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Background and Objective. To study the new method of selecting CNN+EEG index values, based on self-attention and residual
structure of convolutional neural network, to deeply monitor propofol anesthesia. Methods. We compare nine index values,
select CNN+EEG, which has good correlation with BIS index, as an anesthesia state observation index to identify the
parameters of the model, and establish a model based on self-attention and dual resistructure convolutional neural network.
The data of 93 groups of patients were selected and randomly grouped into three parts: training set, validation set, and test set,
and compared the best and worst results predicted by BIS. Result. The best result is that the model’s accuracy of predicting
BLS on the test set has an overall upward trend, eventually reaching more than 90%. The overall error shows a gradual
decrease and eventually approaches zero. The worst result is that the model’s accuracy of predicting BIS on the test set has an
overall upward trend. The accuracy rate is relatively stable without major fluctuations, but the final accuracy rate is above 70%.
Conclusion. The prediction of BIS indicators by the deep learning method CNN algorithm shows good results in statistics.

1. Introduction

In clinical anesthesia operations, as the depth of propofol
anesthesia increases, explicit memory and implicit memory
disappear one after another [1]. The patient still has implicit
memory in the case of innocuous stimulus and unconscious-
ness. Different patients require different anesthesia operations.
In the operation under epidural anesthesia (intraspinal anes-
thesia), in order to eliminate the nervousness of the patient,
we avoid leaving unpleasant memories to the patient, and
eliminate implicit memory [2]. For those who have poor gen-
eral conditions and cannot tolerate deep intravenous general
anesthesia (such as old age and shock). They should be anes-
thetized (composure) to at least 2 points on the OAA/S score
to eliminate explicit memory [3].

The sedation stage during surgery is an important part of
general anesthesia. Correct selection of the observation indi-
cators for the sedation stage is an important step in anesthe-
sia monitoring [4]. The static depth observation index

includes BIS index, Narcotrend index, and entropy the index
[5]. The entropy index can characterize the complexity of
the signal and reflect the difference of signals in different
states. The calculation process is relatively simple and has
attracted more and more attention. The BIS monitor is cur-
rently the most authoritative anesthesia status monitor [6].
The BIS index is obtained by the BIS monitor and has a high
degree of recognition in clinical anesthesia operations at
home and abroad. However, its algorithm has high complex-
ity and rich subparameters, which affects the reaction time
of the indicator in a certain period of time. It is an indicator
of the depth of sedation identified by the US FDA to moni-
tor sedation. Studies show a good correlation of BIS with the
concentration of multiple anesthetic drugs. However, the
BIS is insensitive to the monitoring of the nociceptive stim-
uli and cannot respond immediately to the instantaneous
changes in the EEG signals. Entropy index analysis of the
complexity or “order” of the EEG was performed. As the
anesthesia depth increases, the EEG data becomes more
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predictable or contains more “order,” with more order rep-
resenting less complexity and a lower entropy index. How-
ever, when the depth of anesthesia was shallow, EEG data
decreased order and irregularity increased. Unlike the BIS
algorithm, the entropy index does not depend on the abso-
lute frequency and amplitude range of the EEG, which is
based on the analysis of the physiological condition of the
measured patients. EMG signals need to be filtered from
their data analysis in BIS monitoring, but entropy index
monitoring is useful and in some cases more sensitive to
the evaluation of awareness levels or analgesia than EEG.
However, its algorithmic complexity is high and its subpara-
meters are rich, which affects the reaction time of this index
in a certain period of time. The BIS was used as a value indi-
cating the depth of sedation. However, this value can change
significantly in a short period of time due to interference
from other instruments in the operating room (such as
high-frequency electrical surgery), the effect of EMG on
the patient frontal muscle and medication, and changes in
the surgical position. Anesthesiologists often use this value
to determine that it is true or false.

1.1. Reply to Solve. The field of anesthesia has significant
advantages in the development and application of machine
learning technology: various computer control systems, such
as monitors, drug infusion systems, and anesthesia elec-
tronic medical record systems can be directly connected to
each patient to collect a large amount of high-fidelity data
in real time. Monitoring the depth of anesthesia has always
been a key issue for anesthesiologists [7]. Insufficient depth
of anesthesia leading to intraoperative awareness may have
serious psychological effects on the patient, and overdose
of anesthetic may prolong the recovery time of anesthesia
and even cause irreversible damage to the patient [8]. Objec-
tive, noninvasive, and reliable monitoring of the depth of
anesthesia is a challenge for clinical anesthesia.

Therefore, this paper proposes a new method of analyz-
ing propofol anesthesia from two aspects of nine parameter
indicators and BIS subparameters, based on self-attention
and residual structure of the convolutional neural network.

First, we use Butterworth filter and other methods to
preprocess the EEG signal and then use the manual feature
extraction method mentioned in related theories to extract
the sample entropy, sort entropy, frequency spectrum, and
a ratio from the EEG signal. We analyze the characteristics
of BIS parameters. BIS parameters are suitable for anesthesia
monitoring, combined with a new method of convolutional
neural network based on self-attention and residual struc-
ture to build a model, and combine different EEG signal
parameters with machine learning algorithms to evaluate
the anesthesia status can accurately quantify the patient’s
anesthesia status. This method does not need to refer to
the age of the patient and the anesthetic drugs used and
can reliably predict the depth of anesthesia. Compared with
a single feature, this model can accurately estimate the depth
of anesthesia with a higher prediction probability. The
experimental results evaluated on the data set show that
the method proposed in this paper provides better perfor-

mance compared with ranking entropy, the ratio, and other
traditional methods.

2. Related Work

2.1. Entropy Index

2.1.1. Sample Entropy. The sample entropy (Sampan) was
proposed by Richman and Moorman. The sample entropy
can represent the complexity of a finite time series [9]. The
larger the value of sample entropy, the more irregular the
signal is reflected. Given a time series xðiÞ, 1 ≤ i < N can
reconstruct it into N −m + 1, a vector xmðiÞ, which is
defined as

xm ið Þ = x ið Þ, x i + 1ð Þ,⋯, x i +m − 1ð Þf g, i = 1, 2,⋯,N −m:

ð1Þ

Let d be the distance between the vector xmðiÞ and xmðjÞ
the formula as follows:

dmij = d xmi , x
m
j

h i
=max x i + kð Þ − x j − kð Þj jð Þ, k = 0, 1,⋯,m − 1:

ð2Þ

Cm
i ðrÞ is the probability of xmðjÞ within the distance r of

xmðiÞ, which is calculated as

Cm
i rð Þ = ni m, rð Þ

N −m + 1
, i = 1,N −m: ð3Þ

Among them, niðm, rÞ is the number of vectors xj similar
to xi, where dðxi, xjÞ ≤ r. When the embedding dimension is
equal to m, the total number of template matches is

A m, rð Þ = ∑N−m
i=1 Cm

i rð Þ
N −m

: ð4Þ

Let m =m + 1, and repeat the above steps, the sample
entropy of this time series can be expressed as

SampEn r,m,Nð Þ = −Ln
A m + 1, rð Þ
A m, rð Þ : ð5Þ

Ln is the natural logarithm. The sample entropy is affected
by three parameters r, m, and N. N is the length of the time
series, r is the threshold for determining the similarity of the
pattern, and m is the length of the comparison sequence. In
this paper, we setN = 500, r = 0:2, andm = 2, and the selection
of parameters can be based on Bruhn’s paper.

2.1.2. Sort Entropy. Sorting entropy (PeEn) provides a simple
and robust method for estimating the depth of anesthesia
with low computational complexity. It quantifies the num-
ber of regularities in the EEG signal and takes into
account the time sequence of these values. Given a time
series xN = ½x1, x2,⋯xN � with N points, xN can be con-
structed as
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xN = x ið Þ, x i + τð Þ,⋯, x i + m − 1ð Þτð Þf g, i = 1, 2,⋯,N − m − 1ð Þτ,
ð6Þ

where τ is the time delay and m represents the embed-
ding dimension. Then, you can rearrange xi in increasing
order:

x i + j1 − 1ð Þτ ≤ x i + j2 − 1ð Þτð Þ≤⋯≤x i + jm − 1ð Þτð Þðf g:
ð7Þ

The sequence of length m has J =m! permutations.
Each vector xi can be mapped to one of the permutations
J =m! Next, the probability pj of the jth permutation can
be defined as

Pj =
nj

∑m!
j=1nj

: ð8Þ

Among them, nj is the number of occurrences of the j
th arrangement. The sort entropy can be defined as

PE =
∑m!

j=1Pj log Pj

log m!ð Þ : ð9Þ

The calculation of sort entropy depends on the length
of the time series N and the time lag of m, where N = 500,
m = 4, and τ = 1. The choice of parameters can be based
on the paper by Su et al.

2.1.3. Wavelet Entropy. Wavelet entropy is based on wavelet
transform with multiple scales and directions. Choosing the
appropriate wavelet base, the original signal will be gener-
ated according to different scales, where CjðkÞ is the decom-
position coefficient of each scale j [10]. The wavelet energy
Ej of the signal is defined as follows:

Ej = 〠
Lj

k=1
Cj kð Þ�� ��2, ð10Þ

where Lj represents the number of coefficients under
each decomposition scale. Therefore, the total energy of
the signal can be expressed as

Etotal =〠
j

Ej =〠
j

〠
Lj

k=1
Cj kð Þ�� ��2: ð11Þ

Then, we divide the wavelet energy by the total energy to
get the relative wavelet energy at each scale j:

Pj =
Ej

Etotal
=

∑
Lj

k=1 Cj kð Þ�� ��2
∑j∑

Lj

k=1 Cj kð Þ�� ��2 : ð12Þ

Finally, the wavelet entropy can be calculated from the
above:

S = −〠
j

Pj log Pj

� �
: ð13Þ

2.1.4. Band Ratio. The α ratio, β ratio, and (β-α) ratio is also
used to monitor the depth of anesthesia. The α ratio is the
logarithmic relative power of two different frequency bands,
which can be calculated in the following way:

αratio = log
E30−42:5hz
E6−12hz

: ð14Þ

The formula for β ratio and (β-α) ratio is as follows:

βratio = log E30−42:5hz
E12−21hz

:

β‐αð Þratio = log
E6−12hz
E11−21hz

:

ð15Þ

Among them, αratio, βratio, and ðβ‐αÞratio represent α
ratio, β ratio, and (β-α) ratio, respectively, and E30−42:5hz,
E6−12hz, and E11−21hz, representing the spectral energy of the
30-42.5Hz, 6-12Hz, and 11-21Hz frequency bands,
respectively.

2.2. Time Collar Characteristics. Time-frequency analysis is
a powerful tool that can decompose a signal into time and
frequency components. Therefore, it provides a means for
analyzing nonstationary signals (such as brain electrical
signals). In the analysis of this kind of signal, people are
often interested in the changes in frequency components
over time, which is particularly important when analyzing
sleep EEG [11]. In sleep EEG, many events (such as sud-
den waking) are measured by amplitude and the sudden
change of frequency characteristics.

Short-time Fourier transform (STET) is the simplest
form of time-frequency analysis. Usually, people only con-
sider the squared amplitude of the STFT, and this squared
amplitude is called a spectrogram. In order to calculate the
short-time Fourier transform, the signal of interest is evenly
divided into multiple short-term overlapping parts, and
then, the data of each part is windowed and Fourier trans-
formed. The result is a set of Fourier transforms at different
points in time that reveals the changes in these spectral
properties from one segment to another, which is the evolu-
tion of frequency over time. The time-frequency resolution
of STFT is directly determined by the size of the window
length: the smaller the window length, the higher the time
resolution, and the lower the frequency resolution; the larger
the window length, the lower the time resolution and the
higher the frequency resolution. By increasing the size of
the window length, the frequency resolution can be
improved at the expense of reducing the time resolution
[12]. It should also be noted that a longer window length
may violate the quasistationarity assumption required by
the Fourier transform.

Therefore, in addition to analyzing the stationarity of the
previous signal, issues related to time and frequency resolu-
tion should also be considered. Due to its simplicity and ease
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of implementation, STFT has been widely used in sleep EEG
analysis.

2.3. Common Feature Extraction Methods of EEG Signals. In
some past studies of EEG signals, in terms of feature
extraction methods, they can be divided into two different
categories. The first is the method of extracting features
based on manual design. This method requires prior
knowledge of EEG analysis to extract the corresponding
features. These methods first extract the most common
features, such as the time domain, frequency domain,
and time-frequency domain features of a single-channel
EEG waveform. Then, we apply traditional machine learn-
ing algorithms, such as support vector machine (SVM),
random forest, and neural network and train the model
for the application you want to implement based on the
extracted features [13]. The BIS monitor is currently the
most authoritative anesthesia status monitor. The BIS
index is obtained by the BIS monitor and has a high
degree of recognition in clinical anesthesia operations at
home and abroad. It integrates multiple EEG parameters
into a single indicator, including α ratio, synchronization
speed ratio (SFS), median frequency (MPF), and edge fre-
quency (SEF). Narcotrend index compares and analyzes the
data accumulated by itself and automatically classifies the
extracted EEG signals to judge different states of anesthesia.
However, the complexity of its algorithm is relatively high,
which affects the reaction time of the indicator in a certain
period of time.

Although these methods have achieved reasonable per-
formance, they also have some limitations and require cer-
tain prior knowledge of sleep analysis. The second is a
method based on automatic feature extraction (for example,
deep learning algorithms), in which the machine automati-
cally extracts relevant features (for example, CNN extracts
time-invariant features from the original EEG signal).

2.4. Automatically Extracted EEG Signal Features. Most of
the features are extracted manually, which requires a certain
degree of expertise. In recent years, based on deep learning,
the method of automatically learning features from EEG
signals has become popular, and there are also many
methods of automatic sleep stage classification based on
deep learning [14].

Due to the powerful ability of deep learning to automat-
ically learn features from data and the amazing progress of
deep networks in many fields, people are interested in apply-
ing it to automatic sleep stage classification. Using various
deep learning techniques to classify sleep stages, the results
obtained have made significant progress. CNN is a classic
algorithm of deep learning technology, and it is also often
used for sleep stage classification tasks. The weight sharing
mechanism of the convolutional layer makes the learned
features have shift invariance, reduces the complexity of
the model, and improves the generalization ability of the
model. Therefore, it is usually used as a supplement to other
network types, such as CNN and DNN. Independent CNN
has also been used to learn the sequential features of sleep,
usually in an end-to-end manner in the network [15].

2.5. Evaluation Indicators. Previously, that is, the sample
entropy (SampEn), sorting entropy (PeEn), wavelet entropy,
α ratio, β ratio, and (β-α) ratio, synch fast slow (SFS),
median frequency (MPF), spectral edge frequency (SEF),
BIS, and CNN+BIS, nine kinds of anesthesia state observa-
tion indicators are introduced and parameters are selected.
In order to compare the relationship between these nine
indicators and BIS, the correlation coefficient was calculated.

The correlation coefficient is a measure of the correlation
between two time series xðtÞ and yðtÞ. The formula is as fol-
lows:

COR tð Þ = cov x tð Þ, y tð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var x tð Þ var y tð Þð Þp : ð16Þ

In the formula, cov ðxðtÞ, yðtÞÞ is the covariance of xðtÞ
and yðtÞ; var ðxðtÞÞ is the variance of xðtÞ; and var ðyðtÞÞ is
the variance of yðtÞ.

The correlation coefficient describes the degree of cor-
relation among the variables xðtÞ and yðtÞ. The value
range of COR ðtÞ is ½−1, 1�. If CORðtÞ > 0, then there is a
positive correlation between xðtÞ and yðtÞ. However, when
CORðtÞ < 0, there is a negative correlation between xðtÞ
and yðtÞ. This study uses the absolute value of COR ðtÞ,
namely ∣COR ðtÞ ∣ to measure the two indicators the
degree of correlation between the two indicators. When
the ∣COR ðtÞ ∣ value is greater than 0.8, it is highly corre-
lated, 0.5 to 0.8 is moderately correlated, 0.3 to 0.5 is low
correlated, and less than 0.3 indicates no correlation.

In addition, in order to compare the relationship between
these 9 indicators and BIS indicators, we calculated the 9
indicator values of the EEG data of 20 patients and then cal-
culated the correlation between them and the CNN+BIS
indicators. The statistics of specific relevance are shown in
Table 1.

According to the results in the table, the average corre-
lation coefficients of ApEn, α ratio, SampEn, SFS, and
CNN+EEG and BIS indicators are all higher than 0.6,
indicating that these 6 indicators and BIS indicators have
a high correlation during anesthesia. Among them, the corre-
lation coefficient between CNN+EEG and BIS is the largest;
indicating that among these nine indicators, CNN+EEG
and BIS have the best correlation. Therefore, the parameters
with better correlation with the BIS index are selected as the
observation index of anesthesia state to carry out the param-
eter identification of the model.

3. Experiment

3.1. Research on Metabolic Model Based on Deep Learning

3.1.1. Model Construction Ideas. Sheiner’s PKPD model con-
sists of two parts, namely, the PK model and PD model.
However, the model parameters are greatly affected by indi-
vidual differences, so there are still some differences between
the theoretical model and the actual drug metabolism model.
In response to these problems, this paper proposes a scheme
of using deep learning algorithms to replace the traditional
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PKPD model. The concept of the model is shown in
Figure 1.

Figure 1 is a conceptual diagram of the traditional PKPD
model and the metabolic model based on deep learning.
Among them, Figure 1(a) is a conceptual diagram of the tra-
ditional PKPD model. Among them, Ce represents the effect
chamber concentration and Cp represents the blood drug
concentration [16]. The covariates are the four physiological
parameters of height, weight, gender, and age. Figure 1(b) is
a conceptual diagram of a metabolic model based on deep
learning, where the input of the model is the feature index
and covariate extracted from the EEG signal, and the output
of the model is the depth of anesthesia index. In the end, the
basis for judging the quality of the model training is the
degree of fit between the index values output by the model
and the actual index values.

3.1.2. Introduction to CNN Algorithms. The concept of CNN
was proposed by Yann at New York University in 1998.
CNN is a deep learning algorithm, which has been widely
used in image recognition and other fields. The structure
of CNN mainly includes the input layer and hidden layer.
The hidden layer is the focus of the CNN network. The hid-
den layer generally includes a pooling layer, a convolutional
layer, and a fully connected layer. The convolutional layer
and the pooling layer are unique to CNN [17].

Convolution operation is the focus of CNN. Under the
action of the convolution kernel, the input data is subjected
to convolution operation. Then, we add the deviation term

to the obtained result, which can be input into the excitation
function, and the value of the upper neuron can be obtained.
The value at the ði, jÞ position on the upper layer is output
by the lth convolution kernel on the s layer, which can be
expressed as

xi,j = f w sð Þj∙I i, jð Þ + d
� �

, ð17Þ

where Iði, jÞ is the feature of the convolutional layer, f is
the activation function; wðsÞj is the jth convolution kernel
on the s layer, and d is the deviation term.

3.1.3. Optimize the Network. Convolution can optimize the
complexity of the network through the following two parts
in the calculation:

(1) Sparse connection in the previous network, the layer
connection of neurons is generally fully connected.
However, on the CNN, sparse connections are used
between layers. This is because in CNN, there is a
strong correlation between the two neighboring
layers, so the next layer only needs to be connected
to the previous layer, that is, local connection. This
will not lead to the occurrence of information loss,
and can reduce the size of the CNN structural
parameters. The sparse connection between two
adjacent layers is shown in Figure 2

Table 1: Correlation coefficients between different indicators and BIS indicators.

Index SampEn PeEn WE αratio βratio

COR 0:608 ± 0:31 0:621 ± 0:28 0:394 ± 0:36 0:687 ± 0:20 0:596 ± 0:33

Index β‐αð Þratio SFS MPF SEF CNN+EEG

COR 0:564 ± 0:22 0:607 ± 0:22 0:035 ± 0:44 0:342 ± 0:36 0:717 ± 0:14

Covariate Covariate

Drug dosage PK model Cp Ce PD model Depth of
anesthesia index

(a) Traditional PKPD model

Characteristics of
EEG signal Deep learning algorithm

Depth of
anesthesia index

Covariate

(b) Metabolic model based on deep learning

Figure 1: Conceptual diagram of the model.
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In Figure 2, them layer is the hidden layer, and them − 1
layer is the input layer. According to the above thoughts, it
can be seen that the m − 1 layer only needs to be connected
to the m layer.

(2) For weight sharing in CNN, filter parameters are
shared [18]. That is to say, each convolution kernel
performs convolution operation on the overall
receptive field. The parameters of each convolution
kernel have bias terms and weight coefficients. The
weight sharing is shown in Figure 3

It can be seen from Figure 3 that the number of neurons
in layer m is 3. In the figure, the weights of the lines connect-
ing different positions are shared. You can use gradient
descent to learn the shared weights without any changes.
The advantage of weight sharing is that it has nothing to
do with the location of feature extraction when extracting
features. And the number of weight parameters of CNN
can be reduced to a greater extent.

After the convolution operation, the maximum pool
sampling method is used to reduce the size. By finding the
largest feature parameter in this range, and then downsam-
pling, new features are obtained. The features that have
undergone downsampling still retain the effective informa-
tion, and the reduction of the dimensionality is conducive
to training. Setting the size of the pooling core to m ×m,
the method can be expressed as

f xð Þ =max x i,i+mð Þ j,j+mð Þ
� �

: ð18Þ

Finally, the prediction result is output through the fully
connected layer. The input of the fully connected layer is
the feature output by the CNN, and the output is the value
corresponding to the sample to be predicted. Then, the
CNN output is

yr = f w∙yr−1 + bð Þ: ð19Þ

3.1.4. Autoencoder. Autoencoder (AE) can be understood as
a system that tries to restore its original input; as shown in
Figure 4, it is a type of neural network. The blue dashed

box is the AE model, which consists of two parts, an encoder
f and a decoder g. The encoder converts the input signal x
into a hidden representation Y , and the decoder restores y
to the output signal x′, which is the reconstructed x.

y = f xð Þ,
x′ = g yð Þ = g f xð Þð Þ:

ð20Þ

The purpose of the autoencoder is to recover the input
x as much as possible. In fact, the network usually focuses
on the encoding of the intermediate layer or the mapping
from input to encoding. In other words, when the forced
code y is different from the input x, the system can also
restore the original signal x; then, the code Y already
carries all the information of the original data, which is
an effective representation of the automatic learning of
the original data.

3.1.5. Self-Attention Mechanism. Data will be generated dur-
ing the learning process. As the amount of data increases, it
is particularly important to clean, analyze, and model these
data. In the modeling process, accelerating the training of
the model can save a lot of time and cost. Therefore, some
scholars proposed the self-attention mechanism based on
the attention mechanism of the human brain and success-
fully applied it in the field of natural language processing
[19]. The idea of this model comes from the attention mech-
anism. The self-attention mechanism can realize parallel
computing more easily than the attention mechanism. Its
basic structure is shown in Figure 5.

First, we multiply the input text information by the cor-
responding weights to obtain q1, k1, and v1. The calculation
process is as follows:

q ið Þ =Wqx ið Þ,
k ið Þ =Wkx ið Þ,
v ið Þ =Wvx ið Þ,

ð21Þ

Among them,Wq,Wk, andWv correspond to the weight
matrices of q, k, and v, respectively; i = ½0,N�, and N is the
size of the sample value. We perform the dot product oper-
ation on the obtained qi and ki, then normalize the result,

m+1 layer

m layer

M–1 layer

Figure 2: Sparse connection of two adjacent layers.
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and finally multiply the corresponding weight vðiÞ to get the
output content, namely,

α 1, ið Þ = q ið Þ∙k ið Þffiffiffi
d

p ,

~α 1, ið Þ = exp α 1, ið Þð Þ/〠
j

exp α 1, jð Þð Þ,

b ið Þ =〠
i

~α 1, ið Þv ið Þ:

ð22Þ

It can be seen from the calculation result of bðiÞ that the
result value of each bðiÞ is related to the entire input
sequence, which is also one reason why the self-attention
mechanism can speed up the calculation in parallel. The
above calculation process is expressed as a matrix:

self ‐Attention Q, K , Vð Þ = softmax
QKTffiffiffiffiffi

dk
p

 !
V : ð23Þ

Among them, Q, K , and V are matrices formed by
concatenating each of the above qðiÞ, kðiÞ, and vðiÞ. There-
fore, another reason for the acceleration of the calculation
speed is that the essence of the attention mechanism is
matrix calculation.

3.1.6. Residual Network. With the continuous development
of deep learning, the depth of the network is getting larger
and larger. Although the accuracy of the model has been
improved, a series of problems have arisen, such as gradient
explosion and gradient disappearance. Initializing the weight
parameters is particularly important. A reasonable weight
value can prevent the parameters from entering the activa-
tion function saturation region, thereby reducing the prob-
lems of gradient disappearance and gradient explosion.
However, the method of randomly initializing parameters
is inefficient. He et al. [20] and others proposed a deep resid-
ual model (residual network (ResNet)), which not only
solves the problem of gradient disappearance caused by deep
networks but also solves the problem of network degrada-
tion. At the same time, the accuracy of the model has been
improved. The basic residual structure is shown in Figure 6:

x is the information input, HðxÞ is the characteristic
information output, FðxÞ is the residual, and its expression is

F xð Þ =H xð Þ − x: ð24Þ

The information input x can be directly connected to the
back access layer, so that the back access layer can learn the

Feature

m layer

M-1 layer

Figure 3: Schematic diagram of weight sharing.

Encoder Encoder
y X’

f g

x

Figure 4: Self-encoder structure.

Matrix
multiplication

VSoftmax operation

Qk matrix multiplication

Q K V

q1 k1 v1

q1

q2 k2 v2

q1

Figure 5: Self-attention mechanism model.

Weighted layer structure

Activation function

Weighted layer structure

Activation function

+

H(x) = F(x) + x

H(x)

x
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dual layer, so this connection is also called a shortcut con-
nection. The residual structure increases the depth of the
model through identity mapping. The basic operation is

xL = xl + 〠
L−1

i=1
F xi,wið Þ: ð25Þ

xl is the information representation of the features of the
Lth depth unit. When the residual value is 0, the residual
network is equivalent to performing identity mapping, so
as to ensure that the training accuracy of the model will
not decrease. In fact, due to the complexity and diversity of

the data, the residual value will not be 0, which is equivalent
to the model is constantly stacking layers to better learn new
features.

3.2. Parameter Setting of Each Layer. This paper uses the
method of combining multiple convolutional layers, pooling
layers, and superimposing the output of the fully connected
layer to train the input data to be trained. In the setting of
the training parameters of the CNN model, the learning rate
is 0.01, and the ReLU function is used as the excitation func-
tion of each convolutional layer [21]. In the setting of the
pooling layer, the maximum pool sampling method is used
to reduce the output of the convolutional layer. We use

Data of 93 groups of
patients 

61 patients
167772 data points

16 patients
68168 data points

16 patients
64793 data points

Training Cohort Validation Cohort Testing Cohort

Model building Test model

Randomly divide the data set 61:16:16

Figure 7: Division of the data set.

Table 2: Data set characteristics.

Training cohort Validation cohort Testing cohort

Quantity 61 16 16

Weight (kg) 68:8 ± 10:2 (54-87) 67:2 ± 9:5 (55-81) 74:4 ± 8:8 (59-93)

Gender (male/female) 46/17 11/4 11/4

Age 55:4 ± 12:1 (22-83) 49 ± 11:5 (36-72) 57:3 ± 10:4 (24-78)

Height (cm) 167:4 ± 5:2 (158-180) 166:5 ± 5:3 (162-178) 169:7 ± 4:6 (160-180)

Table 3: Parameter settings of each layer of CNN.

Layer Layer type
Nuclear
model

Stride
Number of zero-padded

turns
Output feature map

size
Number of output feature

maps

1 Convolutional layer 1 3 × 3 1 1 24 × 24 16

2 Pooling layer 1 2 × 2 2 — 12 × 12 16

3 Convolutional layer 1 3 × 3 1 1 12 × 12 32

4 Pooling layer 1 2 × 2 2 — 6 × 6 32

5 Convolutional layer 1 3 × 3 1 1 6 × 6 64

6 Pooling layer 1 2 × 2 2 — 3 × 3 64

11 Output layer — — — — 1

8 Computational and Mathematical Methods in Medicine



SoftMax regression to output the predicted anesthesia state
value.

In the model training, data from 93 groups of patients
were used. First, it is divided into three parts: training set,
validation set, and test set by random grouping. The group-
ing results are as follows: the training set includes 61 patient
data (167772 data points in total), the validation set includes
16 patient data (68168 data points in total), and the test set
includes 16 patient data (64793 data points in total), such
as Figure 7. The specific data set characteristics are shown
in Table 2.

In the part of the deep learning algorithm, a two-
dimensional regressor is used. At this time, it is necessary
to convert the one-dimensional EEG feature sequence into
a two-dimensional matrix as the image format. Taking into
account the s parameters as characteristic indicators and
the four physiological parameters of height, weight, age,
and gender, 48 indicator data were selected for combination
in the same period, and they were sequentially combined
into 576 numerical sequences. Then, we reshape 576 one-
dimensional sequences into 24 × 24 two-dimensional matri-
ces as the samples to be trained.

The sample set to be trained is used as the input of CNN,
and the parameter settings and output of each layer are
shown in Table 3:

3.3. Evaluation Indicators. In this paper, goodness of fit,
mean square error, and average percentage error are used

to evaluate the simulation prediction results. The calculation
formula is as follows:

R2 = 1 −
SSE
SST

, ð26Þ

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 ei −�eð Þ
n

r
, ð27Þ

MAPE = 〠
n

i=1

observedt − predictedt
observedt

����
���� × 100

n
: ð28Þ

The meaning of these metrics is described as follows:
The R2 coefficient in (26) is the goodness of fit of the model
output, and the range is ð0, 1Þ. When the value of the good-
ness of fit is larger, it means that the result predicted by the
model is closer to the true value; that is, the drug metabolism
model obtained by training is more accurate [22–25].
Among them, SST is the sum of squared deviations, and
SSE is the sum of squared residuals; RMSE in the Equation
(27) is the mean square error of the training result. If its
value is small, it means that the error of the training result
is small. Among them, ei is the test sample value, and �e is
the average value of e; MAPE in the Equation (28) is the
average percentage error.
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Figure 8: The optimal result of CNN tracking BIS on the test set.
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4. Results

We use the CNN network to construct the drug metabolism
model. We take the 8 characteristic parameters of SPE,
ApEn, SampEn, SFS, α ratio, SEF95, MPF, SpEn, height,
weight, age, gender, and BIS indicators extracted from the
clinical EEG data of the patient as the input of the network
model for training. Model training adopts a 5-fold cross-
validation method, and the best and worst results of BIS pre-
diction are shown in Figures 3–7 and Figures 3–8.

Figures 8 and 9, respectively, show the best and worst
results of CNN model tracking BIS on the test set. Among
them, the lighter solid line is the result of each iteration,
the darker solid line is the result of smoothing the iteration
result, and the black dashed line is the result of each verifica-
tion. After every 30 iterations, the prediction results are
verified once.

The curves in Figures 8 and 9, respectively, show the
trend of the iterative verification accuracy of the CNN model
on the test sample and the error trend with the number of
iterations.

According to Figure 8, the whole process is displayed in
3 time periods, and each time period is iterated 57 times, a
total of 171 iterations. The accuracy and error are verified
every 30 iterations. It can be seen that as the number of
iterations continues to increase; the accuracy of CNN in pre-
dicting BLS on the test set is generally on the rise, eventually
reaching more than 90%. The overall error shows a gradual
decrease and eventually approaches zero.

Figure 9 is also displayed in three time periods; each time
period is iterated 75 times, a total of 225 iterations. The
accuracy and error are verified every 30 iterations. It can
be seen that as the number of iterations continues to
increase, and the accuracy of the model for predicting BIS
on the test set is generally on the rise. The accuracy rate is
relatively stable without major fluctuations, but the final
accuracy rate is above 70%.

Further, we analyzed the results of several representative
data samples and drew the corresponding curves, as shown
in Figure 10. It can be seen intuitively from Figure 10 that
through the training of the CNN model, a better BIS curve
prediction can be achieved.

It can be seen intuitively from Figure 10 that through the
training of the CNNmodel, a better BIS curve prediction can
be achieved. Figure 10(a) is a BIS prediction tracing curve of
a 39-year-old man, Figure 10(b) is a BIS prediction tracing
curve of a 28-year-old woman, and Figure 10(c) is a BIS pre-
diction of a 70-year-old man. Figure 10(d) shows the BIS
prediction tracking curve of a 65-year-old female. According
to the comparative analysis of different ages, the fit of the
drug metabolism model based on the CNN training model
has a certain relationship with the age of the patient. The
fit is better in the young and middle-aged, and the fit is poor
in the old. From the comparative analysis of different
periods of anesthesia, it can be seen that in the induction
period of anesthesia, the fitting effect of the predicted results
is poor, and there is a relatively large deviation from the
actual BIS value. At the same time, when the data fluctuates
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Figure 9: The worst result of CNN tracking BIS on the test set.
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greatly, the predicted effect of the model is not good. But as a
whole, the prediction results are within the range available in
statistics.

In order to make the predictable result of the model
more accurate, the prediction results data of each stage of
anesthesia were counted. This paper mainly uses R2 coeffi-
cient, RMSE, and MAPE to evaluate the prediction results.
The statistical results are shown in Table 4.

It can be obtained from Table 4 that in the prediction
results of the controlled object based on the CNN training
model, the maximum goodness of fit value of the test data
set is 93.34 (%), and the smallest is 66.72 (%). The maximum
RMSE value is 6.89, the minimum is 4.04, the maximum
MAPE value is 14.73 (%), and the minimum is 3.99
(%).When analyzing the different stages of anesthesia, it
was found that the predictive model performed the most sta-

ble in the maintenance phase and slightly worse in the
induction and recovery phases. But on the whole, the predic-
tive effect is within the range available in statistics.

5. Discussion

The analytical ability of machine learning algorithms is
extremely high, which is superior to classical statistics. In
recent years, great breakthroughs have been made in the
imaging diagnosis of pulmonary nodules [22], and while
maintaining good sensitivity with higher specificity than tra-
ditional methods, [23] deep learning algorithms also have
good prospects in the sedation monitoring of anesthesia.
For the small- and medium-sized surgery of ASAI-II can
obviously assist the anesthesiologist to make the appropriate
judgment to reduce the work intensity; but for the patients
with ASAIII-IV undergoing large surgery, the use of vasoac-
tive drugs is more complicated due to the drastic hemody-
namic changes, and how to improve the sensitivity and
stability of the analysis under this conditions is the direction
of our next study At the same time, it is necessary to pay
attention to the shortcomings of artificial intelligence itself,
such as the inability to empathize with the patient, the
inability to understand the patient’s acceptance of anesthesia
and surgical methods, and the trust in intelligent medical
care degree [24]. It is very difficult for anesthesiologists to
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Figure 10: Predictive tracking curve of 4 patients.

Table 4: CNN’s prediction result evaluation table.

Period of anesthesia R2 (%) RMSE MAPE (%)

Induction period 81:65 ± 9:5 7:1 ± 1:5 10:5 ± 3:0

Maintenance period 85:28 ± 8:8 5:2 ± 0:8 8:8 ± 2:5

Recovery period 80:33 ± 9:2 6:7 ± 1:2 9:8 ± 3:1

Whole paragraph 84:97 ± 8:4 5:5 ± 1:0 9:1 ± 2:8
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understand the internal mechanisms of machine learning.
Although the machine learning algorithm has been success-
ful in various trials, it is difficult for clinicians to judge
whether there will be errors inside the “black box,” so it
may be difficult for the machine learning algorithm to gain
the clinician’s reliance. Finally, the necessary premise of
machine learning algorithms is to collect a large amount of
high-fidelity physiological monitoring data from patients
[25]. If the data is incomplete, unstable, biased, or even
wrong in the training process, it may produce wrong results
and mislead the doctor to make wrong judgments.

Therefore, it is necessary to ensure that a large amount
of high-quality data is available to promote the success of
machine learning in terms of adaptive control [26]. At
present, the most reasonable way to introduce artificial
intelligence and machine learning into anesthesia practice
is still to manage the use of a closed-loop control system
of drugs during routine operations of patients to maintain
a stable anesthetic drug maintenance [27]. However, artifi-
cial intelligence has entered the field of anesthesia as a
stepping stone, which brings challenges to the future devel-
opment of anesthesiologists, as well as opportunities for pro-
fessional development. It can effectively reduce the workload
of anesthesiologists and give doctors more time and energy to
focus on the impact of the progress of the surgery on patients.
Of course, AI cannot completely replace anesthesiologists;
anesthesiologists have to be prepared for the change of work
philosophy [28].

6. Conclusion

With the advent of the “big data” era, artificial intelligence
technology and the information industry will play a huge
role in promoting the development of human health. More
and more machine learning technologies may enter periop-
erative medicine, affect clinical decision-making, and
improve patient’s prognosis. The intelligent machine algo-
rithm’s assessment of patients and precise control of anes-
thesia will provide patients with a more comfortable
anesthesia experience. In-depth monitoring of anesthesia is
of great significance to improving the quality of anesthesia
and ensuring the safety and rehabilitation of patients during
the surgical period. Systematically, we review the EEG signal
analysis algorithm, first compare the advantages and disad-
vantages of these parameters in clinical application, then
propose the ranking entropy index algorithm with excellent
denoising ability, and introduce the reverse mapping neural
network to correct and optimize the EEG double frequency
index, anesthesia trend, and ranking entropy index, so order
to more accurately realize anesthesia depth monitoring. This
paper introduces deep anesthesia monitoring as a deep CNC
learning algorithm. A combination of index parameters
extracted from the EEG signals and BIS index data was used
as input for training. The results show that its prediction of
BIS indicators reflects better statistical results. This paper
introduces a deep learning method CNN algorithm. The
index parameter combination extracted from the EEG signal
and the BIS index data is used as input for training. The

results show that its prediction of BIS indicators reflects
better results in statistics.
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