GLSMA, the proposed SMA algorithm is compared
with other optimizers on the continuous functions and feature

problems, respectively. The effectiveness and competitiveness
of the proposed algorithm are verified by two parts of experi-
ments. In the first part, the strategies added on SMA were
tested on 23 benchmark test functions (including 7 unimodal
functions, 6 multimodal functions, and more than 10 fixed
dimension multimodal functions) and 10 classic CEC2014
benchmark test functions (including 2 hybrid functions and
8 composition functions), to see whether the mechanism has
a positive effect on the algorithm. Then, in the same test envi-
ronment, GLSMA is compared with some original algorithms
and advancedMA algorithms. In the second part, we compare
the proposed binary GLSMA (BGLSMA) with other classifiers
on feature selection problems.

All GLSMA experiments were written in the MATLAB
R2014a compiler and run on Windows 10(64-bit) operating
system. The computer hardware is Intel(R) Xeon(R) Silver
4110 CPU (2.40GHz) 2.10GHz (dual processors) and
32GB RAM.

In Section 4.1, we will test the influence of different
mechanisms on the algorithm. In Section 4.2, GLSMA is

Table 1: Descriptions of unimodal benchmark functions.

Function Dim Range fmin

F1 xð Þ =〠n

i=1x
2
i 30 [-100, 100] 0

F2 xð Þ =〠n

i=1 xij j +
Yn

i=1
xij j 30 [-10, 10] 0

F3 xð Þ =〠n

i=1 〠i

j−1 xj
� �2

30 [-100, 100] 0

F4 xð Þ =maxi xij j, 1 ≤ i ≤ nf g 30 [-100, 100] 0

F5 xð Þ =〠n−1
i=1 100 xi+1 − x2i

À Á2 + xi − 1ð Þ2
h i

30 [-30, 30] 0

F6 xð Þ =〠n

i=1 xi + 0:5½ �ð Þ2 30 [-100, 100] 0

F7 xð Þ =〠n

i=1ix
4
i + random 0, 1½ � 30 [-128, 128] 0

Begin
Initialize of the parameters: Max iter, N
Initialize of slime mould population X
Whilet ≤Max iter

Calculate the fitness for each individual in slime mould
Update Xb and the best fitness
Calculate the weight W, a, and b according to Equations (2), (3), (5)
Fori = 1 : N
Update p using Equation (4)
Update vb and vc based on a and b, respectively
Update the positions by Equation (1)

End for
Utilize the best individual in the population to perform GM operations
If (meet the condition)
Then use Levy flight to avoid falling into local optimality
Iteration = iteration + 1

End while
Return the best fitness and Xb as the best solution

End

Algorithm 1: Pseudocode of GLSMA.
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compared with seven metaheuristic algorithms to prove its
effectiveness. In Section 4.3, GLSMA is compared with eight
advanced algorithms to verify its ability on exploration and
exploitation. In Section 4.4, we use binary GLSMA
(BGLSMA) to deal with feature selection in 14 UCI datasets.

4.1. The Influence of Gaussian Mutation and Levy Flight. As
mentioned above, GLSMA consists of two main improved
strategies: Gaussian mutation mechanism and Levy flight
strategy. The purpose of this section is to validate the effec-
tiveness of the combination of the two strategies. To this
end, we compare GLSMA, SMA, and their variants GSMA
and LSMA on 33 benchmark functions. GSMA only uses
Gaussian mutation strategy, LSMA only uses Levy flight
strategy, and SMA is the original algorithm.

All algorithm tests were carried out under the expected
conditions to eliminate the influence of irrelevant factors
on the experiment and ensure the fairness of the test. The
population size was set to 30; the maximum evaluation test
was uniformly set to 300,000. In order to weaken the influ-
ence of algorithm randomness on the experiment, we con-
ducted 30 independence tests for each test case. In this
paper, the average value of optimal function (Avg) and stan-
dard deviation (Std) of the selection algorithm results are
compared. The global exploration ability and result quality
of the algorithm were evaluated on the average (Avg), and
Std of the optimal function was used to evaluate the robust-
ness of the algorithm. In order to show the best results more
clearly, all the best results are italicized.

In addition, nonparametric statistical verification Wil-
coxon signed-rank test was used to measure the degree of
improvement and whether it was statistically significant.
The significance level was set at 0.05. The symbolic label
“+/=/-” in the results states that the proposed method
GLSMA is superior to, equal to, and inferior to other
methods of competition, respectively. For a comprehensive
statistical comparison, the Friedman [53] test was used to
evaluate the average behavior of all different algorithms for
further statistical comparison, and the average ranking was
given in these comparison results, and the average rank
value (ARV) of the Friedman test was used to evaluate the
average performance of the compared methods.

Tables 1–4 contain 23 benchmark functions and 10 test
functions in CEC2014. The selected 33 test functions include
several different problems, covering unimodal function,
multimodal function, fixed dimension multimodal function,
hybrid function, and composition function. These test func-
tions can be used to test the algorithm’s global exploration
capabilities and local exploitation capabilities and can be
used to verify the balance between exploration and exploita-
tion capabilities.

As can be seen from the results in Tables 5 and 6,
GLSMA is significantly superior to other mechanism com-
binations and the original SMA. After careful analysis, Avg
and Std in Table 5 represent the superiority of GLSMA
over F1-F7, F9-F14, F17-F18, and F22-F33 functions. On
the test functions F1-F4, F9-F11, F26-F28, and F30-F33,
the GLSMA’s Std value is 0, indicating that GLSMA has
strong robustness. This is because the combination of

Gaussian mutation and Levy flight mechanism improves
the performance of the original SMA and can successfully
find global optimal solutions for various complex prob-
lems. According to the statistical results of p value in
Table 6, many values of SMA column are less than 0.05,
indicating that GLSMA has a certain improvement on
the original SMA. As can be seen from the ARV tested
by Friedman in Table 7, when comparing the four algo-
rithms, GLSMA ranks first and is significantly superior
to other algorithms. Moreover, it can be seen that the
improvement effect of Gaussian mutation mechanism or
Levy flight mechanism on the original SMA is not good,
even can be said to be poor, but the combination of the
two can achieve a good balance between exploration and
exploitation, so as to achieve a good effect. In summary,
the results show that the addition of Gaussian mutation
mechanism and Levy flight mechanism is not only benefi-
cial to the exploration and exploitation ability of GLSMA
but also beneficial to the balance between the exploitation
and exploration ability of GLSMA, which has a certain
positive effect on the algorithm and improves the robust-
ness of the original algorithm, which has improved
significance.

Compared with the table, the image can more intuitively
and clearly reflect the optimization results of GLSMA com-
pared with other comparison objects. Figure 2 shows the con-
vergence curves of the four comparison methods on nine
functions. It is obvious that GLSMA using two mechanisms
achieves better results than its variants. The combination of
Gaussian mutation and Levy flight enables GLSMA to escape
from local traps faster and obtain the global optimal solution.
In the meantime, it can be seen that GLSMA has the fastest
rate of convergence and can get the optimal value first. The
results show that this combination of mechanisms can
quicken the convergence of the algorithm while jumping out
of local optimum. In general, the combination of GM and
LF improves the overall performance of the original SMA.

4.2. Comparison with Well-Known Algorithms. In this exper-
iment, 23 classical functions and 10 of the CEC2014 bench-
mark functions were selected to evaluate the performance of

Table 4: Descriptions of CEC2014 functions (search range: [−100,
100]D).

Function Class Functions Optimum

F24
Hybrid

Hybrid 5: N = 5 2100

F25 Hybrid 6: N = 5 2200

F26

Composition

Composition 1: N = 5 2300

F27 Composition 2: N = 3 2400

F28 Composition 3: N = 3 2500

F29 Composition 4: N = 5 2600

F30 Composition 5: N = 5 2700

F31 Composition 6: N = 5 2800

F32 Composition 7: N = 3 2900

F33 Composition 8: N = 3 3000
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Table 5: Experimental results of GLSMA, SMA, GSMA, and LSMA on 33 benchmark functions.

F1 F2 F3

Avg Std Avg Std Avg Std

GLSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

GSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

LSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F4 F5 F6

Avg Std Avg Std Avg Std

GLSMA 0.00E+00 0.00E+00 1.29E-03 1.16E-03 7.00E-06 4.61E-06

SMA 0.00E+00 0.00E+00 1.97E-03 1.01E-03 9.52E-06 4.12E-06

GSMA 0.00E+00 0.00E+00 1.96E-03 1.40E-03 1.32E-05 5.03E-06

LSMA 0.00E+00 0.00E+00 4.39E-03 2.62E-03 1.23E-05 5.56E-06

F7 F8 F9

Avg Std Avg Std Avg Std

GLSMA 5.98E-06 5.13E-06 -1.26E+04 1.07E-02 0.00E+00 0.00E+00

SMA 9.56E-06 8.00E-06 -1.26E+04 2.62E-04 0.00E+00 0.00E+00

GSMA 9.94E-06 9.90E-06 -1.26E+04 2.32E-04 0.00E+00 0.00E+00

LSMA 1.62E-05 1.41E-05 -1.27E+04 4.23E-04 0.00E+00 0.00E+00

F10 F11 F12

Avg Std Avg Std Avg Std

GLSMA 8.88E-16 0.00E+00 0.00E+00 0.00E+00 2.35E-06 4.36E-06

SMA 8.88E-16 0.00E+00 0.00E+00 0.00E+00 1.05E-05 1.00E-05

GSMA 8.88E-16 0.00E+00 0.00E+00 0.00E+00 8.42E-06 1.16E-05

LSMA 8.88E-16 0.00E+00 0.00E+00 0.00E+00 8.46E-06 8.61E-06

F13 F14 F15

Avg Std Avg Std Avg Std

GLSMA 3.40E-06 2.79E-06 9.98E-01 4.51E-16 3.12E-04 2.13E-05

SMA 6.59E-06 3.86E-06 9.98E-01 4.77E-16 3.08E-04 1.89E-06

GSMA 8.30E-06 5.62E-06 9.98E-01 5.49E-16 3.15E-04 3.67E-05

LSMA 8.12E-06 2.21E-06 9.98E-01 5.79E-16 3.21E-04 5.70E-05

F16 F17 F18

Avg Std Avg Std Avg Std

GLSMA -1.03E+00 6.32E-14 3.98E-01 7.20E-12 3.00E+00 1.04E-14

SMA -1.03E+00 1.21E-14 3.98E-01 1.32E-11 3.00E+00 1.16E-14

GSMA -1.03E+00 9.28E-15 3.98E-01 1.14E-11 3.00E+00 1.21E-14

LSMA -1.03E+00 1.31E-14 3.98E-01 2.58E-11 3.00E+00 1.03E-14

F19 F20 F21

Avg Std Avg Std Avg Std

GLSMA -3.86E+00 6.18E-11 -3.24E+00 5.70E-02 -1.02E+01 1.27E-06

SMA -3.86E+00 4.13E-11 -3.23E+00 4.84E-02 -1.02E+01 1.03E-06

GSMA -3.86E+00 1.24E-10 -3.23E+00 4.84E-02 -1.02E+01 9.16E-07

LSMA -3.86E+00 6.17E-11 -3.21E+00 3.02E-02 -1.02E+01 1.27E-06

F22 F23 F24

Avg Std Avg Std Avg Std

GLSMA -1.04E+01 9.50E-07 -1.05E+01 8.73E-07 1.05E+05 8.26E+04

SMA -1.04E+01 1.15E-06 -1.05E+01 1.06E-06 1.50E+05 4.96E+04

GSMA -1.04E+01 1.56E-06 -1.05E+01 1.49E-06 1.16E+05 5.52E+04

LSMA -1.04E+01 1.18E-06 -1.05E+01 1.44E-06 1.38E+05 6.74E+04
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GLSMA. The 33 benchmark test functions used in all exper-
iments of continuous optimization can be divided into four
categories: unimodal function, multimodal function, hybrid

function, and composition function. The unimodal function
(F1-F7) has only one solution, which can be used to test the
development ability of the algorithm. The multimodal func-
tion (F8-F23) has several local optimal solutions and is suit-
able for verifying the exploration ability of the algorithm.
The hybrid function and composition function (F24-F33)
selected from CEC2014 are used to verify the balance
between algorithm exploration and exploitation. These func-
tions are often used to assess the overall power of algorithms.
In this experiment, the performance of the improved

Table 5: Continued.

F25 F26 F27

Avg Std Avg Std Avg Std

GLSMA 2.53E+03 1.78E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

SMA 2.70E+03 2.13E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

GSMA 2.71E+03 1.75E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

LSMA 2.65E+03 2.04E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

F28 F29 F30

Avg Std Avg Std Avg Std

GLSMA 2.70E+03 0.00E+00 2.70E+03 9.59E-02 2.90E+03 0.00E+00

SMA 2.70E+03 0.00E+00 2.70E+03 1.42E-01 2.90E+03 0.00E+00

GSMA 2.70E+03 0.00E+00 2.70E+03 1.46E-01 2.90E+03 0.00E+00

LSMA 2.70E+03 0.00E+00 2.70E+03 1.21E-01 2.90E+03 0.00E+00

F31 F32 F33

Avg Std Avg Std Avg Std

GLSMA 3.00E+03 0.00E+00 3.10E+03 0.00E+00 3.20E+03 0.00E+00

SMA 3.00E+03 0.00E+00 4.11E+03 1.10E+03 5.38E+03 1.64E+03

GSMA 3.00E+03 0.00E+00 4.20E+03 1.12E+03 5.14E+03 1.67E+03

LSMA 3.00E+03 0.00E+00 3.89E+03 1.10E+03 5.67E+03 2.19E+03

Table 6: Wilcoxon signed-rank test results between GLSMA, SMA, GSMA, and LSMA.

Function SMA GMSA LSMA Function SMA GMSA LSMA

F1 1.00E+00 1.00E+00 1.00E+00 F18 2.40E-01 5.15E-01 5.92E-01

F2 1.00E+00 1.0E+00 1.00E+00 F19 4.72E-02 8.61E-01 5.04E-01

F3 1.00E+00 1.00E+00 1.00E+00 F20 3.71E-01 3.19E-01 1.38E-03

F4 1.00E+00 1.00E+00 1.00E+00 F21 4.65E-01 7.81E-01 2.13E-01

F5 2.18E-02 1.75E-02 3.11E-05 F22 8.94E-01 8.98E-02 1.41E-01

F6 4.95E-02 4.53E-04 1.06E-04 F23 7.04E-01 2.18E-02 3.82E-01

F7 3.68E-02 1.41E-01 5.71E-04 F24 9.27E-03 6.58E-01 7.87E-02

F8 4.53E-04 1.38E-03 1.48E-03 F25 1.40E-02 4.90E-04 1.96E-02

F9 1.00E+00 1.00E+00 1.00E+00 F26 1.00E+00 1.00E+00 1.00E+00

F10 1.00E+00 1.00E+00 1.00E+00 F27 1.00E+00 1.00E+00 1.00E+00

F11 1.00E+00 1.00E+00 1.00E+00 F28 1.00E+00 1.00E+00 1.00E+00

F12 7.71E-04 8.73E-03 2.11E-03 F29 8.22E-02 1.78E-01 2.90E-01

F13 4.39E-03 7.71E-04 6.98E-06 F30 1.00E+00 1.00E+00 1000E+00

F14 5.08E-01 7.27E-01 5.081E-01 F31 1.00E+00 1.00E+00 1.00E+00

F15 1.11E-01 9.59E-01 7.66E-01 F32 6.10E-05 4.38E-04 6.10E-05

F16 3.37E-01 3.16E-01 1.32E-01 F33 5.96E-05 8.86E-05 1.32E-04

F17 3.49E-01 2.85E-02 2.99E-01 +/=/- 9/22/2 9/23/1 9/231

Table 7: Average ranking values using the Friedman test.

Algorithm GLSMA SMA GSMA LSMA

AVR 1.454545 1.878788 2.151515 2.30303

Rank 1 2 3 4
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GLSMA was compared with PSO [4], WOA [54], GWO
[55], SCA [56], FOA [57], DE [3], and SSA [58].

Tables 8–10 record the comparison results of GLSMA
with seven well-known algorithms. The comparison results
are shown in Table 10; among GLSMA and seven famous
algorithms, the average Friedman test result of GLSMA is
2.328283, ranking first, and the average Friedman test result
of DE is 2.730303, ranking second. It is obvious that the Fried-
man test of GLSMA and DE is obviously better than other
algorithms. The average value (Avg) and standard deviation
(Std) of optimal solution of GLSMA and other well-known
algorithms are shown in Table 8. GLSMA has a significant
advantage. Moreover, in all the comparison algorithms,

GLSMA has Std 0 on more test functions, which proves that
GLSMA algorithm has stronger stability. In addition, GLSMA
shows obvious advantages and stability in almost all of the
composition functions (F26-F28 and F30-F33). Table 9 shows
the Wilcoxon symbol test results between GLSMA and other
well-known algorithms. It can be seen that the p value of
GLSMA is less than 0.05 on almost all benchmark functions,
which proves that GLSMA is significantly better than other
algorithms, especially FOA, in all functions. Therefore, com-
pared with these basic metaheuristic algorithms, GLSMA has
statistical significance.

From the convergence curves of 8 algorithms on 9 func-
tions shown in Figure 3, it can be seen that GLSMA
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Figure 2: Convergence curves of GLSMA, SMA, GSMA, and LSMA on nine selected benchmark functions.
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Table 8: Experimental results of GLSMA and seven original metaheuristic algorithms on 33 benchmark functions.

F1 F2 F3

Avg Std Avg Std Avg Std

GLSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

PSO 1.03E+02 1.01E+01 4.58E+01 3.92E+00 1.94E+02 2.47E+01

WOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.18E+01 7.47E+01

GWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.37E-183 0.00E+00

SCA 2.04E-56 6.25E-56 1.69E-58 5.76E-58 5.41E+00 1.51E+01

FOA 2.50E-09 9.63E-12 2.74E-04 4.17E-07 7.88E-07 1.85E-09

DE 3.70E-159 1.03E-158 2.85E-94 4.33E-94 1.27E+03 5.02E+02

SSA 3.79E-09 9.30E-10 2.96E-01 5.45E-01 5.90E-08 1.81E-08

F4 F5 F6

Avg Std Avg Std Avg Std

GLSMA 0.00E+00 0.00E+00 1.24E-03 1.37E-03 6.31E-06 3.72E-06

PSO 3.82E+00 1.26E-01 8.65E+04 2.0279E+04 1.02E+02 1.14E+01

WOA 4.37E+00 1.06E+01 2.44E+01 7.73E-01 5.80E-06 2.37E-06

GWO 1.81E-152 4.50E-152 2.65E+01 8.77E-01 4.89E-01 2.88E-01

SCA 1.52E-02 6.23E-02 2.75E+01 6.24E-01 3.53E+00 2.92E-01

FOA 9.14E-06 1.46E-08 2.87E+01 1.09E-04 7.50E+00 3.59E-07

DE 3.17E-15 5.95E-15 3.29E+01 2.01E+01 0.00E+00 0.00E+00

SSA 1.92E-01 3.42E-01 4.59E+01 3.57E+01 3.81E-09 7.66E-10

F7 F8 F9

Avg Std Avg Std Avg Std

GLSMA 7.45E-06 7.29E-06 -1.26E+04 1.27E-02 0.00E+00 0.00E+00

PSO 1.11E+02 2.41E+01 -6.69E+03 8.24E+02 3.41E+02 1.52E+01

WOA 2.15E-04 2.53E-04 -1.24E+04 5.62E+02 0.00E+00 0.00E+00

GWO 6.44E-05 4.41E-05 -6.16E+03 6.56E+02 0.00E+00 0.00E+00

SCA 2.44E-03 2.59E-03 -4.42E+03 2.83E+02 1.18E-12 6.47E-12

FOA 3.15E-05 1.44E-05 -2.31E+02 1.13E+02 4.97E-07 1.73E-09

DE 2.39E-03 5.48E-04 -1.24E+04 1.29E+02 1.33E-01 3.44E-01

SSA 7.64E-03 3.24E-03 -7.76E+03 7.13E+02 6.91E+01 1.83E+01

F10 F11 F12

Avg Std Avg Std Avg Std

GLSMA 8.88E-16 0.00E+00 0.00E+00 0.00E+00 1.16E-06 1.62E-06

PSO 7.79E+00 3.02E-01 1.01E+00 9.86E-03 3.55E+00 3.93E-01

WOA 3.97E-15 2.59E-15 5.23E-04 2.86E-03 9.31E-07 4.33E-07

GWO 7.88E-15 6.49E-16 4.98E-04 1.90E-03 2.53E-02 1.77E-02

SCA 1.13E+01 9.36E+00 3.78E-09 2.07E-08 3.54E-01 1.30E-01

FOA 3.65E-05 4.17E-08 1.67E-10 6.21E-13 1.67E+00 6.05E-08

DE 7.53E-15 1.23E-15 0.00E+00 0.00E+00 1.57E-32 5.57E-48

SSA 1.78E+00 7.00E-01 1.28E-02 1.34E-02 9.54E-01 1.46E+00

F13 F14 F15

Avg Std Avg Std Avg Std

GLSMA 4.57E-06 2.70E-06 9.98E-01 4.76E-16 3.08E-04 8.17E-07

PSO 1.59E+01 1.70E+00 2.78E+00 2.17E+00 9.76E-04 5.57E-05

WOA 7.74E-04 2.78E-03 9.98E-01 1.10E-14 4.70E-04 3.12E-04

GWO 4.08E-01 1.69E-01 3.15E+00 3.56E+00 7.53E-03 1.29E-02

SCA 2.03E+00 1.27E-01 9.98E-01 6.09E-07 5.15E-04 3.78E-04

FOA 5.79E-01 7.79E-02 1.27E+01 1.04E-15 8.36E-04 2.74E-04

DE 1.35E-32 5.57E-48 9.98E-01 0.00E+00 3.72E-04 1.83E-04

SSA 3.60E-03 6.49E-03 9.98E-01 1.13E-16 7.38E-04 3.71E-04
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Table 8: Continued.

F16 F17 F18

Avg Std Avg Std Avg Std

GLSMA -1.03E+00 2.38E-14 3.98E-01 2.57E-12 3.00E+00 1.16E-14

PSO -1.03E+00 9.52E-05 3.98E-01 6.35E-05 3.01E+00 7.37E-03

WOA -1.03E+00 7.33E-15 3.98E-01 4.58E-10 3.00E+00 4.61E-08

GWO -1.03E+00 2.82E-11 3.98E-01 4.01E-09 3.00E+00 8.51E-08

SCA -1.03E+00 1.84E-06 3.98E-01 5.20E-05 3.00E+00 1.53E-07

FOA -1.55E-01 1.29E-01 1.34E+00 8.72E-01 6.00E+02 1.89E-05

DE -1.03E+00 6.78E-16 3.98E-01 0.00E+00 3.00E+00 2.03E-15

SSA -1.03E+00 6.14E-16 3.98E-01 6.14E-16 3.00E+00 1.36E-14

F19 F20 F21

Avg Std Avg Std Avg Std

GLSMA -3.86E+00 7.54E-11 -3.23E+00 4.84E-02 -1.02E+01 6.78E-07

PSO -3.86E+00 2.82E-03 -2.92E+00 2.30E-01 -7.10E+00 1.54E+00

WOA -3.86E+00 3.29E-03 -3.25E+00 8.23E-02 -1.02E+01 7.34E-07

GWO -3.86E+00 2.00 E-03 -3.27E+00 7.29E-02 -9.98E+00 9.31E-01

SCA -3.86E+00 3.107E-03 -2.98E+00 2.31E-01 -2.76E+00 2.52E+00

FOA -3.62E+00 2.47E-01 -1.87E+00 4.40E-01 -3.68E+00 7.81E-01

DE -3.86E+00 2.71E-15 -3.3E+00 2.83E-04 -9.90E+00 1.36E+00

SSA -3.86E+00 1.56E-15 -3.23E+00 5.11E-02 -1.02E+01 2.65E-12

F22 F23 F24

Avg Std Avg Std Avg Std

GLSMA -1.04E+01 9.95E-07 -1.05E+01 7.81E-07 1.19E+05 6.92E+04

PSO -7.27E+00 1.19E+00 -7.50E+00 1.12E+00 9.22E+04 4.53E+04

WOA -1.04E+01 2.57E-06 -1.05E+01 5.21E-07 1.40E+06 1.10E+06

GWO -1.00E+01 1.35E+00 -1.05E+01 1.01E-06 1.02E+06 2.20E+06

SCA -4.98E+00 3.34E+00 -4.66E+00 2.44E+00 1.29E+06 9.63E+05

FOA -3.50E+00 8.81E-01 -3.40E+00 7.13E-01 8.34E+08 3.13E+08

DE -1.04E+01 1.81E-15 -1.05E+01 1.68E-15 3.04E+05 1.59E+05

SSA -9.70E+00 1.83E+00 -1.04E+01 9.79E-01 5.96E+04 3.68E+04

F25 F26 F27

Avg Std Avg Std Avg Std

GLSMA 2.64E+03 1.50E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

PSO 2.90E+03 2.51E+02 2.62E+03 4.54E-01 2.63E+03 6.08E+00

WOA 2.97E+03 2.25E+02 2.63E+03 2.67E+01 2.61E+03 3.91E+00

GWO 2.59E+03 1.25E+02 2.64E+03 1.08E+01 2.60E+03 7.27E-04

SCA 2.99E+03 1.68E+02 2.66E+03 8.83E+00 2.60E+03 4.61E-02

FOA 1.25E+06 3.71E+05 2.50E+03 2.26E-06 2.60E+03 1.43E-05

DE 2.40E+03 7.71E+01 2.62E+03 1.39E-12 2.63E+03 3.42E+00

SSA 2.65E+03 2.00E+02 2.62E+03 1.77E-01 2.64E+03 8.96E+00

F28 F29 F30

Avg Std Avg Std Avg Std

GLSMA 2.70E+03 0.00E+00 2.70E+03 1.09E-01 2.90E+03 0.00E+00

PSO 2.71E+03 5.77E+00 2.78E+03 3.80E+01 3.45E+03 2.74E+02

WOA 2.72E+03 1.91E+01 2.70E+03 1.82E+01 3.72E+03 3.83E+02

GWO 2.71E+03 6.19E+00 2.76E+03 5.02E+01 3.37E+03 1.18E+02

SCA 2.73E+03 5.42E+00 2.70E+03 6.12E-01 3.44E+03 3.20E+02

FOA 2.70E+03 3.54E-08 2.80E+03 7.06E-11 2.90E+03 2.75E-07

DE 2.71E+03 1.04E+00 2.70E+03 4.42E-02 3.20E+03 8.08E+01
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Table 8: Continued.

SSA 2.71E+03 4.09E+00 2.70E+03 1.20E-01 3.45E+03 1.46E+02

F31 F32 F33

Avg Std Avg Std Avg Std

GLSMA 3.00E+03 0.00E+00 3.10E+03 0.00E+00 3.20E+03 0.00E+00

PSO 7.19E+03 7.21E+02 8.87E+04 1.18E+05 1.55E+04 6.61E+03

WOA 5.04E+03 6.16E+02 4.55E+06 4.93E+06 7.94E+04 4.77E+04

GWO 3.97E+03 2.24E+02 1.87E+06 4.50E+06 5.28E+04 3.81E+04

SCA 4.83E+03 3.05E+02 1.04E+07 6.28E+06 2.19E+05 8.49E+04

FOA 3.00E+03 6.77E-07 4.65E+03 2.03E+00 3.31E+03 1.804E-01

DE 3.64E+03 2.41E+01 2.77E+04 1.16E+05 5.82E+03 9.58E+02

SSA 3.79E+03 8.08E+01 2.20E+06 5.20E+06 1.20E+04 4.50E+03

Table 9: Wilcoxon signed-rank test results between GLSMA and seven original metaheuristic algorithms.

Function PSO WOA GWO SCA FOA DE SSA

F1 1.73E-06 1.00E+00 1.00E+00 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F2 1.73E-06 1.00E+00 1.00E+00 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F3 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F4 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F5 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F6 1.73E-06 7.50E-01 2.35E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F7 1.73E-06 1.73E-06 1.73E-06 1.73E-06 5.75E-06 1.73E-06 1.73E-06

F8 1.73E-06 4.99E-03 1.73E-06 1.73E-06 1.73E-06 1.36E-05 1.73E-06

F9 1.73E-06 1.00E+00 1.00E+00 1.00E+00 1.73E-06 1.25E-01 1.73E-06

F10 1.73E-06 4.15E-05 6.80E-08 1.73E-06 1.73E-06 1.96E-07 1.73E-06

F11 1.73E-06 1.00E+00 5.00E-01 1.00E+00 1.73E-06 1.00E+00 1.73E-06

F12 1.73E-06 5.72E-01 1.92E-06 1.73E-06 1.73E-06 1.73E-06 1.36E-05

F13 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 6.73E-01

F14 1.73E-06 6.13E-05 1.73E-06 1.73E-06 4.32E-08 4.32E-08 1.21E-07

F15 1.73E-06 4.45E-05 9.75E-01 1.73E-06 1.73E-06 7.97E-01 2.60E-05

F16 1.73E-06 1.55E-01 1.73E-06 1.73E-06 1.73E-06 1.14E-05 1.34E-04

F17 1.73E-06 3.16E-03 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F18 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.53E-06 6.87E-01

F19 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F20 3.52E-06 8.13E-01 5.71E-02 1.73E-06 1.73E-06 1.92E-06 4.39E-03

F21 1.73E-06 1.36E-01 7.73E-03 1.73E-06 1.73E-06 3.11E-05 1.73E-06

F22 1.73E-06 4.11E-03 1.53E-01 1.73E-06 1.73E-06 1.73E-06 1.48E-02

F23 1.73E-06 4.99E-03 1.17E-02 1.73E-06 1.73E-06 1.73E-06 3.11E-05

F24 4.95E-02 2.60E-06 1.60E-04 1.73E-06 1.73E-06 2.88E-06 1.74E-04

F25 1.48E-04 6.98E-06 2.18E-02 2.13E-06 1.73E-06 1.36E-05 8.77E-01

F26 1.73E-06 2.56E-06 1.73E-06 1.73E-06 1.73E-06 4.32E-08 1.73E-06

F27 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F28 1.73E-06 2.93E-04 1.22E-05 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F29 5.75E-06 9.84E-03 2.26E-03 1.73E-06 1.73E-06 3.18E-06 1.17E-02

F30 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F31 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F32 1.73E-06 1.72E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F33 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

+/=/- 32/0/1 22/91 25/7/1 31/2/0 33/0/0 17/3/13 21/3/9
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improves the global search ability under the dual mechanism
and can quickly escape from the local optimal trap and faster
to find the global optimal.

In conclusion, compared with other well-known algo-
rithms, GLSMA shows good overall superiority and stability.
The strategy combination of Gaussian mutation and Levy
flight enables the proposed GLSMA to obtain higher quality
solutions in the optimization process, thus achieving a bal-
ance between exploration and exploitation.

4.3. Comparison with Advanced Algorithms. In this experi-
ment, the proposed GLSMA algorithm is compared with
8 classical advanced algorithms in order to fully prove its
global search and avoiding local optimality, including
MPEDE [59], LSHADE [60], ALCPSO [61], CLPSO [62],
CMAES [63], BMWOA [64], CESCA [65], and IGWO
[66]. These include two classic DE variants, two superior
PSO variants, and variations of WOA and GWO
algorithms.

Table 10: Average ranking values using the Friedman test.

Algorithm GLSMA PSO WOA GWO SCA FOA DE SSA

AVR 2.328283 6.591919 4.190404 4.187879 5.958081 5.80202 2.730303 4.211111

Rank 1 8 4 3 7 6 2 5
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Figure 3: Convergence curves of GLSMA and seven original metaheuristic algorithms on nine selected benchmark functions.
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Table 11: Experimental results of GLSMA and eight advanced algorithms on 33 benchmark functions.

F1 F2 F3

Avg Std Avg Std Avg Std

GLSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

MPEDE 2.37E-225 0.00E+00 1.61E-102 8.82E-102 1.61E-102 8.82E-102

LSHADE 1.22E-202 0.00E+00 1.46E-86 4.69E-86 1.46E-86 4.69E-86

ALCPSO 6.12E-186 0.00E+00 6.26E-05 2.21E-04 6.26E-05 2.21E-04

CLPSO 3.07E-34 2.84E-34 6.48E-21 2.80E-21 6.48E-21 2.80E-21

CMAES 1.93E-29 1.55E-30 5.24E-02 2.49E-01 5.24E-02 2.49E-01

BMWOA 4.41E-04 7.36E-04 6.11E-03 4.84E-03 6.11E-03 4.84E-03

CESCA 1.13E+03 7.79E+02 8.02E+00 1.94E+00 8.02E+00 1.94E+00

IGWO 0.00E+00 0.00E+00 3.84E-260 0.00E+00 3.84E-260 0.00E+00

F4 F5 F6

Avg Std Avg Std Avg Std

GLSMA 0.00E+00 0.00E+00 1.69E-03 1.45E-03 5.79E-06 3.48E-06

MPEDE 7.92E-06 1.05E-05 1.46E+00 1.95E+00 3.08E-33 4.05E-33

LSHADE 1.34E-04 1.91E-04 1.33E+00 1.91E+00 2.36E-33 4.10E-33

ALCPSO 3.92E-05 4.38E-05 3.59E+01 3.40E+01 2.33E-31 4.95E-31

CLPSO 1.32E+00 2.40E-01 4.82E-01 4.50E-01 0.00E+00 0.00E+00

CMAES 2.11E-15 1.18E-16 3.99E-01 1.22E+00 2.00E-29 1.64E-30

BMWOA 4.50E-03 4.85E-03 2.26E-02 5.96E-02 1.54E-03 3.03E-03

CESCA 2.00E+01 7.77E+00 2.88E+05 3.21E+05 1.25E+03 9.97E+02

IGWO 1.33E-38 7.27E-38 2.32E+01 2.03E-01 1.19E-05 4.26E-06

F7 F8 F9

Avg Std Avg Std Avg Std

GLSMA 7.92E-06 5.81E-06 -1.26E+04 9.65E-03 0.00E+00 0.00E+00

MPEDE 2.98E-03 1.02E-03 -1.19E+04 3.27E+02 7.67E+00 4.62E+00

LSHADE 6.16E-03 3.19E-03 -1.89E+03 2.65E+01 2.06E+00 3.60E+00

ALCPSO 8.49E-02 2.98E-02 -1.14E+04 2.88E+02 2.07E+01 7.79E+00

CLPSO 2.74E-03 7.42E-04 -1.26E+04 2.16E+01 0.00E+00 0.00E+00

CMAES 5.52E-02 1.56E-02 -7.13E+03 8.61E+02 2.30E+02 5.09E+01

BMWOA 1.17E-03 9.76E-04 -1.26E+04 1.03E-02 3.69E-04 6.17E-04

CESCA 4.93E-01 3.46E-01 -3.97E+03 2.51E+02 5.46E+01 1.26E+01

IGWO 3.76E-04 4.52E-04 -7.61E+03 6.63E+02 0.00E+00 0.00E+00

F10 F11 F12

Avg Std Avg Std Avg Std

GLSMA 8.88E-16 0.00E+00 0.00E+00 0.00E+00 1.68E-06 2.71E-06

MPEDE 1.60E+00 8.45E-01 2.02E-02 2.11E-02 1.77E-01 3.04E-01

LSHADE 3.38E-14 3.72E-15 1.43E-02 1.73E-02 7.08E-01 8.66E-01

ALCPSO 6.93E-01 8.23E-01 1.47E-02 1.73E-02 1.83E-02 3.50E-02

CLPSO 1.24E-14 2.59E-15 0.00E+00 0.00E+00 1.57E-32 5.57E-48

CMAES 1.94E+01 1.33E-01 1.23E-03 2.80E-03 1.07E-30 1.63E-31

BMWOA 2.11E-03 2.22E-03 9.96E-04 3.66E-03 7.11E-06 2.34E-05

CESCA 6.61E+00 1.41E+00 9.54E+00 5.47E+00 9.55E+04 1.70E+05

IGWO 4.91E-15 1.23E-15 0.00E+00 0.00E+00 1.09E-06 4.02E-07

F13 F14 F15

Avg Std Avg Std Avg Std

GLSMA 3.08E-06 2.99E-06 9.98E-01 5.77E-16 3.09E-04 6.72E-06

MPEDE 3.97E-03 6.58E-03 9.98E-01 0.00E+00 2.37E-03 6.10E-03

LSHADE 4.20E-01 1.14E+00 9.98E-01 0.00E+00 9.80E-04 3.64E-05
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Table 11: Continued.

ALCPSO 7.73E-03 1.12E-02 9.98E-01 1.17E-16 3.69E-04 2.32E-04

CLPSO 1.35E-32 5.57E-48 9.98E-01 0.00E+00 5.50E-04 6.96E-05

CMAES 7.32E-04 2.79E-03 1.25E+01 6.58E+00 1.16E-02 2.06E-02

BMWOA 9.90E-05 1.76E-04 9.98E-01 3.13E-16 3.69E-04 2.32E-04

CESCA 7.14E+05 1.20E+06 2.87E+00 3.70E-01 4.38E-03 2.87E-03

IGWO 1.47E-02 3.56E-02 9.98E-01 3.01E-15 3.61E-04 2.05E-04

F16 F17 F18

Avg Std Avg Std Avg Std

GLSMA -1.03E+00 2.81E-14 3.98E-01 4.35E-12 3.00E+00 1.26E-14

MPEDE -1.03E+00 6.78E-16 3.98E-01 0.00E+00 3.00E+00 1.87E-15

LSHADE -1.03E+00 6.78E-16 3.98E-01 0.00E+00 3.00E+00 1.20E-15

ALCPSO -1.03E+00 6.39E-16 3.98E-01 0.00E+00 3.00E+00 2.66E-15

CLPSO -1.03E+00 6.65E-16 3.98E-01 1.15E-15 3.00E+00 1.17E-15

CMAES -9.72E-01 2.07E-01 3.98E-01 0.00E+00 3.46E+01 1.53E+02

BMWOA -1.0E+00 4.54E-16 3.98E-01 2.57E-13 3.00E+00 1.30E-14

CESCA -1.03E+00 5.79E-03 8.44E-01 3.91E-01 3.06E+00 8.45E-02

IGWO -1.03E+00 5.32E-13 3.98E-01 6.44E-11 3.00E+00 4.95E-14

F19 F20 F21

Avg Std Avg Std Avg Std

GLSMA -3.86E+00 4.37E-11 -3.23E+00 4.84E-02 -1.02E+01 1.22E-06

MPEDE -3.86E+00 2.71E-15 -3.27E+00 5.99E-02 -8.81E+00 2.53E+00

LSHADE -3.86E+00 7.59E-11 -1.63E+00 1.65E+00 -8.81E+00 2.53E+00

ALCPSO -3.86E+00 2.63E-15 -3.27E+00 5.92E-02 -8.63E+00 2.36E+00

CLPSO -3.86E+00 2.71E-15 -3.32E+00 1.21E-12 -1.02E+01 1.53E-06

CMAES -3.58E+00 8.73E-01 -3.30E+00 4.84E-02 -5.92E+00 3.77E+00

BMWOA -3.86E+00 2.26E-14 -3.26E+00 6.05E-02 -1.02E+01 3.44E-11

CESCA -3.53E+00 2.38E-01 -2.05E+00 4.88E-01 -8.77E-01 3.53E-01

IGWO -3.86E+00 2.66E-09 -3.26E+00 6.05E-02 -9.31E+00 1.93E+00

F22 F23 F24

Avg Std Avg Std Avg Std

GLSMA -1.04E+01 1.03E-06 -1.05E+01 1.23E-06 1.14E+05 8.22E+04

MPEDE -9.10E+00 2.70E+00 -1.03E+01 1.48E+00 3.06E+03 4.43E+02

LSHADE -9.93E+00 1.82E+00 -1.00E+01 1.89E+00 2.80E+03 2.66E+02

ALCPSO -9.52E+00 2.00E+00 -10.00E+00 1.64E+00 1.32E+05 2.18E+05

CLPSO -1.04E+01 1.24E-06 -1.05E+01 5.43E-10 8.77E+04 6.01E+04

CMAES -5.70E+00 3.22E+00 -7.16E+00 3.75E+00 3.18E+03 3.38E+02

BMWOA -1.04E+01 3.50E-11 -1.05E+01 2.87E-11 1.10E+06 1.12E+06

CESCA -1.18E+00 4.67E-01 -1.31E+00 5.62E-01 3.40E+07 1.28E+07

IGWO -9.70E+00 1.83E+00 -10.00E+00 1.64E+00 3.08E+05 2.48E+05

F25 F26 F27

Avg Std Avg Std Avg Std

GLSMA 2.54E+03 1.70E+02 2.50E+03 0.00E+00 2.60E+03 0.00E+00

MPEDE 2.54E+03 1.54E+02 2.62E+03 1.68E-12 2.64E+03 5.74E+00

LSHADE 2.45E+03 1.17E+02 2.62E+03 2.13E-12 2.64E+03 5.18E+00

ALCPSO 2.67E+03 1.68E+02 2.62E+03 2.26E-02 2.64E+03 6.89E+00

CLPSO 2.42E+03 7.90E+01 2.62E+03 3.14E-06 2.62E+03 7.39E+00

CMAES 2.54E+03 2.59E+02 2.62E+03 1.39E-12 2.661E+03 9.29E+01

BMWOA 3.00E+03 2.03E+02 2.50E+03 4.14E-01 2.60E+03 1.99E-01

CESCA 5.95E+03 1.75E+03 3.03E+03 1.03E+02 2.66E+03 1.74E+01
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The comparison results of GLSMA with eight advanced
algorithms are shown in Tables 11–13. Table 11 shows the
average value and standard deviation of the optimal solution
obtained by GLSMA and advanced algorithms. As can be seen,
compared to other algorithms, GLSMA shows good superiority
and stability in F1-F5, F7-F11, F13, F15, F21, F26-F28, and
F30-33 functions. Table 12 shows the Wilcoxon rank test
result’s p value among GLSMA and eight advanced algorithms.
From the table values, it can be seen that GLSMA outperforms
other comparison algorithms on most benchmark functions.
GLSMA is superior to CESCA in all functions. Therefore,
GLSMA is obviously competitive with other excellent algo-
rithms. Table 13 shows the comparison results; amongGLSMA
and other 8 advanced algorithms, the average Friedman test
result of GLSMA ranks the first, which is 3.629293.

The convergence curves of all nine algorithms on nine
functions shown in Figure 4 show that GLSMA’s conver-
gence speed is faster than other advanced algorithms, and
it can jump out of local optimum faster and avoid falling
into local optimum better than other algorithms.

In summary, the introduction of Gaussian mutation
mechanism and Levy flight mechanism gives GLSMA an
advantage over competitive advanced algorithms, showing
superior performance in different types of functions.
GLSMA not only has stronger global search ability but also
can avoid falling into local optimum.

4.4. The Experiments for Feature Selection. In this section, we
transform the proposed algorithm GLSMA into a discrete
version, namely, BGLSMA, which is applied to feature selec-

tion problems of high-dimensional gene data, thus making
the proposed algorithm more realistic.

The purpose of feature selection problem is to remove
some redundant and irrelevant features from the sample, so
as to reduce the complexity of feature selection problem, reduce
the subsequent calculation cost, and obtain higher classification
accuracy. In the process of feature selection, it is necessary to
determine which features should be selected. As a result, we
transform continuous GLSMA into discrete GLSMA, namely,
BGLSMA. The proposed GLSMA increases the population
diversity, strengths the local exploitation ability, and helps us
select favorable features in the search space, so as to obtain bet-
ter feature subsets and improve classification accuracy.

4.4.1. Binary GLSMA. In feature selection algorithm based
on GLSMA, x = ðxi,1, xi,2,⋯, xi,nÞ represents a subset of fea-
tures. In BGLSMA, if xi,1 = 1, this feature is selected, and
conversely, if xi,1 = 0, this feature is discarded. In order to
solve discretization problems, GLSMA needs to be discre-
tized. The individual with binary position vector is initial-
ized by random threshold, and then, the discretization of
position Xi can be expressed as

Xj
i t + 1ð Þ =

1, if rand ≥ T Xj
i tð Þ

� �
,

0, if rand < T Xj
i tð Þ

� �
,

8><
>:
T xð Þ = 1

1 + e−2x

ð13Þ

Table 11: Continued.

IGWO 2.55E+03 1.48E+02 2.62E+03 2.36E+00 2.60E+03 4.00E-03

F28 F29 F30

Avg Std Avg Std Avg Std

GLSMA 2.70E+03 0.00E+00 2.70E+03 1.27E-01 2.90E+03 0.00E+00

MPEDE 2.71E+03 5.13E+00 2.71E+03 3.04E+01 3.27E+03 1.51E+02

LSHADE 2.71E+03 3.82E+00 2.71E+03 3.45E+01 3.27E+03 9.40E+01

ALCPSO 2.71E+03 3.70E+00 2.76E+03 4.88E+01 3.47E+03 2.23E+02

CLPSO 2.71E+03 9.97E-01 2.70E+03 6.83E-02 3.13E+03 4.63E+01

CMAES 2.70E+03 2.03E+00 2.72E+03 5.81E+01 3.07E+03 3.98+01

BMWOA 2.70E+03 5.68E-03 2.71E+03 1.04E-01 2.90E+03 1.63E-01

CESCA 2.72E+03 8.91E+00 2.71E+03 1.44+00 3.98E+03 1.58E+02

IGWO 2.71E+03 2.75E+00 2.70E+03 1.71E-01 3.11E+03 4.03E+00

F31 F32 F33

Avg Std Avg Std Avg Std

GLSMA 3.00E+03 0.00E+00 3.10E+03 0.00E+00 3.20E+03 0.00E+00

MPEDE 4.00E+03 3.22E+02 1.72E+06 3.94E+06 5.62E+03 1.14E+03

LSHADE 3.77E+03 1.41E+02 3.71E+03 1.61E+02 5.56E+03 9.79E+02

ALCPSO 4.31E+03 4.70E+02 1.45E+06 4.41E+06 1.82E+04 2.92E+04

CLPSO 3.70E+03 5.81E+01 3.86E+03 1.14E+02 6.15E+03 8.22E+02

CMAES 6.49E+03 2.96E+03 3.67E+03 1.31E+02 5.23E+03 6.37E+02

BMWOA 3.00E+03 5.17E-01 6.28E+05 6.18E+05 6.17E+04 5.38E+04

CESCA 5.43E+03 2.83E+02 1.78E+07 3.48E+06 1.42E+06 2.43E+05

IGWO 3.86E+03 1.94E+02 7.34E+05 2.75E+06 2.69E+04 1.15E+04
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In the formula above, Xiðt + 1Þ indicates the value of the
i-th dimension of the agent individual position X searched
in the discrete space, and rand means a random number
within the range of [0, 1]. TðxÞ means converting the value
of the i-th dimension of X in the continuous motion space
to 0 or 1, thus realizing the discretization of the continuous
space. The transformation of TðxÞ does not change the
structure of the algorithm.

As described above, feature selection is a process of
using the least gene subset to obtain the optimal classifi-
cation accuracy, that is, to improve the classification
accuracy and reduce the number of features. This prob-
lem is described as a combinatorial optimization problem.
In order to satisfy each objective, a linear combination of
feature number and error rate is used to define fitness
function, and the candidate solutions are evaluated

Table 13: Average ranking values using the Friedman test.

Algorithm GLSMA MPEDE LSHADE ALCPSO CLPSO CMAES BMWOA CESCA IGWO

AVR 3.62929 3.84293 4.20808 5.25202 3.93131 4.83384 5.16212 8.75455 5.38586

Rank 1 2 4 7 3 5 6 9 8

Table 12: Wilcoxon signed-rank test results between GLSMA and eight advanced algorithms.

Function MPEDE LSHADE ALCPSO CLPSO CMAES BMWOA CESCA IGWO

F1 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.00E+00

F2 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F3 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F4 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F5 3.82E-01 6.44E-01 1.73E-06 1.73E-06 2.77E-03 1.59E-01 1.73E-06 1.73E-06

F6 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 5.75E-06 1.73E-06 5.22E-06

F7 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F8 1.73E-06 1.73E-06 1.73E-06 3.11E-05 1.73E-06 3.68E-02 1.73E-06 1.73E-06

F9 1.73E-06 4.92E-06 1.73E-06 1.00E+00 1.73E-06 1.73E-06 1.73E-06 1.00E+00

F10 1.71E-06 9.53E-07 1.44E-06 1.12E-06 1.73E-06 1.73E-06 1.73E-06 1.96E-07

F11 2.69E-05 8.79E-05 5.93E-05 1.00E+00 6.25E-02 1.73E-06 1.73E-06 1.00E+00

F12 4.72E-02 5.31E-05 3.82E-01 1.73E-06 1.73E-06 1.92E-01 1.73E-06 5.72E-01

F13 9.75E-01 3.71E-01 8.73E-03 1.73E-06 3.59E-04 9.71E-05 1.73E-06 1.73E-06

F14 1.21E-07 1.21E-07 1.21E-07 1.21E-07 1.90E-06 2.75E-04 1.73E-06 6.33E-06

F15 5.71E-02 1.73E-06 3.59E-04 1.73E-06 1.15-04 3.59E-04 1.73E-06 3.59E-04

F16 3.20E-06 3.20E-06 4.85E-06 3.20E-06 6.95E-04 7.32E-06 1.73E-06 6.98E-06

F17 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 2.84E-05 1.73E-06 2.16E-05

F18 1.49E-06 1.54E-06 2.18E-06 1.54E-06 1.97E-02 1.12E-04 1.73E-06 6.62E-02

F19 1.73E-06 3.11E-05 1.73E-06 1.73E-06 2.77E-03 1.73E-06 1.73E-06 1.92E-06

F20 1.02E-05 1.38E-03 9.32E-06 1.73E-06 5.22E-06 1.80E-05 1.73E-06 5.30E-01

F21 3.71E-01 3.71E-01 9.75E-01 1.60E-04 3.61E-03 1.73E-06 1.73E-06 8.47E-06

F22 1.65E-01 3.59E-04 5.71E-02 3.11E-05 1.15E-04 1.73E-06 1.73E-06 6.34E-06

F23 3.11E-05 3.59E-04 2.77E-03 1.73E-06 4.72E-02 1.73E-06 1.73E-06 2.16E-05

F24 1.73E-06 1.73E-06 2.13E-01 1.36E-01 1.73E-06 1.73E-06 1.73E-06 1.48E-03

F25 9.92E-01 1.67E-02 3.33E-02 3.16E-03 6.58E-01 2.3534E-06 1.73E-06 8.77E-01

F26 4.32E-08 4.32E-08 1.73E-06 1.73E-06 4.32E-08 1.73E-06 1.73E-06 1.73E-06

F27 1.73E-06 1.73-06 1.73E-06 2.13E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F28 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F29 9.78E-02 1.59E-01 8.92E-05 7.51E-05 8.97E-02 1.48E-02 1.73E-06 2.60E-05

F30 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F31 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F32 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

F33 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06

+/=/- 18/7/8 21/4/8 22/4/7 16/3/14 25/3/5 21/2/10 33/0/0 26/7/0
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comprehensively.

fit = α · E + β · R
D
: ð14Þ

In the above formula, E is the classification accuracy
rate of KNN classifier, the length of selected feature sub-
set is represented by R, and the total number of features
in the dataset is represented by D. α andβ are the
weights of classification error rate and feature reduction,
respectively. Compared with feature reduction, more
attention is paid to accuracy; we set α to 0.95 and the
latter to 0.05.

4.4.2. Simulation Experiments. In this experiment, the result-
ing BGLSMA is compared with other excellent metaheuristic
optimizers on 14 UCI feature selection datasets. In Table 14,
the details of these datasets are shown, including the number
of samples, the number of features, and the number of cate-
gories. Table 14 shows that, in these datasets, the sample

100

10–100

10–200

10–300

Be
st 

va
lu

e

F1

FEs ×105
0.5 1 1.5 2 2.5 3

100

10–5

10–10

10–15

Be
st 

va
lu

e

F10

FEs ×105
0.5 1 1.5 2 2.5 3

–10–2

–10–1

–10 0

–10 1

Be
st 

va
lu

e

F22

FEs ×105
0.5 1 1.5 2 2.5 3

102

100

10–2

Be
st 

va
lu

e

F15

FEs ×105
0.5 1 1.5 2 2.5 3

–10–2

–10–1

–10 0

–10 1

Be
st 

va
lu

e

F21

FEs ×105
0.5 1 1.5 2 2.5 3

100

10–100

10–200

10–300

Be
st 

va
lu

e

F4

FEs ×105
0.5 1 1.5 2 2.5 3

10–5

100

105

Be
st 

va
lu

e

F7

FEs ×105
0.5 1 1.5 2 2.5 3

104

106

108

Be
st 

va
lu

e

F33

FEs ×105
0.5 1 1.5 2 2.5 3

9000
8000
7000

6000

5000

4000

3000

10000
11000

Be
st 

va
lu

e

F30

FEs ×105
0.5 1 1.5 2 2.5 3

GLSMA

MPEDE BMWOA

CESCALSHADE

ALCPSO

CLPSO

CMAES

IGWO

Figure 4: Convergence curves of GLSMA and eight advanced algorithms on nine selected benchmark functions.

Table 14: Characteristics of gene expression datasets.

Datasets Samples Features Categories

Colon 62 2000 2

SRBCT 83 2309 4

Leukemia 72 7131 2

Brain_Tumor1 90 5920 5

Brain_Tumor2 50 10368 4

CNS 60 7130 2

DLBCL 77 5470 2

Leukemia1 72 5328 3

Leukemia2 72 11226 3

Lung_Cancer 203 12601 3

Prostate_Tumor 102 10509 2

Tumors_9 60 5726 9

Tumors_11 174 12534 11

Tumors_14 308 15010 26
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number is 50-308, the feature number is 2000-15010, and
the number of categories is 2-11. These datasets contain sev-
eral different types of data. These high-dimensional gene
datasets have such characteristics: the sample number is
small, and the feature number is thousands, which has some
impact on data dimension reduction.

In order to select fewer features while maintaining classi-
fication accuracy, K-nearest neighbor (KNN) [67] algorithm
is used for data classification. K-nearest neighbor is a non-
parametric regression statistical method with wide applica-
tion in classification problems. The steps of KNN
algorithm are as follows: firstly, the original data is prepro-
cessed, and the processed data is divided into training set
and test set; second, set the appropriate parameter k to 1.
Then, the initial group is selected in the training set, and
the distance D between the initial group and the test group
is calculated. The distance calculation formula is shown in
Equation (15). At the same time, calculate the distance L
between the training group and the test group, and compare
whether L is less than D. If L is less than Dmax, repeat the

above steps until the termination condition is reached.

D x, yð Þ = 〠
N

k

xk − ykð Þ
 !1/2

: ð15Þ

Metaheuristic classifiers used for comparison include
bGWO [68], BBA [69], BGSA [70], BPSO [71], bALO [72],
BSSA [73], and, the binary form of the original SMA, BSMA.
The above classifiers are used for feature selection, and the
relevant data of feature subsets found by various algorithms
in the search process are learned in KNN classifier, and the
corresponding result information is finally output for com-
parison. In order to reduce the influence of random factors,
10-fold cross validation was adopted, and the average value
of multiple cross experimental results was taken as the result
to evaluate the algorithm’s accuracy.

Tables 15–18 list the statistical results of the average
number of selected features, the average error rate, the aver-
age fitness, and the average calculation time. According to

Table 15: Comparison between BGLSMA and other FS optimizers on average number of the selected features.

Datasets Metrics bGWO BBA BGSA BPSO bALO BSSA BSMA BGLSMA

Colon
Std 20.7964 54.9142 26.5991 12.8966 18.8043 318.1085 17.0098 0.52705

Avg 165.4 781.7 768.8 891.9 856.6 768.1 32 1.5

SRBCT
Std 12.3306 67.0439 18.7723 21.6972 21.4828 336.9647 24.8697 6.1968

Avg 186.6 933 906.8 1029.1 998.2 978.9 34.5 11.2

Leukemia
Std 45.8786 186.7911 33.7377 22.1761 34.2379 1602.754 12.5526 0.5164

Avg 793.2 2991.7 3119.7 3334 3269.3 2046.7 39.3 1.4

Brain_Tumor1
Std 52.7674 163.1894 36.7792 51.0565 60.6781 1004.231 73.4078 7.5491

Avg 623.2 2393.1 2564.6 2771.1 2732.5 2164.1 88.6 6.9

Brain_Tumor2
Std 57.3682 129.1005 45.7117 57.4886 52.4006 1816.777 114.1627 5.1251

Avg 1191 1191 1191 1191 1191 1191 1191 1191

CNS
Std 35.9365 367.5338 59.1534 53.6694 68.2541 1448.946 116.9699 1.4757

Avg 863.9 2848.3 3202.7 3391.8 3340.2 2456.3 199.2 2.2

DLBCL
Std 20.1594 153.9154 40.0012 32.3934 21.6705 1104.873 13.0826 1.0593

Avg 567.2 2231.2 2358.1 2545 2495.5 2102.2 28.6 1.7

Leukemia1
Std 31.8462 133.4618 33.8856 36.5345 25.776 1035.249 62.1035 20.1

Avg 564.8 2150.6 2283.7 2477.1 2433.8 1785.5 70.8 13.7

Leukemia2
Std 85.2763 256.4667 67.8352 47.7568 53.6723 2515.541 61.4167 3.8355

Avg 1253.6 4632.5 5042.5 5335.6 5279.6 2553 76.3 4.6

Lung_Cancer
Std 117.4218 256.5553 73.7741 51.4295 46.6363 2856.425 182.022 22.5982

Avg 1548.9 5207.2 5766.8 6020.9 5957.5 4110.1 206.3 34.3

Prostate_Tumor
Std 56.0124 607.9035 107.2774 58.1687 63.221 2544.318 128.1768 2.5927

Avg 1281.5 4093.7 4834 5058.4 4974.7 2748.4 171.8 4.5

Tumors_9
Std 38.0935 139.8954 104.17 53.1402 48.8599 692.926 274.6595 50.4341

Avg 661 2320.6 2572.5 2701.9 2661.8 2570.3 374.4 28.4

Tumors_11
Std 97.3416 668.8177 117.447 77.4884 76.3216 2645.298 308.9831 1207.602

Avg 1639.5 1639.5 1639.5 1639.5 1639.5 1639.5 1639.5 1639.5

Tumors_14
Std 80.6821 499.8572 120.4111 57.0264 77.2704 1516.641 1914.11 2399.334

Avg 2271.6 2271.6 2271.6 2271.6 2271.6 2271.6 2271.6 2271.6

ARV 2.9286 4.9286 5.8571 8 6.9286 4.2857 2 1.0714

Rank 3 5 6 8 7 4 2 1
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the average number of selected features in Table 15, the pro-
posed BGLSMA has the least average number of selected fea-
tures in all datasets except Tumors_11 and Tumors_14. On
Colon and Leukemia datasets, BGLSMA obtained a small
selected feature with a standard deviation less than 1. This
proves that GLSMA can obtain fewer features and higher
classification accuracy. As can be seen from the tables,
BGLSMA has higher classification accuracy in processing
some complex high-dimensional data and can find smaller
number of features and reduce the data scale. In terms of
ARV index, BGLSMA ranks first. This suggests that
BGLSMA can obtain very competitive results in terms of
the number of features selected.

Table 16 shows the comparison results of eight algo-
rithms in terms of average error rate. It can be seen from
the ranking that BGLSMA has the lowest average error rate,
which proves that the proposed algorithm not only has bet-
ter performance in global optimization problems but also
has good classification ability in feature selection optimiza-

tion. It can be seen that the average error rate of BGLSMA
is significantly lower than that of BSMA. The Gaussian
mutation mechanism enables the population to search a
larger space. As the number of iterations increases, the most
representative features in each dataset are gradually selected,
and the classification accuracy is also improved.

It is clear from the key measurements listed in Table 17,
namely, the weighted number of features and the weighted
error rate, that BGLSMA outperformed other competitors on
78.6% of the dataset. In addition, both the detailed data and
the final ARV value show that BGLSMA has greatly improved
compared with BSMA, which is due to the introduction of Levy
flight mechanism, which increases the diversity and random-
ness of the population and selects features from a wider range
of features, thus achieving higher classification accuracy.

Table 18 shows the average calculation time results of
algorithm comparison. The computation cost of BGLSMA
optimizer proposed in this paper is higher than that of
BBA, BGSA, and other optimizers, and the time complexity

Table 16: Comparison between BGLSMA and other FS optimizers on average error rate.

Datasets Metrics bGWO BBA BGSA BPSO bALO BSSA BSMA BGLSMA

Colon
Std 6.549E-02 2.097E-01 1.277E-01 1.241E-01 1.365E-01 1.236E-01 0.000E+00 0.000E+00

Avg 3.095E-02 2.619E-01 1.929E-01 1.571E-01 1.619E-01 1.810E-01 0.000E+00 0.000E+00

SRBCT
Std 0.000E+00 1.416E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Avg 0.000E+00 1.237E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Leukemia
Std 0.000E+00 6.942E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Avg 0.000E+00 5.357E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Brain_Tumor1
Std 5.197E-02 9.735E-02 7.147E-02 5.520E-02 7.216E-02 5.636E-02 4.216E-02 3.162E-02

Avg 3.222E-02 1.081E-01 6.222E-02 5.222E-02 4.222E-02 5.333E-02 2.000E-02 1.000E-02

Brain_Tumor2
Std 7.770E-02 1.775E-01 1.370E-01 9.088E-02 9.875E-02 1.012E-01 0.000E+00 0.000E+00

Avg 3.667E-02 2.850E-01 7.667E-02 7.000E-02 5.929E-02 6.167E-02 0.000E+00 0.000E+00

CNS
Std 5.271E-02 2.084E-01 8.784E-02 1.760E-01 8.635E-02 8.988E-02 4.518E-02 0.000E+00

Avg 1.667E-02 4.171E-01 8.333E-02 1.143E-01 5.333E-02 8.429E-02 1.429E-02 0.000E+00

DLBCL
Std 3.953E-02 8.996E-02 4.518E-02 4.518E-02 3.953E-02 0.000E+00 0.000E+00 0.000E+00

Avg 1.250E-02 7.857E-02 1.429E-02 1.429E-02 1.250E-02 0.000E+00 0.000E+00 0.000E+00

Leukemia1
Std 0.000E+00 1.214E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Avg 0.000E+00 7.143E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Leukemia2
Std 0.000E+00 9.989E-02 0.000E+00 3.953E-02 0.000E+00 6.023E-02 0.000E+00 0.000E+00

Avg 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Lung_Cancer
Std 2.385E-02 4.691E-02 2.491E-02 3.310E-02 2.587E-02 3.376E-02 3.012E-02 1.664E-02

Avg 1.479E-02 6.862E-02 1.929E-02 1.883E-02 2.452E-02 1.952E-02 9.524E-03 5.263E-03

Prostate_Tumor
Std 5.750E-02 1.470E-01 9.661E-02 5.182E-02 6.654E-02 6.542E-02 6.650E-02 0.000E+00

Avg 1.818E-02 1.818E-02 1.818E-02 1.818E-02 1.818E-02 1.818E-02 1.818E-02 1.818E-02

Tumors_9
Std 0.000E+00 2.171E-01 0.000E+00 1.125E-01 9.223E-02 1.265E-01 3.953E-02 7.027E-02

Avg 0.000E+00 4.168E-01 0.000E+00 5.000E-02 5.417E-02 4.000E-02 1.250E-02 3.333E-02

Tumors_11
Std 1.757E-02 8.280E-02 3.749E-02 4.035E-02 3.412E-02 6.182E-02 5.476E-02 3.857E-02

Avg 5.556E-03 5.556E-03 5.556E-03 5.556E-03 5.556E-03 5.556E-03 5.556E-03 5.556E-03

Tumors_14
Std 5.974E-02 8.847E-02 7.256E-02 5.155E-02 6.288E-02 7.715E-02 6.560E-02 3.950E-02

Avg 1.908E-01 3.376E-01 2.339E-01 2.781E-01 2.669E-01 3.063E-01 2.736E-01 2.787E-01

ARV 2 8 3.5714 4.4286 3.7857 4.7143 2 1.7143

Rank 2 8 4 6 5 7 2 1
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of the BSMA and bGWO with better performance is also
higher than that of other optimizers, as shown in
Tables 15–18. The introduction of GM and LF strategies
not only improves the performance of BGLSMA but also
increases the cost of computing time. Meanwhile, the time
cost of the original SMA is higher than that of other algo-
rithms, which leads to the high time cost of BGLSMA to a
certain extent.

To sum up, BGLSMA is found to be the best optimizer
in the overall comparison with other optimizers. Although
the time cost is relatively high, BGLSMA can select the
optimal feature subset on the vast majority of high-
dimensional gene datasets without losing meaningful fea-
tures and achieve the best fitness and classification error
rate at the same time. The experimental results show that
the combined strategy of Gaussian mutation and Levy
flight guarantees the good results of GLSMA in global
exploration.

5. Discussions

In this part, the GLSMA algorithm proposed in this paper,
its advantages, and the points that can be improved are dis-
cussed. In the original SMA, the slime mould is not able to
find the optimal solution in the search space, and it will fall
into the local optimum when encountering some problems,
which limits the use of the algorithm. In this paper, Gaussian
mutation and Levy flight are introduced to update the pop-
ulation, which can enhance the global exploration ability
and avoid the algorithm falling into local optimum. Experi-
mental results show that the optimization effect of the dual
mechanism is better than that of the single mechanism,
and the optimization effect of GLSMA is better than some
advanced optimization algorithms.

We monitor the situation after the population updates its
optimal fitness value to determine whether it falls into local
optimum. If it falls into local optimum, then Levy flight

Table 17: Comparison between BGLSMA and other FS optimizers on average fitness.

Datasets Metrics bGWO BBA BGSA BPSO bALO BSSA BSMA BGLSMA

Colon
Std 6.219E-02 1.416E-01 1.214E-01 1.179E-01 1.298E-01 1.177E-01 4.253E-04 1.318E-05

Avg 3.354E-02 2.032E-01 2.024E-01 1.716E-01 1.752E-01 1.911E-01 8.000E-04 3.750E-05

SRBCT
Std 2.671E-04 3.431E-02 4.067E-04 4.700E-04 4.654E-04 7.300E-03 5.388E-04 1.343E-04

Avg 4.043E-03 2.862E-02 1.965E-02 2.229E-02 2.163E-02 2.121E-02 7.474E-04 2.426E-04

Leukemia
Std 3.217E-04 2.016E-03 2.366E-04 1.555E-04 2.401E-04 1.124E-02 8.803E-05 3.621E-06

Avg 5.562E-03 1.924E-02 2.188E-02 2.338E-02 2.293E-02 1.435E-02 2.756E-04 9.818E-06

Brain_Tumor1
Std 4.935E-02 6.543E-02 6.796E-02 5.232E-02 6.844E-02 4.909E-02 3.995E-02 3.005E-02

Avg 3.588E-02 8.786E-02 8.077E-02 7.302E-02 6.319E-02 6.895E-02 1.975E-02 9.558E-03

Brain_Tumor2
Std 7.366E-02 1.106E-01 1.302E-01 8.625E-02 9.379E-02 9.388E-02 5.506E-04 2.472E-05

Avg 4.058E-02 1.352E-01 9.527E-02 9.028E-02 7.990E-02 7.645E-02 7.345E-04 2.122E-05

CNS
Std 5.002E-02 2.023E-01 8.344E-02 1.670E-01 8.186E-02 9.031E-02 4.304E-02 1.035E-05

Avg 2.189E-02 2.113E-01 1.016E-01 1.324E-01 7.409E-02 9.730E-02 1.497E-02 1.543E-05

DLBCL
Std 3.749E-02 4.246E-02 4.290E-02 4.277E-02 3.763E-02 1.010E-02 1.196E-04 9.685E-06

Avg 1.706E-02 3.127E-02 3.513E-02 3.684E-02 3.469E-02 1.922E-02 2.615E-04 1.554E-05

Leukemia1
Std 2.989E-04 2.989E-04 2.989E-04 2.989E-04 2.989E-04 2.989E-04 2.989E-04 2.989E-04

Avg 5.301E-03 4.443E-02 2.144E-02 2.325E-02 2.284E-02 1.676E-02 6.645E-04 1.286E-04

Leukemia2
Std 3.799E-04 3.799E-04 3.799E-04 3.799E-04 3.799E-04 3.799E-04 3.799E-04 3.799E-04

Avg 5.584E-03 4.486E-02 2.246E-02 3.564E-02 2.352E-02 3.852E-02 3.399E-04 2.049E-05

Lung_Cancer
Std 2.298E-02 4.072E-02 2.363E-02 3.148E-02 2.459E-02 3.729E-02 2.851E-02 1.579E-02

Avg 2.019E-02 6.019E-02 4.121E-02 4.178E-02 4.694E-02 3.486E-02 9.866E-03 5.136E-03

Prostate_Tumor
Std 5.479E-02 7.082E-02 9.162E-02 4.910E-02 6.320E-02 6.686E-02 6.357E-02 1.234E-05

Avg 2.337E-02 2.337E-02 2.337E-02 2.337E-02 2.337E-02 2.337E-02 2.337E-02 2.337E-02

Tumors_9
Std 3.326E-04 1.828E-01 9.096E-04 1.071E-01 8.783E-02 1.214E-01 3.912E-02 6.714E-02

Avg 5.772E-03 1.681E-01 2.246E-02 7.109E-02 7.470E-02 6.044E-02 1.514E-02 3.192E-02

Tumors_11
Std 1.651E-02 6.199E-02 3.563E-02 3.821E-02 3.251E-02 5.882E-02 5.134E-02 3.794E-02

Avg 1.182E-02 1.030E-01 6.002E-02 6.892E-02 8.389E-02 8.022E-02 4.772E-02 4.175E-02

Tumors_14
Std 5.678E-02 8.676E-02 6.881E-02 4.890E-02 5.967E-02 7.255E-02 6.031E-02 3.776E-02

Avg 1.888E-01 1.888E-01 1.888E-01 1.888E-01 1.888E-01 1.888E-01 1.888E-01 1.888E-01

ARV 2.5 7.5714 5.0714 6.3571 5.7143 5.0714 2.2143 1.5

Rank 3 8 4 7 6 4 2 1
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mechanism is invoked to help the algorithm increase the
search space and jump out of local trap. The combination of
the dual mechanism is significantly better than the single
mechanism. However, it can be seen from Table 18 that the
time cost of BGLSMA is relatively high, which is partly due
to the high time cost of BSMA and partly due to the addition
of mechanism, which leads to the increase of time cost. Corre-
spondingly, the mechanism greatly improves the performance
of the algorithm, allowing it to be applied to more domains,
such as human activity recognition [74], microgrid planning
[75], medical image augmentation [76], autism spectrum dis-
order classification [77], disease prediction [78, 79], named
entity recognition [80], information retrieval services
[81–83], and recommender systems [84–87].

6. Conclusions and Future Directions

In this paper, an improved SMA (GLSMA) algorithm based on
Gaussian mutation and Levy flight is proposed. Experimental
results show that the two mechanisms play an important role

in further enhancing the global search of SMA and alleviating
falling into local optimum. Firstly, the effectiveness of GLSMA
method is verified by comparison with DE, PSO, GWO, and
other well-known algorithms. Secondly, compared with other
advanced swarm intelligence algorithms, such as MPEDE,
LSHADE, ALCPSO, and CLPSO, GLSMA is able to find the
optimal solution faster. Finally, in order to prove the perfor-
mance of GLSMA in practical applications, BGLSMA is
obtained by mapping GLSMA into binary space through trans-
formation function, and it is applied to feature selection prob-
lems of 14 commonly used UCI high-dimensional gene
datasets. Compared with excellent metaheuristic optimizer,
general average characteristics selected number, average error
rate, and average fitness and calculated the cost four aspects; it
can be seen that GLSMA in the application of feature selection
still has good global search ability and be able to select fewer fea-
tures and higher classification accuracy. Therefore, the above
conclusions indicate that GLSMA can be a promising method
for not only function optimization problems but also practical
feature selection problems.

Table 18: Comparison between BGLSMA and other FS optimizers on average computational time.

Datasets Metrics bGWO BBA BGSA BPSO bALO BSSA BSMA BGLSMA

Colon
Std 2.5514 2.5514 2.5514 2.5514 2.5514 2.5514 2.5514 2.5514

Avg 31.9062 30.4906 13.6746 8.584 8.0335 37.1659 70.1156 114.1263

SRBCT
Std 2.9138 2.9361 1.8018 0.91374 0.8866 3.2522 9.1156 16.0452

Avg 34.0148 34.1434 17.2141 10.1891 9.9331 45.3289 79.6426 139.0788

Leukemia
Std 9.0416 8.7894 3.5903 1.6512 1.437 13.8392 27.5824 46.7772

Avg 91.0773 86.08 41.7215 19.6962 18.1027 122.9642 235.5459 383.8539

Brain_Tumor1
Std 7.8949 7.2781 4.1147 1.5711 2.0128 11.921 15.8751 35.8179

Avg 77.839 75.6561 37.1795 20.7058 19.0823 106.5918 204.8332 331.4628

Brain_Tumor2
Std 13.1514 10.441 6.5964 2.3475 1.8691 17.5793 39.2047 53.3446

Avg 129.8032 116.4358 53.2582 20.6694 18.4634 170.6433 339.6091 519.5528

CNS
Std 8.7883 7.4052 4.2408 1.4574 1.5028 13.3078 28.6106 44.1968

Avg 89.6331 86.575 38.5343 17.6038 15.9767 120.3373 235.2898 363.2358

DLBCL
Std 7.2489 6.5617 3.362 1.5989 1.342 10.6978 20.8082 28.7903

Avg 71.175 67.8196 33.2668 16.5984 16.1274 95.6511 181.2594 299.2078

Leukemia1
Std 7.4559 7.4559 7.4559 7.4559 7.4559 7.4559 7.4559 7.4559

Avg 70.1512 65.732 31.9728 15.5488 14.9732 92.9905 179.7238 284.7675

Leukemia2
Std 14.1082 13.8476 8.4149 3.1481 3.1518 20.2226 43.5071 64.6559

Avg 139.8351 130.1774 62.3828 28.8214 26.3602 192.8016 369.2325 591.9679

Lung_Cancer
Std 20.2852 25.0081 17.671 9.2944 3.67 35.113 52.5769 136.7772

Avg 186.6111 219.1699 141.8596 115.52 114.9638 281.4307 436.7065 893.1362

Prostate_Tumor
Std 14.2167 14.4316 6.592 4.633 3.9045 22.1621 26.0276 61.9174

Avg 135.8685 130.3268 71.3971 37.1729 36.0317 187.0535 376.2129 565.8891

Tumors_9
Std 7.598 5.6978 3.1465 1.17 1.4113 10.018 18.957 26.6486

Avg 72.981 73.0313 31.4313 15.3876 14.656 98.7644 228.8745 291.5208

Tumors_11
Std 19.6112 18.8848 19.1443 5.764 9.1023 37.9402 45.4794 98.5864

Avg 179.912 193.265 121.7997 94.3676 90.4458 265.7033 519.6271 661.6608

Tumors_14
Std 32.6068 44.7828 15.9668 14.1586 17.9125 72.9596 45.6897 114.9044

Avg 278.9632 368.5713 323.2499 287.037 289.2344 458.6548 714.792 835.4772

ARV 4.4286 4.3571 3.0714 2 1.1429 6 7 8

Rank 5 4 3 2 1 6 7 8
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There are still many aspects to explore in our research.
We can consider applying GLSMA to other feature selection
datasets and study the effectiveness of BGLSMA on other
datasets. Further improvements to the SMA can be
attempted to improve the balance between global explora-
tion and local development. Finally, it is an interesting topic
to apply SMA to more fields, such as photovoltaic parameter
optimization and image segmentation (see Tables 5–18).

Data Availability

The data involved in this study are all public data, which can
be downloaded through public channels.
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