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Background. Marmesine, a major active ingredient isolated from Radix Angelicae biseratae (Duhuo), has been reported to have
multiple pharmacological activities. However, its therapeutic effects against knee osteoarthritis (OA) remain poorly
investigated. The present study is aimed at uncovering the core targets and signaling pathways of marmesine against
osteoarthritis using a combined method of bioinformatics and network pharmacology. Methods. We utilized
SwissTargetPrediction and PharmMapper to collect the potential targets of marmesine. OA-related differentially expressed
genes (DEGs) were identified from GSE98918 dataset. Then, the intersection genes between DEGs and candidate genes of
marmesine were subjected to protein-protein interaction (PPI) network construction and functional enrichment analysis. The
core targets were verified using the molecular docking technology. Results. A total of 320 marmesine-related genes and 5649
DEGs and 60 ingredient-disease targets between them were identified. The results of functional enrichment analyses revealed
that response to oxygen levels, neuroinflammatory response, PI3K-Akt signaling pathway, MAPK signaling pathway, FoxO
signaling pathway, and osteoclast differentiation was identified as the potential mechanisms of marmesine against OA. EGFR,
CASP3, MMP9, PPARG, and MAPK1 served as hub genes regulated by marmesine in the treatment of OA, and the molecular
docking further verified the results. Conclusion. Marmesine exerts the therapeutic effects against OA through multitarget and
multipathways, in which EGFR, CASP3, MMP9, PPARG, and MAPK1 might be hub genes. Our research indicated that the
combination of bioinformatics and network pharmacology could serve as an effective approach for investigating the potential
mechanisms of natural product.

1. Introduction

Knee osteoarthritis (OA) is a common chronic osteoarthro-
pathy that is characterized by joint space stenosis, bone
hyperplasia, cartilage degeneration, and synovitis [1]. Knee
dysfunction, chronic pain, malformation, and stiffness of
the joint are the major clinical manifestations of OA.
Besides, approximately 18% of women and 9.6% of men over
60 years suffered from OA [2]. Disability and chronic pain
associated with OA could cause suicidal emotions, depres-
sion, and anxiety [3]. At present, the surgery, exercise,

intra-articular injection, and oral drug therapy are the major
therapies of OA. However, these treatments remain limited
[4, 5]. Thus, it is necessary to develop a novel and effective
therapy with less systemic toxicity and better bioavailability.

Chinese herbal medicine is the most commonly comple-
mentary and alternative medicine for OA treatment in
China [6–8]. Many active natural products could be used
as substitutes and valuable sources of anti-OA drugs, which
might be worthy of further study. Radix Angelicae biseratae
(Duhuo) is the root of the Angelica biserrata and has long
been used to treat inflammation and arthralgia syndrome
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Figure 1: Identification of DEGs in OA patients. (a) PCA for GSE98918 dataset. (b) Volcano diagram of DEGs in GSE98918 dataset. The
blue dots represent the downregulated genes, and the red dots represent the upregulated genes. (c) Heat map of the top 20 genes with the
most significant downregulation and upregulation in GSE98918 dataset. The purple group is the OA group, while the dark green group is the
control group. The downregulated genes are exhibited in blue, and upregulated genes are showed in red.
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by alleviating pain and eliminating dampness [9]. Over 53
chemical ingredients have been identified from Radix Angel-
icae biseratae; of these volatile oil and coumarins are the pri-
mary constituents. However, the active ingredient of Radix
Angelicae biseratae is complex, and the key active ingredient
remains unknown. Marmesine is a furanocoumarin com-
pound isolated from Radix Angelicae biseratae. It also has
been reported to exhibit multiple pharmacological activities,
including anticancer, antiangiogenic, anti-inflammatory,
and hepatoprotective effects [10–13]. However, the thera-
peutic effects and potential mechanism in the treatment of
OA remain poorly investigated.

Because natural products have multiple targets and
exhibit a wide range of pharmacological effects, it is a great
challenge to understand the corresponding biological func-
tions and pathways of hub molecular targets. Network phar-
macology is a novel and efficient tool to systematically
uncover all potential targets, functions, and mechanisms of
active ingredients at the system and molecular levels. It also
provides a systematic and holistic perspective for analyzing
drug activities [14]. In the present study, we combined bio-
informatics and network pharmacology approaches to iden-
tify the potential targets and mechanisms of marmesine
against OA. This study is aimed at uncovering the multitar-
get and multipathway of marmesine in the treatment of OA

and providing the scientific basis for the prevention and
treatment of OA.

2. Materials and Methods

2.1. Identification of OA-Related Genes. We downloaded the
transcriptome profiles of OA patients (GSE98918 dataset)
from the GEO database (https://www.ncbi.nlm.nih.gov/).
Then, we used the robust multiarray average method to
carry out data standardization preprocessing. The limma
package of R software was applied to identify the differen-
tially expressed genes (DEGs) between healthy samples
(n = 12) and OA samples (n = 12), and the cut-off criteria
were set as follows: p value < 0.05 and ∣logFC ∣ ≥0:3 [15].
The volcano map of genes was visualized by ggplot2 package
of R software. The heat map of top 20 genes was visualized
by ComplexHeatmap package of R software.

2.2. Collection of Potential Targets. First, the 2D chemical
structure of marmesine was downloaded from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/). SwissTarget-
Prediction is a web server that aims to predict the potential
targets of small molecules based on a combination of 2D
and 3D similarity measures with known ligands [16].
PharmMapper is a web server to predict target candidates

(a)

(b)

Figure 2: Collection of marmesine-related genes. (a) The 2D chemical structure of marmesine. (b) The potential targets of marmesine.
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Figure 3: Continued.
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Figure 3: Identification of the therapeutic targets of marmesine in the treatment of OA. (a) The intersection with marmesine- and OA-
related genes. (b) Heat map of the 60 intersection genes in GSE98918 dataset. The purple group is the OA group, while the dark green
group is the control group. The downregulated genes are exhibited in blue, and upregulated genes are showed in red. (c) Volcano
diagram of 60 intersection genes in marmesine-related genes. The blue dots represent the downregulated genes, and the red dots
represent the upregulated genes. (d) PPI network of 60 intersection genes.
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(a)

(b)

Figure 4: Enrichment analysis of the 60 intersection genes. (a) Bubble diagram of the top 25 enriched biological process (BP). (b) Bubble
diagram of the top 25 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The colors of the bubble show the
significance of enrichment, while size shows the gene count.
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Figure 5: The representative pathways of marmesine in the treatment of OA. The results of representative pathways were presented by circle
charts (a), circle plot (b), and chord plot (c).
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for the small molecules by pharmacophore mapping
approach [17]. Then, we used the SwissTargetPrediction
and PharmMapper databases to collect the potential genes
of marmesine [18, 19].

2.3. Construction of the Protein-Protein Interaction (PPI)
Network. The overlapped genes associated with OA and
marmesine were identified as candidate targets by the Venn
tool. Then, these candidate targets were introduced into the
STRING database (https://cn.string-db.org/), the species was
chosen as Homo sapiens, and a required confidence score
> 0:4 was set to generate the TSV format file [20]. PPI net-
work was visualized by the Cytoscape software (3.8.0) [21].
The hub target was identified using the CytoNCA plugin
of the Cytoscape software. We also used MCODE plugin of
the Cytoscape software to generate the clusters. The
“compound-target-pathway” network of OA was con-
structed using the Cytoscape software (3.8.0).

2.4. Enrichment Analysis of the Intersection Genes. To fur-
ther investigate the potential mechanisms of marmesine in
the treatment of OA, the clusterProfiler package and Biocon-
ductor package of R software were applied to carry out the
functional enrichment analysis on the intersection genes. A
p value < 0.05 was used as the cutoff criterion.

2.5. Molecular Docking. The hub target crystal structure was
downloaded from the RCSB Protein Data Bank (https://
www.rcsb.org/), of which the 3D protein conformations with
a crystal resolution of smaller than 3Å were selected. Then,
the AutoDockTools 1.5.6 software was used to remove
water, separate proteins, add nonpolar hydrogen, charge cal-
culation, and construct the docking grid box. We used the
AutoDock Vina 1.1.2 software to perform docking simula-
tion, and the results were visualized via the PyMOL software.

3. Results

3.1. Identification of DEGs in OA Patients. Principal compo-
nent analysis (PCA) was performed to assess the intragroup
data repeatability, and the results showed that the repeatabil-
ity of GSE98918 dataset is good (Figure 1(a)). As shown in
Figure 1(b), a total of 5649 DEGs, including 3263 upregu-
lated genes and 2386 downregulated genes, were identified
through comparing 12 control samples and 12 OA samples.
The heat map exhibited the top 20 genes with the most sig-
nificant downregulation and upregulation (Figure 1(c)).

3.2. Collection of Target Genes of Marmesine and Intersection
with Marmesine- and OA-Related Genes. The 2D chemical
structure of marmesine is presented in Figure 2(a). SwissTar-
getPrediction and PharmMapper databases were used to col-
lect the pharmacological targets of marmesine. After deletion
of duplicate genes, we obtained 320 marmesine-associated
genes (Figure 2(b)). Finally, 60 intersection genes of marme-
sine against OA were obtained via an overlap of OA-related
genes with marmesine-related genes (Figure 3(a)). Among
these overlapped genes, 29 were significantly upregulated
and 31 were significantly downregulated (Figures 3(b) and
3(c)). These 60 overlapping genes were imported to the
STRING database. Then, the PPI network was constructed,
which contains 60 nodes and 154 edges (Figure 3(d)). This
finding revealed the major interaction between marmesine
and OA disease.

3.3. GO-BP and KEGG Enrichment Analyses. These 60 over-
lapping genes were further analyzed by enrichment analyses,
which showed that marmesine impacted a series of GO-BP,
such as cell growth, cellular response to external stimulus,
response to oxygen levels, cellular response to environmen-
tal stimulus, positive regulation of growth, response to
mechanical stimulus, heart growth, and neuroinflammatory
response (Figures 4(a) and 5). Based on the KEGG

Figure 6: The component-target-pathway network for marmesine. 60 red circular nodes represent the potential targets, the 8 light blue
triangular nodes represent the KEGG pathways, the three light red dovetails represent the GO-BP pathways, and the green square node
represents marmesine.
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enrichment results, the potential mechanisms of marmesine
in the treatment of OA are mainly involved in the proteogly-
cans in cancer, PI3K-Akt signaling pathway, microRNAs in
cancer, MAPK signaling pathway, FoxO signaling pathway,
Ras signaling pathway, HIF-1 signaling pathway, endocrine
resistance, osteoclast differentiation, ErbB signaling path-
way, and EGFR tyrosine kinase inhibitor signaling pathway
(Figures 4(b) and 5).

Furthermore, a component-target-pathway interaction
network diagram was constructed via the Cytoscape soft-
ware to further elaborate the relationship between the poten-
tial targets and corresponding pathways of marmesine
against OA. As shown in Figure 6, the 60 red circular nodes
represent the potential targets, the 8 light blue triangular
nodes represent the KEGG pathways, the three light red
dovetails represent the GO-BP pathways, and the green
square node represents marmesine. The pathview package
was applied to draw the pathway map of marmesine against
OA, and the primary pathways were integrated to construct

the pathway maps (Figures 7 and 8). These findings indi-
cated that marmesine could take effect in OA treatment via
multitargets and multipathways.

3.4. Construction of PPI Network and Identification of Hub
Genes. The Cytoscape software was applied to construct
the PPI network. Nine genes that were not linked to others
in the network will be filtered out, including ARHGAP1,
GSTA3, CRABP2, F11, BDKRB1, TPI1, CD1A, ITPKA,
and ADAM33, and the PPI network contained 51 nodes
and 154 edges (Figure 9(a)). Furthermore, the PPI network
was divided into two modules using a MCODE plugin of
the Cytoscape software. Meanwhile, the module 1 contains
EGFR, CASP3, MMP9, PPARG, MAPK1, IGF1, KDR,
RPS6KB1, MAPK8, CASP1, and ANXA5 (Figure 9(b)); the
module 2 contains TYMS, CDK6, PLK1, and AURKA
(Figure 9(c)). Then, CytoNCA plugin of the Cytoscape soft-
ware was used to calculate the topological parameters of
nodes based on degree, betweenness, and closeness. And
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Figure 7: MAPK signaling pathway. The green and red rectangles indicate the potential targets of marmesine in the treatment of OA.
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top 5 genes (EGFR, CASP3, MMP9, PPARG, and MAPK1)
were identified as hub genes and further validated using
molecular docking analysis (Table 1).

3.5. Molecular Docking Results. A binding energy lower than
-5 kcal/mol shows that bioactive compound had good bind-
ing ability with targets [22]. Figure 10 exhibits the major
binding site between the amino acid residues of target pro-
tein and marmesine. Based on our molecular docking
results, marmesine could bind well with target proteins
(EGFR, CASP3, MMP9, PPARG, and MAPK1), among
which MAPK1 exhibits the best binding effect (Table 2).
Our findings indirectly revealed that the results of molecular
docking are consistent with the network pharmacology
results, which confirmed the screening results of network
pharmacology.

4. Discussion

OA is a severe osteoarthropathy that impacts the whole joint
system and often accompanied by the occurrence and devel-
opment of synovitis [23]. Due to the complex pathological
mechanism of OA, the specific pathogenesis has not been
fully understood. Therefore, novel methods or drugs should
be developed to prevent and treat OA. Chinese herbal med-
icine is the most commonly complementary and alternative
medicine for OA treatment due to its multitarget and multi-

pathway characteristics [6, 24]. Radix Angelicae biseratae
(Duhuo) has long been used to treat arthralgia syndrome.
Marmesine is the primary active component of Radix Angel-
icae biseratae, which has been reported to exert anti-
inflammatory effect. However, the therapeutic effects and
potential mechanisms of marmesine against OA have not
been reported. Bioinformatics could identify new drug tar-
gets and predict the reposition of these licensed drugs in
the treatment of additional indications [25]. Network phar-
macology could well assess the overall relationship between
diseases and drugs and has been widely used to establish
guiding pharmacologic methods [26]. Therefore, we made
a combination of bioinformatics and network pharmacology
that might promote a further understanding of the patho-
genesis of OA and identify the potential therapeutic targets
of marmesine.

In the present study, 320 potential targets of marme-
sine and 5649 DEGs of OA were obtained. 60 cotargets
were identified as the therapeutic targets of marmesine in
the treatment of OA. Among them, six core targets
(EGFR, CASP3, MMP9, PPARG, and MAPK1) were indi-
cated to play an important role via CytoNCA plugin of the
Cytoscape software. Furthermore, we performed the
molecular docking analysis to further confirm the results
of network pharmacology.

Epidermal growth factor receptor (EGFR) is a tyrosine
kinase receptor, which plays an important role in the
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(a)

(b) (c)

Figure 9: Construction of PPI network and identification of hub genes. (a) PPI network of potential targets of marmesine against OA. (b)
Module 1 of PPI network (score: 9.6) (hub targets). (c) Module 2 of PPI network (score: 4). The color of nodes is proportional with the
degree value, and the darker color indicates the greater value of nodes.
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Table 1: Topological analysis of PPI network.

Target Degree Betweenness Closeness

EGFR 23 585.6396 0.276243

CASP3 20 446.55685 0.276243

MMP9 18 226.11505 0.265957

PPARG 17 294.71487 0.263158

MAPK1 15 159.40509 0.261780

(a) (b)

(c) (d)

(e)

Figure 10: Molecular docking of marmesine with potential target proteins: EGFR (a), CASP3 (b), MMP9 (c), PPARG (d), and MAPK1 (e).
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maintenance of superficial chondrocytes during the develop-
ment of articular cartilage. It has been reported that chon-
drogenic EGFR signaling pathway involved in adult
cartilage homeostasis and the progression of OA [27]. Previ-
ous study has demonstrated that mice with cartilage-specific
EGFR deficiency promoted the progression of knee OA, and
targeting EGFR signaling could effectively improve surgery-
induced OA cartilage damage [28]. Furthermore, it has been
reported that EGFR exerted a protective role during the
development of OA via regulation of cartilage degradation
[29]. Caspase-3 (CASP3) is an important member of the
cysteine-aspartyl family with a vital role in apoptosis [30].
The expression and activation of CASP3 in the monocytes,
macrophages, and synovium of rheumatoid arthritis patients
were measured, and treatment with the CASP3 inhibitor
could effectively improve arthritis symptoms [31]. Recent
study has reported that the CASP3 is a potential biomarker
for OA prognosis in Egyptian donkeys [32]. Matrix metallo-
peptidase 9 (MMP9) has been involved in the pathological
process of various diseases, including OA. The increased
expression of MMP9 promoted the progression of diabetic
OA via accelerating chondrocyte apoptosis and suppressing
cartilage differentiation [33, 34]. MMP9 was upregulated
in synovial fluid of patients with OA [35], and increased
MMP9 protein level may be related to the pathogenesis of
OA [36]. Recent study has demonstrated that MMP9 is a
potential diagnostic marker for OA patients [37, 38]. Per-
oxisome proliferator-activated receptor gamma (PPARG)
is a nuclear receptor and involved in insulin sensitivity
and energy metabolism. A recent study demonstrated that
genetic polymorphisms of PPARG might promote the risk
of the Kashin-Beck disease via disturbing ECM homeostasis
[39]. Mitogen-activated protein kinase 1 (MAPK1) is a
subfamily of the MAPK family that regulated a variety of
cellular activities. miR-320c suppressed articular chondro-
cyte proliferation and evoked apoptosis via targeting
MAPK1 [40]. Thus, the above target genes may all play
an important role in the occurrence and progression of
OA and are potential therapeutic targets for marmesine in
the treatment of OA.

The enrichment analysis of these cotargets revealed that
cellular metabolism, immune, and inflammatory pathways
may be the potential mechanisms of marmesine in the treat-
ment of OA. The representative pathways included PI3K-
Akt signaling pathway, MAPK signaling pathway, FoxO sig-
naling pathway, Ras signaling pathway, HIF-1 signaling
pathway, osteoclast differentiation, ErbB signaling pathway,
and EGFR tyrosine kinase inhibitor signaling pathway.
MAPK signaling pathway is associated with the pathogenesis
of arthritis and related diseases, especially OA [41]. For
example, kinsenoside improved OA via inactivation of
MAPK/NF-κB signaling pathways [42]. Wang-Bi tablet
could effectively suppress inflammatory response and articu-

lar cartilage damage via the downregulation of p38-MAPK
and NF-κB signal pathways [43]. Osteoclast differentiation
plays an important role in the occurrence and development
of temporomandibular joint OA [44]. For example, dihy-
droartemisinin could prevent osteoclast activation via inacti-
vating NFATc1, MAPK, and NF-κB pathways in a knee OA
rat model [45]. IL-4 could inhibit osteoclast development
and promote anti-inflammatory macrophages to protect
against OA [46].

5. Conclusion

Our findings revealed that marmesine had multitargets and
multipathways in the treatment of OA. Besides, EGFR,
CASP3, MMP9, PPARG, and MAPK1 are the hub targets
enriched in the MAPK signaling pathway and osteoclast
differentiation and for marmesine to exert its anti-
inflammatory and antiapoptosis effects against OA. Further-
more, molecular docking verification was performed to
confirm that marmesine could form a stable docking model
with these hub targets. Our research provides a systematic
view of the potential therapeutic targets and signaling mech-
anisms of marmesine against OA based on network pharma-
cology and bioinformatics analyses, which may provide a
novel therapeutic strategy for OA.
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