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The rapid increase in prostate cancer (PCa) patients is similar to that of benign prostatic hyperplasia (BPH) patients, but the
treatments are quite different. In this research, magnetic resonance imaging (MRI) images under the weighted low-rank matrix
restoration algorithm (RLRE) were utilized to differentiate PCa from BPH. The diagnostic effects of different sequences of MRI
images were evaluated to provide a more effective examination method for the clinical differential diagnosis of PCa and BPH.
150 patients with suspected PCa were taken as the research objects. Pathological examination revealed that 137 patients had
PCa and 13 patients had BPH. The pathological results were the gold standard and were compared with the MRI results of
different sequences. Therefore, the accuracy of the MRI results was evaluated. The results showed that with the rise of
Gaussian noise, the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) of all three algorithms gradually
decreased, but the PSNR and SSIM of the RLRE algorithm were always higher than those of the RL and BM3D algorithms
(P < 0:05). The sensitivity (97.08%), specificity (92.31%), accuracy (96.67%), and consistency (0.678) of the dynamic contrast
enhancement (DCE) sequence were higher than those of the plain scan (86.13%, 69.23%, 84.67%, and 0.469, respectively). In
conclusion, the RLRE algorithm could promote the resolution of MRI images and improve the display effect. DCE could better
differentiate PCa from BPH, had great clinical application value, and was worthy of clinical promotion.

1. Introduction

As a common genital malignancy, the incidence of prostate
cancer (PCa) increases with age. Moreover, with the devel-
opment of society, the Chinese population is aging seriously,
and the number of PCa patients is also rising sharply. As the
incidence is 1.6/100,000 and the mortality is 1.0/100,000,
PCa is more common in older men [1, 2]. PCa causes great
damage to the physical and mental health of middle-aged
and elderly men and even endangers the lives of patients.
The main clinical manifestations of PCa are frequent mictu-
rition, urgency, dysuria, hematuria, and urinary retention.
Benign prostatic hyperplasia (BPH) has many similarities
with PCa in onset age and clinical manifestations, and the
pathogenesis of some PCa patients is BPH [3, 4]. However,
there is a great difference between them in treatment

methods. Therefore, the differential diagnosis of PCa and
BPH disease is very important in the early stage.

There are many clinical diagnostic methods for PCa and
BPH, including digital rectal examination, ultrasonography,
prostate-specific antigen, needle biopsy, and magnetic reso-
nance imaging (MRI) [5]. However, digital rectal examina-
tion is not intuitive; ultrasound has a high rate of missed
detection due to its imaging principle, and prostate-specific
antigen examination has abnormal results [6]. Needle biopsy
is the “gold standard” for malignant tumor diagnosis, but
invasive operation will cause pain to patients, so it is not eas-
ily adopted [7]. MRI is a widely recognized diagnostic
method for benign and malignant prostate diseases because
of its simple operation, noninvasiveness, high image resolu-
tion, lack of radiation, and multiple scan sequences [8, 9].
MRI has important application value for evaluating prostate
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diseases. It can only detect the infringement condition and
lesions from various angles and thus assists doctors in accu-
rate radiotherapy, avoiding involving other tissues [10–12].
However, MRI images often have artifacts due to the
patients’ inability to remain still for the long scanning time,
which affects the clarity of images.

Whether medical images can clearly show effective infor-
mation about the disease is very important for the diagnosis
of the disease. Therefore, the improvement of image quality
has become the focus of attention. With the rapid development
of artificial intelligence, a large number of intelligent algorithms
have been used to improve the imaging quality of medical
images [13, 14]. Studies have shown that intelligent algorithms
have a significant effect on denoising MRI images [15]. Among
them, the low-rank matrix restoration algorithm [16] has
become a research hotspot in the field of image processing
due to its stability. However, studies have found that the image
processed by this algorithm has fringe distortion, and the
denoising effect decreases sharply when the noise increases
[17]. Then, the weighted low-rank matrix restoration algorithm
(RLRE for short) was proposed, and it was found that the algo-
rithm had a significant denoising effect and significantly allevi-
ated the above problems [18].

In summary, in this study, MRI images were processed
by the RLRE for differential diagnosis between PCa and
BPH patients, and needle biopsy was used as the gold stan-
dard to evaluate the application value of different MRI
sequences in differential diagnosis between PCa and BPH
diseases, which is expected to provide a basis for the clinical
diagnosis of malignant prostate tumors.

2. Materials and Methods

2.1. Research Subjects. In this study, 150 patients with sus-
pected PCa were included as the research objects, as they
went to the hospital for diagnosis and treatment from Janu-
ary 2018 to April 2021. They ranged in age from 24 to 80
years, with an average age of 51:34 ± 8:72 years old. The
prostate mass ranged from 28 g to 105 g, with an average
prostate mass of 63:12 ± 12:22 g. There were 93 patients with
dysuria, 80 patients with urgency and pain, and 50 patients
with hematuria. Pathological examination showed 137
patients with PCa and 13 patients with BPH. All the patients
were examined with different sequences of MRI, and the
images were denoised with the RLRE algorithm. Afterwards,
the pathological examination results were taken as the gold
standard and compared with the test results of different
MRI sequences to evaluate the diagnostic performance of
different MRI sequences for PCa. This study was approved
by ethics committee of hospital, and informed consents were
obtained from patients.

Inclusion criteria were as follows: (a) all patients were
over 18 years old; (b) patients received pathological exami-
nations by needle biopsy, and the results met the diagnostic
criteria for PCa and BPH [19]; (c) patients whose patholog-
ical biopsy results suggested PCa or BPH; (d) patients tested
by MRI with different sequences; and (e) patients who had
signed informed consent.

Exclusion criteria were as follows: (a) patients with seri-
ous organ dysfunction, such as heart, liver, and kidney dys-
function; (b) patients with other systemic cancer diseases; (c)
claustrophobic patients; (d) patients implanted with metal
objects; (e) patients allergic to contrast agents; and (f)
patients with poor image quality or incomplete clinical data.

2.2. MRI Examination. The patient was asked to take the
supine position, and the abdominal phase-controlled coil of
a 1.5T superconducting MRI scanner was fixed at the supe-
rior margin of the pubic symphysis. Plain scanning, diffusion
weighted imaging (DWI), and dynamic contrast enhance-
ment (DCE) scanning were performed on the patients, and
the specific scanning parameters were as follows:

(1) Parameters of plain scan sequence: T1WI sequence,
axial position, and time of repetition ðtrÞ = 500ms,
time of echo ðteÞ = 8ms, T2WI sequence, axial posi-
tion, and TR = 3330ms, TE = 80ms, slice thickness
= 5mm, visual field = 21 cm × 21 cm, and matrix =
520 × 520, with scanning range from iliac artery
bifurcation level to pelvic floor

(2) DWI sequence, axial position, and TR = 2500ms,
TE = 60ms, layer thickness = 2:5mm, field of vision
= 21 cm × 21 cm, matrix = 130 × 130, and B value
was set as 0/800 s/mm2, with the scanning range of
the whole prostate and seminal vesicle

(3) DCE sequence, axial position, and TR = 9:8ms, TE
= 5:2ms, layer thickness = 4:5mm, field of vision =
21 cm × 21 cm, and matrix = 252 × 252. The scan-
ning range was the whole prostate and seminal vesi-
cle. Before scanning, 0.2mmol/kg gadolinium
meglumine and 20mL normal saline were injected
for delayed enhanced scanning [20]

The image results obtained from the above scans were
imported into the MRWP postprocessing workstation, and
two experienced and senior doctors (more than 25 years)
reviewed the images without knowing the pathological
examination results.

2.3. Image Denoising Algorithm Based on Weighted
Low-Rank Matrix Restoration

2.3.1. Algorithm Application. The RLRE introduces the
constraint term of Gaussian noise based on the traditional
low-rank matrix restoration algorithm (RL) and adds in
the weighted low-rank matrix and sparse local matrix to
solve the problems of RL. The expression of the algorithm
can be expressed as follows.

min
H,S,E

〠
n

j=1
wH,j•σj + λ1 Ws•Sk k1 + λ2 Ek k2F ð1Þ

s:t:H + S + E =D ð2Þ
where S andH represent the matrix, WH = fwH,jg and Ws

represent the singular value weight of matrix H and matrix
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S, σj represents the singular value of matrix H, and λ2kEk2F
represents the constraint term of Gaussian noise.

To solve the above equation, we first analyze WH and
Ws. Some studies suggest that the value of Ws is
inversely proportional to the singular value of S. Then,
it is inferred that the value of WH is inversely propor-

tional to the singular value of H. The specific analysis
process is as follows.

Specific steps of Algorithm 2 are as follows.

2.3.2. Evaluation Criteria. In this study, the peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM)

I. Initializing Y ,H, S, E, β = 1:25/kDk2, k = 0, ρ = 1, and βmax = 107β
II. To judge whether to outputH, S, E or continue the next step according to the convergence condition/whether i reaches the max-

imum cyclic value. If so, output H, S, E; if i = i + 1, proceed to the next step. According to the following equations.
III. Hk+1 =DWH

/βk/D − Sk − Ek + Y/βk

IV. Sk+1 = Sλ1β−kWs
ðD −Hk+1 − Sk+1 + β−kYkÞ

V. Ek+1 = ðβk/βk + 2λ2ÞðD −Hk+1 − Sk+1 + β−kYkÞ
VI. Yk+1 = Yk + βðD −Hk+1 − Sk+1 + Ek+1Þ
VII. Updating βk+1 = min ðρβk, βÞ, where k = k + 1
VIII. If kD −H − S − EkF ≤ 10‐7kDkF , the circulation is ended, and the value of H, S, E is output

Algorithm 2

I. Initializing the iteration count variable, i = 0,Wð0Þ
H = 1 ∈ RN

++,W
ð0Þ
S = 1 · 1T ∈ Rm×n

II. Updating H, S, E
III. Updating the weight WH as follows.

Wj+1
H,j = 1/σij + εH ,

Wj+1
s,i, j = 1/jSiijj + εs,

where εH and εS refer to the normal value set in advance, which we take as 0.01
IV. To judge whether to output H, S, E or continue the next step according to the convergence condition/whether i reaches the

maximum cyclic value. If so, output H, S, E; if i = i + 1, proceed to the next step
Then, Equation (1) is solved by regarding WH and Ws as constant values. Equation (1) is transformed according to the Lagrange

function [21] as follows.
hðH, S, E, YÞ =∑n

j=1wH,j•σj + λ1kWs•Sk1 + λ2kEk2F + <Y ,D −H − S − E>+ðβ/2ÞkD −H − S − Ek2F ,
where Y represents the Grange multiplier and β represents the compensation parameter.
To solve H, we assume that other variables are fixed parameters; then,

Hk+1 = arg min ∑n
j=1wH,j•σj + ðβk/2ÞkD −H − Sk − Ek + β−1Ykk2F :

Based on this, the equation below is obtained.
Hk+1 =DWL/β

k /D − Sk − Ek + Y/βk:

DWðXÞ represents the singular value threshold operator of the matrix, expressed as follows.
DWðXÞ =USWð∑ÞVT :

SWðXÞ represents the contraction operator of the matrix, X =U∑VT .
To solve S, we assume that other variables are fixed parameters; then,

Sk+1 = arg min
E

λ1kWs•Sk1 + ðβk/2ÞkD −Hk+1 − Sk+1 − E + β−kYkk2F :
Based on this, the equation below is obtained.

Sk+1 = Sλ1β−kWs
ðD −Hk+1 − Sk+1 + β−kYkÞ:

To solve E, we assume that other variables are fixed parameters; then,

Ek+1 = arg min
S

λ2kEk2F + ðβk/2ÞkD −Hk+1 − Sk+1 − E + β−kYkk2F ,
Ek+1 = ðβk/βk + 2λ2ÞðD −Hk+1 − Sk+1 + β−kYkÞ:

The Lagrange multiplier Y and parameter β are used for optimization, and the specific update method is as follows.
Yk+1 = Yk + βðD −Hk+1 − Sk+1 + Ek+1Þ,

βk+1 = min ðρβk, βÞ,
where β is a predetermined positive number.

Algorithm 1
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are used to measure image fidelity, expressed as fol-
lows.

PSNR = 10 log10
2252

1/MNð Þ∑M
i=1∑

N
j=1 Yij − Xij

� �2

" #

, ð3Þ

where Yij and Xij represent the gray values of the
reconstructed image and the original image, respectively,
and M,N are the row and column of the image. A higher
PSNR value indicates better denoising effects.

SSIM x, yð Þ = l x, yð Þ½ �2• c x, yð Þ½ �2• s x, yð Þ½ �2: ð4Þ

Based on this, the equation below is obtained.

SSIM x, yð Þ = 4μxμyσxy
μ2x + μ2y

� �
σ2x + σ2y

� � : ð5Þ

lðx, yÞ = ð2μxμy + C1Þ/ðμ2x + μ2y + C1Þ represents the

comparison of brightness between two images. cðx, yÞ =
ð2σxσy + C2Þ/ðσ2x + σ2y + C2Þ represents the contrast compar-
ison of two images. sðx, yÞ = ðσxy + C3Þ/ðσxσy + C3Þ repre-
sents the structure of the two images. μx, μy and σx, σy
represent the mean and variance of x, y, and σxy is the covari-
ance of x, y.

2.4. Statistical Methods. The statistical software SPSS 20.0
was used for data processing. Measurement data are
expressed as (x ± s), and count data are expressed in cases
and percentages. The χ2 test was carried out for the compar-
ison between different sequences. The consistency test result
is described by the Kappa value, and Kappa ≥ 0:7 indicates
good consistency, and 0:7 > Kappa ≥ 0:4 indicates acceptable

consistency. P < 0:05 indicates that the comparison is statis-
tically significant.

3. Results

3.1. Comparison of Denoising Performance. In this study, the
denoising effect of the RLRE algorithm was evaluated and
compared with the RL algorithm and the block matching
3-D (BM3D) algorithm [22]. Figure 1 shows the PSNR
values of images with different levels of noise after process-
ing by the three algorithms. It was noted that as the Gaussian
noise increased, the PSNR values of the three algorithms
gradually decreased, but the PSHR value of the RLRE algo-
rithm was always higher than the other two (P < 0:05).
Figure 2 shows the comparison of SSIM values, and it was
noted that the SSIM value of the three algorithms decreased
gradually as the Gaussian noise increased, but the SSIM
value of the RLRE algorithm was always higher than that
of the RL and BM3D algorithms (P < 0:05).

Figure 3 shows the image processing effect of BM3D
algorithm, RL algorithm, and RLRE algorithm. It was noted
that MRI images of T2WI, DWI, and DCE sequences had
higher definitions after processing by the RLRE algorithm
compared with the original image.

3.2. MRI Plain Scan Results. Table 1 shows the statistics of
the pathological examination results and MRI plain scan
examination results. After calculation, it was noted that the
sensitivity, specificity, accuracy, and Kappa value of the
MRI plain scan sequence for PCa diagnosis were 86.13%,
69.23%, 84.67%, and 0.469, respectively. Figure 4 shows
MRI plain scan images. The examination results of normal
prostates were compared with those of BPH patients and
PCa patients. Through observation, all of the normal pros-
tate, BPH, and PCa in the T1WI scan sequence showed
isosignals, and thus, it was difficult to differentiate from
normal prostate tissue. In addition, the central gland was
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Figure 1: Comparison of PSNR. ∗ indicated that there was a statistically significant difference between the BM3D and the RLRE algorithms
(P < 0:05); # indicated that there was a significant difference between the RL and RLRE algorithms (P < 0:05).

4 Computational and Mathematical Methods in Medicine



not obviously differentiated from the surrounding belt, so
it was impossible to effectively differentiate diseases.
T2WI can distinguish the central gland of the prostate
from the peripheral zone. In normal subjects, T2WI
showed that the peripheral zone was a symmetrical
crescent-shaped high signal area, and the signal intensity
in the central zone was moderate. For BPH patients, the
central gland and transitional zone were obviously
enlarged, but the central peripheral zone still maintained

a crescent shape with a high signal. For PCa patients,
the central area showed a circular surrounding area with
mixed high and low signals, and the peripheral zone
showed limited low signals.

3.3. DWI Examination Results. Table 2 shows the statistics of
pathological examination results and DWI examination
results. According to the calculation, the sensitivity, specific-
ity, accuracy, and Kappa value of DWI examination for PCa

Original BM3D RL RLRE

T2WI

DWI

DCE

Figure 3: Effects of different algorithms.

Table 1: MRI plain scan and pathological examination result statistics.

Pathological examination
(n = 150 cases) In total

PCa BPH

MRI plain scan (n = 150 cases)
PCa 118 4 122

BPH 19 9 28

In total 137 13 150
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Figure 2: Comparison of SSIM. ∗ indicated the statistical differences between the BM3D and RLRE algorithms (P < 0:05), while # meant the
same between RL algorithm and RLRE algorithm (P < 0:05).
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were 91.97%, 76.92%, 91.33%, and 0.547, respectively.
Figure 5 shows the DWI images. DWI of the normal pros-
tate showed obvious high- and low-signal areas in the cen-
tral gland and peripheral zone, with clear boundaries. DWI
of BPH patients showed a low signal area in the peripheral
zone. The transitional zone was obviously enlarged, and

the crescent disappeared, while the signal displayed in the
central zone was lower, and the central zone could barely
be distinguished from the peripheral zone. However, the
DWI of PCa showed an uneven high signal area, but the
boundary between the central gland and peripheral zone
was blurred.

Normal BPH PCa

Figure 5: DWI scanning images. The red circles showed the lesions.

Table 3: DCE scan and pathological examination result statistics.

Pathological examination
(n = 150 cases) In total

PCa BPH

DCE (n = 150 cases)
PCa 133 1 134

BPH 4 12 16

In total 137 13 150

T1WI

T2WI

BPH PCaNormal

Figure 4: MRI plain scan images. The red circles marked the lesion regions.

Table 2: DWI scan and pathological examination result statistics.

Pathological examination
(n = 150 cases) In total

PCa BPH

DWI (n = 150 cases)
PCa 126 3 129

BPH 11 10 21

In total 137 13 150
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3.4. DCE Examination Results. Table 3 shows the statistics of
pathological examination results and DCE examination
results. According to the calculation, the sensitivity, specific-
ity, accuracy, and Kappa value of DCE examination for PCa
were 97.08%, 92.31%, 96.67%, and 0.678, respectively.
Figure 6 showed the DCE images. The structure of normal
prostate tissue was clear and showed high signals, while the
transitional zone showed low signals, and the central gland
was clearly distinguished from the peripheral zone. For
BPH patients, DCE showed that the central gland showed
high signals, there were hyperplasia lesions with low signals,
and a crescent area with a low signal was observed. However,
in PCa patients, DCE showed that the central gland was
reduced, and the signals in the peripheral zone were uneven,
but the boundaries were separable.

3.5. Comparison of the Diagnostic Effects of the Three
Sequences. According to the above results, the sensitivity,
specificity, accuracy, and consistency Kappa values of the three
MRI scanning sequences were compared, as shown in
Figure 7. Figure 7(a) showed the comparison of sensitivity.
The sensitivity of the DCE scan (97.08%) was significantly
higher than that of the MRI plain scan (86.13%) and DWI
sequence (91.97%) (P < 0:05), and DWI was also higher than
that of the MRI plain scan (P < 0:05). Figure 7(b) showed
the comparison of specificity. The specificity of the DCE scan
(92.31%) was significantly higher than that of the plain scan
(69.23%) and DWI sequence (76.92%) (P < 0:05), and DWI
was also higher than that of the MRI plain scan (P < 0:05).
Figure 7(c) showed the comparison of accuracy. The accuracy
of the DCE scan (96.67%) was significantly higher than that of

Normal BPH Pca

Figure 6: DCE scanning images. The lesion regions were circled by the red circles.
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Figure 7: Comparison of the effects of different MRI sequences. ∗ indicated that there was a statistical difference compared with the
diagnostic sensitivity, specificity, accuracy, and Kappa value of the DCE sequence (P < 0:05).
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the plain scan (84.67%) and DWI sequence (91.33%)
(P < 0:05), and DWI was also higher than that of the plain
scan (P < 0:05). Figure 7(d) shows the consistency compar-
ison. The consistency Kappa (0.678) of DCE scan was sig-
nificantly higher than that of the plain scan (0.469) and
DWI sequence (0.547) (P < 0:05), and DWI was also higher
than that of the plain scan (P < 0:05). It was noted that the
sensitivity, specificity, accuracy, and consistency of the diagno-
sis results increased according to the sequence of the MRI
plain scan sequence, DWI sequence, and DCE scan sequence,
showing statistically significant differences (P < 0:05).

4. Discussion

With the increase in population, the incidence of PCa is on
the rise in China, bringing great pain to the lives of
middle-aged and elderly people. Therefore, early diagnosis
and early treatment of PCa are very important. At the time
of diagnosis, it is inevitable to make a differential diagnosis
with other diseases, one of which is BPH. At present, MRI
is the main clinical means for the diagnosis of PCa. The
study was aimed at evaluating the application effect of MRI
in the diagnosis between PCa and BPH.

Specifically, the MRI results of different sequences were
compared. The results showed that the diagnostic accuracy
of PCa on MRI plain scan was 84.67%, the sensitivity was
86.13%, and the kappa was 0.469, demonstrating good diag-
nostic discrimination effects, but the specificity was low, only
69.23%. Bai et al. [23] applied imaging screening to the diag-
nosis of prostate cancer, and the results showed that MRI
had a certain sensitivity and specificity. The study of Lewis
et al. [24] was consistent with the results of this study, which
also suggested that T2WI was feasible, but it still needed to
be improved. Some studies have also suggested that the dif-
ference between the lesion signal of the normal central gland
tissue signal in the surroundings is small, and PCa tissue
cannot be well distinguished from normal tissues in the
T2WI images of PCa patients [25]. Therefore, in this study,
DWI sequences were used for diagnosis, and the results
showed that the diagnostic accuracy of DWI for PCa was
91.33%, the sensitivity was 91.97%, and Kappa was 0.547,
demonstrating good diagnostic and differential effects, but
the specificity was only 76.92%. The research results of Cui
et al. [26] also suggested that the DWI sequence can differ-
entiate PCa from BPH lesions by the apparent diffusion
coefficient. X. Wang et al. [27] also applied DWI in the inva-
sive differential diagnosis of BPH and low-grade, intermedi-
ate-grade, and high-grade PCa and achieved good results,
but the premise was the effect of combining it with diffusion
kurtosis imaging technology, which indicated that DWI
examination technology still had some shortcomings in the
differential diagnosis of PCa and BPH. This study found that
the accuracy, sensitivity, and Kappa coefficient of DCE in
distinguishing PCa from BPH were 96.67%, 97.08%, and
0.678, respectively, which were higher than those of plain
scan sequence and DWI sequence. Compared with the first
two sequences, the DCE sequence had higher specificity in
diagnosis, which indicated that DCE sequence scanning
was better in the differential diagnosis of diseases. A large

number of research results show that DCE-MRI can distin-
guish benign and malignant lesions of the prostate [28–30].
Chatterjee et al. [31] proposed that DCE-MRI can distin-
guish pathological changes well and make a good differential
diagnosis between PCa and BPH.

This study was also aimed at further improving the dis-
play effect of MRI images. Thus, the RLRE algorithm was
introduced to denoise MRI images, and it was compared
with the RL algorithm and BM3D algorithm. It was found
that the PSNR and SSIM values of the three algorithms grad-
ually decreased with the rise of Gaussian noise, but the
PSNR and SSIM values of the RLRE algorithm were always
at the highest level among the three. This result suggested
that the denoising effect was improved by the RL algorithm.
Low-rank theory is the method basis of MRI image process-
ing, and research shows that it has a good application effect
[32]. Some studies have suggested that the image restoration
algorithm based on the low-rank theory can achieve better
application results by weighting [33]. Chen et al. [34] also
weighted the RL algorithm with Gaussian noise, and the
results showed that the weighted RL algorithm demon-
strated a better image processing effect, which supported
the results of this study.

5. Conclusion

In this study, the RLRE algorithm was introduced to denoise
MRI images to differentiate PCa from BPH, aiming to eval-
uate the diagnostic effect of MRI images with different
sequences. The results showed that the RLRE algorithm
can improve the display effect and resolution of MRI images.
However, RLRE algorithm-based MRI images of DCE
sequence were more valuable in the differential diagnosis
of PCa and BPH, conducive to the treatment of diseases.
Although different sequences of MRI were studied and ana-
lyzed in this study, the treatment effect of patients was not
analyzed. If this part is added, the research results will be
more supportive, and attention should be given paid to this
part in subsequent studies. In conclusion, DCE sequence
scanning has good application prospects in the differential
diagnosis of PCa.
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