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Colorectal cancer liver metastasis (CRLM) was one of the cancers with high mortality. Clinically, the target point was
determined by invasive detection, which increased the suffering of patients and the cost of treatment. If the target point
was found through the relationship between early radiomic information and genetic information, it was expected to assist
doctors in diagnosing disease, formulating treatment plans, and reducing the pain and burden of patients. In this study,
gene coexpression analysis and hub gene mining were first performed on the gene data; secondly, quantitative radiomic
features were extracted from CT-enhanced radiomic data to obtain features highly correlated with CRLM; and finally, we
analyzed the relationship between gene features and radiomic feature correlations by establishing a link between early
radiomic features and gene sequencing and finding highly correlated expressions. This experiment demonstrated that
radiomic features could be used to mine gene attributes. Based on the four previously identified genes (NRAS, KRAS,
BRAF, and PIK3CA), we identified two novel genes, MAPK1 and STAT1, highly associated with CRLM. There were
specific correlations between these 6 genes and radiomic features (shape_elongation, glcm, glszm, firstorder_10percentile,
gradient, exponent_firstorder_Range, and gradient_glszm_SmallAreaLowGrayLevel). Therefore, this paper established the
correlation between radiomic features and genes, and through radiomic features, we could find the genes associated with
them, which was expected to achieve noninvasive prediction of liver metastasis.

1. Introduction

Colorectal cancer (CRC) was one of the most common can-
cers in gastrointestinal disease [1]. According to the 2020
global cancer data, colorectal cancer ranks third among all
cancers in incidence and has a high mortality rate [1].
According to study data, by 2030, there will be more than
2.2 million new colon cancer cases in the world [2], includ-
ing more than 1.1 million deaths [1]. Some medical
researches showed that the liver was the most prone organ
for colorectal cancer to produce hematogenous metastasis

[3, 4]. Therefore, the discovery of CRLM biomarkers was
useful for the diagnosis and targeting of anticancer drugs.

Weighted gene coexpression network analysis
(WGCNA) was a systems biology method. WGCNA can
be constructed based on the expression of genes and further
divided into coexpression modules [5, 6]. It can reveal the
interaction mechanism of genes related to CRLM, identify
potential biomarkers, and be used to identify hub genes or
therapeutic targets in many fields, including mice, human
brains, and various cancers. In recent years, there have been
some studies on the identification of colorectal cancer
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coexpressed gene modules and hub genes through WGCNA
[6]. For example, Shoji et al. used immunohistochemical
analysis to show that ZFP57 was overexpressed in several
cancers, including pancreatic cancer and colorectal cancer.
The study results indicate that ZFP57 was involved in hema-
togenous liver metastasis [7, 8]. Wang et al. after coculturing
liver metastasis cells with macrophages, the serum levels of
exosomes miR-25-3p and miR-425-5p were identified
through serum levels, which were related to CRLM [9]. Scla-
fani et al. used the mutation status of five genes (KRAS,
NRAS, BRAF, PIK3CA, and TP53) to analyze the clinical
features and treatment results of rectal cancer and found
that mutations in these five genes would increase the recur-
rence and prevalence of rectal cancer [10].

Radiomics was a new and effective quantitative analysis
method based on high-throughput features of medical radio-
mics [11–13], including five steps: image acquisition, image
segmentation, feature extraction, feature selection, and
modeling. Through radiomic analysis, researchers can
obtain information such as tumor biology, morphology,
and texture [14], which can provide valuable information
for disease diagnosis and prognosis and provide clinicians
with professional, reliable [15, 16], and effective pathological
information. Research has found that radiomics can be used
to find biomarkers related to CRLM. For example, Acharya
et al. studied the CT of texture characteristics with CRLM
patients. Through analysis, they found that the entropy value
of the liver metastasis group and normal colon tissue was
different [17], and the uniformity of extrahepatic disease
was also different [18]. Dohan et al. used CT portal vein
images of 230 patients with colorectal cancer and liver
metastases before and after chemotherapy to analyze the tex-
ture using radiomic characteristics and then establish a pre-
diction model. Through the experimental results, they found
that the radiomic characteristics were relative to the evalua-
tion criteria of solid tumors, and RECIST 1.1 has limited
potential to assess tumor response to targeted therapies.
Radiographic analysis quantifies changes in tumor heteroge-
neity with greater accuracy than the radiologist’s naked
eye [19].

The current clinical methods for diagnosing CRLM
mainly include abdominal enhanced CT, serum CEA, path-
ological staging, and liver MRI examinations [9, 20–24].
Because there were certain differences in each person’s
genes, doctors needed to analyze and detect whether there
were mutations in their patients’ related oncogenes and then
conduct personalized targeted therapy.

Radiogenomics was an emerging research method for
mining the correlation between radiomics and genes. By
combining radiomic features such as lesion size, grayscale,
and texture features with gene expression, the potential con-
nection between the two was explored [25]. Reflect the infor-
mation between multimodal radiomic characteristics and
gene expression, assisting clinicians in the diagnosis of dis-
ease. For example, Segal et al. [26] used groundbreaking
early research to screen out the radiomic features of 28
patients with hepatocellular carcinoma; they screened the
transcriptome information of hepatocellular carcinoma and
found that their radiomic features were related to gene

expression. Inspired by predecessors, we found that radioge-
nomics had far-reaching significance for the study of CRLM.

Since there were few studies on radiogenomics for
CRLM at present, we integrated disease imaging data and
genomic data, extracting key features and mining potential
links between the two, and then discovered genes that could
reflect gene polymorphism or expression information.
Radiomic features enabled more accurate image-based non-
invasive disease diagnosis methods, so as to accurately select
the most suitable adjuvant immunotherapy plan according
to the individual situation of the patient, reducing ineffective
treatment and unnecessary suffering [26].

In this study, gene expression data were correlated with
traits, and genes that were only associated with CRLM were
searched to elucidate the biological significance of their
genes. Then, tumor contours and feature extraction were
performed on the CT-enhanced radiomics. Finally, correla-
tion analysis was used to mine associations between gene
expression and radiomic features. This method was expected
to predict the relevant properties of genes from the preinva-
sive imaging results and then find the target points to assist
doctors in developing treatment plans; the experimental flow
chart is shown in Figure 1.

1.1. Contribution. This study was to establish the relation-
ship between radiomic features and gene features for mining
the target points of CRLM. Even if the ability was limited,
this study was still expected to mine the relationship
between radiomics and genes. The contributions of this
research were as follows:

(i) Based on the gene data in this paper, this study con-
structed a gene coexpression network to mine the
hub genes that were highly related to the disease

(ii) Using the radiomic feature screening method com-
bined with LASSO+RFE, the selected feature P value
was less than 0.05, which was statistically significant
and indicated that these features had a good distin-
guish ability for CRLM

(iii) The Spearman matrix was established, and it was
found that there was a certain correlation between
radiomics and genes, which was expected to achieve
a noninvasive diagnosis of CRLM target points

2. Method

2.1. Data and Preprocessing. This experiment contains 85
cases of CT and genetic data, of which 54 cases of genetic
and CT radiomic data were obtained from The Cancer
Imaging Archive (TCIA, https://tcia.at) and The Cancer
Genome Atlas (TCGA, https://www.cancer.gov), respec-
tively, and 31 cases of CT radiomic and genetic data were
from the Affiliated Hospital of Hebei University. The criteria
for patients included in this experiment were (1) adults
(age ≥ 18 years); (2) the CT radiomics was clear and the
location of the tumor was easy to analyze; and (3) no other
cancer and family genetic history. The exclusion criteria
were (1) the patient has already suffered from serious
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malignant tumors and other systemic disease at the time of
examination in the hospital and (2) the patients take contra-
indicated medications that affect the results during the
examination. The specific clinical information was shown
in Table 1.

During the experiment, to reduce the amount of calcula-
tion and improve the reliability of the results, the top 75% of
genes with the median absolute deviation were screened, and
the WGCNA was used for gene coexpression clustering
module analysis, and 44 gene modules were clustered. At
the same time, 85 cases of radiomic data were preprocessed
by normalization, and 2078 radiomic features were filtered
by PyRadiomics, which reduced the amount of calculation
for subsequent experiments.

2.2. Construction of Gene Coexpression Network and Mining
of Potential Hub Genes. WGCNA was a method of studying
gene set expression [9]. Use WGCNA to construct a network
in which genes were regarded as points and the relationship
between genes as a line [6]. Calculate the correlation based
on gene expression by the Pearson coefficient and then
weight the entire network to bring it close to the scale-free
network distribution. Adopt a dynamic branch cutting
method to divide the entire network into multiple collabora-
tive expression modules [9]. The WGCNA package was used
to perform network construction at each stage of the above-
mentioned acquisition. The network construction steps
mainly include correlation matrix calculation, soft threshold
selection, the adjacency matrix calculation, topology matrix
calculation, dynamic branch cutting, module merging, and
character association analysis. The adjacency matrix (aij)

was required to determine when constructing the network,
which was asymmetric n ∗ n matrix with a value range of
[0, 1], and its components represent the strength of the net-
work connection at nodes. To better calculate the adjacency
matrix, an intermediate variable sij (coexpressing similarity)
was necessary to represent the absolute value of the correla-
tion coefficient between nodes i and j, which were defined as
follows [6]:

sij = cor xi, xj
� ��� ��: ð1Þ

When i ≠ j in the formula, it represents two different
gene modules, and the weighted coexpression network can
also be characterized by improving the similarity between
coexpression and power, as shown in the formula (2)

aij = sβij : ð2Þ

Screening out highly correlated gene modules can better
reflect the overall gene expression and explain the interac-
tion mechanism between genes. Use the functional enrich-
ment method (GO analysis) to compare genes or genomes
with functional databases, perform overexpression analysis
and functional annotation, and provide references for the
study of gene molecular mechanisms of CRLM [27].

The hub gene was a gene that plays an important role in
the network and can represent the genetic characteristics of
the module to a certain extent. The preliminary experiment
was to determine the modules that were significantly related
to the clinical features to be studied. Gene significance (GS)
and module membership (MM) were used to screen core
genes. GS described the correlation between genes and clin-
ical traits, which reflected the relationship between genes
and traits, and MM described the correlation between genes
and modular vectors, which gets the core position of the
gene in the module [10]. In this experiment, the GS value
and MM value of the gene were calculated (it can also be
expressed by the K value). The condition for screening the
core gene was to satisfy both jGSj > 0:1 and jMMj > 0:8 [2].

GSi = − log Pi,

K qð Þ
cor,i ≔ cor xi, E qð Þ

� �
:

ð3Þ

In the formula, Pi represents the significance of the dif-
ference between genes, and EðqÞ represents the characteristic
gene of module q.

Individual genes cannot fully function, and they need to
coordinate with each other to function. Therefore, this
experiment uses the MCODE method to study the protein-
protein interaction information of the significantly related
hub genes and gene modules and determine the hub nodes
of the subnetwork according to the node degree and similar-
ity center. Only by finding the hub genes related to CRLM
through genetic analysis could we make more targeted con-
nections with radiomics and discover potential links
between noninvasive diagnosis and gene features.

Genetic and imaging data

Genetic screening Extract image
features

Select hub genes LASSO+RFE
feature selection

Spatial mapping Spatial mapping

Spearman correlation
matrix

WGCNA Pyradiomic

Figure 1: The experimental flowchart.
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2.3. Radiomic Feature Extraction

2.3.1. Image Preprocessing and Lesion Segmentation. We use
GE Discovery HD750 64-Slice CT scanner. Scanning
method: patients need to fast for 6-8 hours before perform-
ing abdominal plain scan and enhanced scan. Scanning
parameters include layer thickness 5mm, pitch 0.992, scan-
ning field of view 350mm × 350mm, matrix 512 × 512, tube
voltage 100~120 kV, and tube current 160~300mA. The
contrast agent was injected through the cubital vein with a
flow rate of 3.0~3.5ml/s and a dose of 0.5ml/kg. The acqui-
sition time of the liver’s arterial phase, portal vein phase, and
delayed phase scan images was 30-35 s, 50-60s, and 180 s
after the injection of the contrast agent. Taking into account
that the lesions were displayed most clearly in the portal vein
phase, in order to avoid errors, the portal vein phase CT-
enhanced images will be selected for radiomic analysis.

Segmentation of the region of interest (ROI) was the
basis for feature extraction and prediction model establish-
ment in radiomics. In this experiment, a radiologist with 5
years of work experience performed the outline of the lesion
area of the internal 31 cases of CT-enhanced radiomic data
set, keeping a distance of about 2-3mm from the edge of

the tumor. In order to ensure the accuracy of the outline
results, another senior radiologist with 10 years of working
experience checks and outlines the results.

2.3.2. Radiomic Feature Extraction and Selection. This exper-
iment uses the PyRadiomics to extract radiomic features of
the outlined lesions, including the first-order statistics, the
shape elongation, the first-order exponential characteristics,
the informational measure of correlation, the gray-level size
zone matrix, and radiomic features after wavelet, square, log-
arithmic, and other filters.

When doing the radiomics part of the experiment, the
patients have been divided into two groups, of which the test
group data represents 70% of all the data, and the verifica-
tion group data represents 30% of all the data.

In feature selection, to make the data more readable, this
experiment tried to use recursive feature elimination (RFE)
[28], analysis of variance (ANOVA) [29], the least absolute
shrinkage and selection operator (LASSO) [30], and other
algorithms for feature selection [25]. It can effectively avoid
the phenomenon of experimental overfitting and screen
out the radiomic features that could better identify the
disease.

Table 1: Patient specific clinical information.

Clinical data Quantity Percentage

Gender male/female 19/12 61.29%/41.94%

Average age male/female 53/58.78

Whether there was lymph node metastasis around yes/no 22/9 70.97%/29.03%

Primary disease site-right colon 6 19.36%

Primary disease site-left colon 2 6.45%

Primary disease site-part of the sigmoid colon and rectum 7 22.58%

Primary disease site-sigmoid colon 4 12.9%

Primary site-rectum 12 38.71%

CEA value >5/<5 21/10 67.74%/32.26%

CA724 value >6/<6 11/20 35.48%/64.52%
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Figure 2: (a) The overall structure of the neural network. (b) The process of neuron operation.
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2.4. Correlation Analysis of Radiomic Features and Gene
Features. Inspired by the biological nervous system and the
above experiments, this study introduced the neural network
method to establish the connection between the radiomic
feature and the genetic feature. The learning framework for
this article was PyTorch, which was mainly composed of
an input layer, a hidden layer, and an output layer. The hid-
den layer uses the output of the previous layer as the input of
this layer to iteratively update the parameters. In this net-
work, the input layer has 6 neurons as input signals, and
these input signals were transmitted through weighted con-
nections; the total input value received by the neuron will
be compared with the neuron threshold and then subjected
to linear function operations. Finally, the output of 7 neu-
rons was produced. The overall framework is shown in
Figure 2(a), and the calculation process between each neu-
ron is shown in Figure 2(b). Through continuous experi-

ments, it was found that when the number of neurons in
the hidden layer was 18, the output of the network was the
best, so the number of neurons in the hidden layer in this
experiment was 18. By constructing a neural network, the
data in two different spaces was mapped to the same space
to study the correlation between radiomic features and gene
features.

In order to enhance the consistency of the experiment, a
specific Spearman correlation analysis was performed on the
genetic data and radiomic data in the same space obtained
from the above experiment, and a relationship between the
two was found.

2.5. Statistical Analysis. This study uses the Spearman
matrix to find the potential connection between radiomic
and gene features and calculate the Pearson correlation
factor to find the correlation between gene expressions.
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Figure 3: (a) and (c) were gene module clustering. (b) and (d) were gene module associative heat map.
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Python (version 3.7) and R (version 4.0.4) ggplot package
were plotted. P < 0:05 was regarded as statistically
significant.

3. Results

3.1. Construction of Weighted Gene Coexpression Network.
First, this experiment performs a weighted gene coexpression
network analysis on the public data set and the internal private
gene set and then constructs an adjacency matrix for the pre-
processed and screened genes, usingWGCNA for cluster anal-
ysis to cluster genes with similar gene expressions.

Using the general parameters of network construction,
the data of this study were networked to find that the corre-
lation between clustering results and gene heat maps was
poor, as shown in Figures 3(c) and 3(d). It could be found
that most of the genes exist in the blue and midnight blue
modules, as shown in Figures 3(a) and 3(b). Therefore,

through targeted analysis of the data set used in this study,
it was found that when our network soft threshold β was set
to 5, the module’s mean connectivity was the best and had a
normal distribution, and the gene clustering effect and gene
heat map results were the best, as shown in Figure 4.

Secondly, according to the gene modules clustered, the
eigengenes were extracted to calculate the adjacency between
the modules, and the heatmap was used for visualization, as
shown in Figure 3(b). It can be seen from the figure that 44
gene modules were divided into two regions: the upper-left
corner and the lower-right corner. The internal adjacency
was relatively high, indicating that the degree of correlation
between gene modules was relatively good, which was of
research significance.

Finally, the association between gene modules and clini-
cal characteristics was mined, and the results are shown in
Figure 5. The CRLM was on the left side, primary colorectal
cancer was in the middle, and the normal colon was on the
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right side. It could be seen from the experimental results that
the positive correlation module of the normal colon was
negatively correlated with the other two states. In order to
improve the feasibility of the experiment, select 5 gene mod-
ules with the highest correlation with the positive correlation
positive liver metastasis.

3.1.1. High Adjacency Subnetwork Data Mining. The genes
with low relevance were eliminated, incorporating the
remaining 617 genes for subsequent experiments. The
experiments mine the high adjacent subnetwork from the
gene coexpression networks through MCODE analysis
(http://metascape.org) and annotate these subnetworks
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Figure 6: High adjacency subnetworks mined with MCODE.

Table 2: Function enrichment of subnetworks identified by MCODE.

Subnet number Function annotation number Function annotation description Log10 Pð Þ
MCODE_1 R-HSA-373076 Class A/1 (rhodopsin-like receptors) -27.0

MCODE_1 R-HSA-375276 Peptide ligand-binding receptors -26.9

MCODE_1 R-HSA-418594 G alpha (i) signaling events -25.8

MCODE_2 GO:0051770 Positive regulation of nitric-oxide synthase biosynthetic process -10.5

MCODE_2 CORUM:7385 DTX3L-PARP9-STAT1 complex -10.2

MCODE_2 GO:0071346 Cellular response to interferon-gamma -10.2

MCODE_3 Ko05323 Rheumatoid arthritis -9.6

MCODE_3 Hsa05323 Rheumatoid arthritis -9.4

MCODE_3 ko04514 Cell adhesion molecules (CAMs) -8.6

MCODE_4 GO:0002757 Immune response-activating signal transduction -3.6

MCODE_4 GO:0002764 Immune response-regulating signaling pathway -3.5

MCODE_4 GO:0002253 Activation of immune response -3.5

MCODE_5 R-HSA-389948 PD-1 signaling -15.6

MCODE_5 R-HSA-388841 Costimulation by the CD28 family -13.1

MCODE_5 Hsa04514 Cell adhesion molecules -11.4

MCODE_7 GO:0002479 Hallmark coagulation -7.7

MCODE_7 GO:0042590 Complement cascade -7.6

MCODE_7 R-HSA-1236974 ER-phagosome pathway -7.6
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(Figure 6 and Table 2 shown). The functional annotations of
these subnetworks include peptide ligand-binding receptors,
Gα signaling events, positive regulation of nitric-oxide syn-
thase biosynthetic process, DTX3L-PARP9-STAT1 complex,
immune response-activating signal transduction, immune
response-regulating signaling pathway, and integrin MAPK1
signal transduction connection, of which STAT1 and
MAPK1 were highly related to cancer, and others were
related to metabolism and microenvironment, as shown in
Figure 6.

STAT1 mainly promotes cell apoptosis, inhibits cell pro-
liferation, and negatively regulates the cell cycle. Some stud-
ies had found that it promotes tumor cell proliferation and
drug resistance [31, 32]. The MAPK1 gene plays an impor-
tant role in regulating the differentiation and growth of cells.
According to the mechanism of the signaling pathway, as
long as there were protein functional problems in the signal-
ing pathway, it will cause serious disease, and this disease
was generally related to tumors [33].

3.2. Radiomic Feature Extraction and Screening

3.2.1. Lesion Outline and Radiomic Feature Extraction. Seg-
mentation of ROI was a key step for radiomic feature extrac-
tion. In this experiment, the lesion was outlined on 85 cases
of CT-enhanced radiomic data inside, and the MITK tool
was used to draw the outline of the lesion area. The results
of the lesion delineation are shown in Figure 7. Radiomic
feature extraction was performed on the original CT image
and the corresponding mask radiomic, and a total of 2,078
features were extracted, including shape features, first-
order statistical features, and second-order texture features.

3.2.2. Radiomic Feature Screening. In order to increase the
desirability of the data, filters were used to further filter the
features; among which, wavelet features and Laplacian
Gaussian filter features were the main features. The experi-
ments used ANOVA, LASSO, RFE, and other algorithms
for feature selection of the data, and the results are shown

(a) (b)

Figure 7: Results of lesion delineation. The green area was normal tissue, and the red area was the tumor outlined.
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in Figure 8. Four feature selection methods, ANOVA,
LASSO, RFE, and LASSO+RFE, were tested. After compari-
son, it was found that the AUC, accuracy, and specificity of
the ANOVA method were 0.797, 0.66, and 0.78; the AUC,
accuracy, and specificity of the LASSO method were 0.86,
0.86, and 0.84; and the AUC, accuracy, and specificity of
the RFE method were 0.83, 0.70, and 0.80. However, the
LASSO+RFE feature selection method proposed in this
study is the most effective, with AUC, accuracy, and specific-
ity of 0.92, 0.92, and 0.84.

Figure 9(a) is the preliminary feature screening using
tenfold cross-validation. When the parameter curve
approaches a straight line, the mean square error between
features was the smallest, and the lambda feature parameter
has the best effect; Figure 9(b) is the change of feature coef-
ficient change trajectory; when the trajectory approaches 0,
the best control parameters of the LASSO model can be
obtained, and finally, seven radiomic features related to
CRLM were screened out, namely, glszm_SmallAreaLow-
GrayLevelEmphasis (glszm_SALGLE), glsm_Imc2, gradi-
ent_glszm_SizeZoneNo-nUniformity (g_glszm_SZNUN),
Shape_Elongation, firstorder_Range, exponent_firstorder-
Range (e_firstorder_Range), and gradient_glszm_SmallAr-
eaLowGrayLevel Emphasis (g_glszm_SALGLE), as shown
in Table 3. To investigate the statistical significance of the
proposed method over compared methods on each metrics,
the Wilcoxon signed-rank test was employed to conduct
the statistical analyses.

3.3. Correlation Analysis of Radiomic Features and Gene
Features. Map the radiomic features and gene feature data
in the same space through the neural network; neural net-
work setting parameters are shown in Table 4, and use the
combination with genomics and multimodal radiomics to
analyze the correlation and combine the KRAS, NRAS,
BRAF, and PIK3CA found in existing studies. Spearman’s
correlation analysis was carried out with the newly mined
MAPK1 and STAT1 and 7 screened radiomic features in this

experiment, and the results were visualized with heatmap.
The results are shown in Figure 10.

Through the results of visualization, the correlation coef-
ficient between MAPK1 and glszm_SALGLE and Shape_
Elongation was 0.33, the correlation coefficient with firstor-
der_10percentle was 0.31, the correlation coefficient with
g_glszm-SZNUN was 0.18, the correlation coefficient with
glcm_lcm2 was -0.22, the correlation coefficient with g_
glszm_SALGLE was -0.25, and the correlation coefficient
with e_firstorder_Range was -0.12; the correlation coeffi-
cient between STAT1 and glszm_SALGLE was 0.31, the cor-
relation coefficient with Shape_Elongation was 0.42, the
correlation coefficient with firstorder_10percentle was 0.24,
the correlation coefficient with g_glszm-SZNUN was 0.22,
the correlation coefficient with glcm_lcm2 was -0.37, the
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Figure 9: Determination of feature screening parameters. (a) Determination of the best parameter lambda. (b) The best variable coefficient
of the LASSO regression model.

Table 3: Feature selection analysis (Wilcoxon’s tests were used in
this experiment, and P < 0:05 represented statistical significance).

Feature name P value

glszm_SALGLE <0.01
Shape_Elongation <0.05
firstorder_10percentle <0.02
g_glszm-SZNUN <0.01
glcm_lcm2 <0.01
g_glszm_SALGLE <0.01
e_firstorder_Range <0.01

Table 4: Neural network setting parameters.

Parameters Values

Number of hidden layers 18

Optimizer Adam

Learning rate momentum 0.0001

Momentum 0.9

Dropout 0.35
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correlation coefficient with g_glszm_SALGLE was -0.49, and
the correlation coefficient with e_firstorder_Range was
-0.27.

In conclusion, STAT1 and MAPK1 were positively cor-
related with the four radiomic features of Shape_Elongation,
glszm_SALGLE, firstorder_10Percentile, and glszm_
SZNUN, and negatively correlated with the three radiomic
features of glcm_Imc2, firstorder_Range, and glszm_SAL-
GLE. Therefore, the attributes of genes can be qualitatively
predicted by the radiomic features.

4. Discussion

Roy et al. [34] performed radiomic analysis of triple-negative
breast cancer patients and found that tumor volume, noise
characteristics, and image resolution had a significant
impact on radiomic analysis in a common clinical study.
Forty-eight radiomic features were extracted from manually
segmented 2D and 3D images, and 16 radiomic features
were obtained by feature correction with clinical features,
and finally, it was found that the features of grayscale travel
length matrix (GLRLM) and grayscale size region matrix
(GLSZM) were determined to be the most sensitive to noise.
The kurtosis and travel variance (RLV) of the radiomic fea-
tures of GLSZM were found to be the most sensitive to the
resolution variation of T1w and T2w of MRI.

Mokrane et al. [35] extracted 12 sets of 1160 quantitative
features from CT radiomics and used machine learning
techniques to classify liver nodules into hepatocellular carci-
noma and nonhepatocellular carcinoma, resulting in a vali-
dation set ROC of 0.66. The results showed that the
radiomic histological features had good diagnostic power
for hepatocellular carcinoma in patients with cirrhosis with
indeterminate liver nodules.

Roy et al. [36] used radiomic features to screen 64 fea-
tures from 131 clinical features to consistently predict treat-
ment response in patients with triple-negative breast cancer.
Classification and regression tree (CART), Naïve Bayes
(NB), and support vector machine (SVM) were used for fea-
ture selection, which ultimately yielded a prediction accu-
racy of 77%. Meanwhile, the scholar proposed [37] an
automation-based brain binarization MRI method for brain
disease detection and feature extraction in preprocessing,
which effectively improves the preprocessing method and
reduces the error. This proposed method effectively solves
the brain imaging MR binarization problem. González-
Castro et al. [38] extracted texture features of CT radiomics
of colorectal cancer patients and used support vector
machines and random forest models for classification stud-
ies with 83% classification accuracy, and the experimental
results demonstrated that texture feature analysis can quan-
titatively assess tumor heterogeneity by analyzing the distri-
bution and relationships of pixels in images.

With the continuous advancement of modern technol-
ogy, radiomics has been widely studied in medicine [39].
For example, Jia et al. studied the correlation between the
radiomic features of lung cancer and its genetic features
[40]. The experiment found that EGFR gene mutations are
crucial in the treatment of lung cancer through noninvasive
radiomic features [40]. Zhu et al. found that the gene tran-
scription activity of breast cancer was positively correlated
with tumor size, shape, and blurred edges. This study pro-
vides a basis for imaging technology as a noninvasive detec-
tion of cancer genes [41].

The above studies were radiogenomic studies of different
disease; however, there were few studies for CRLM, and clin-
ical treatment for CRLM usually involved genetic sequenc-
ing of patients’ pathological tissue sections, which was an
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horizontal axis was the radiomic features, and the vertical axis was the gene feature. The stronger the correlation, the darker the color.
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invasive test that increased patients’ pain and economic burden.
Therefore, studies related to the use of radiomics to predict
genetic attributes were valuable, and by integrating radiomic
information with genomic information, it was expected to
achieve adjuvant treatment options for patients with CRLM,
reducing patient pain and improving patient survival.

When radiomic features were selected, it was found that
the commonly screened features were not sufficiently tar-
geted for the data; so by interfeature characteristics, this
study compared the common feature selection methods with
the combined LASSO+RFE method used in this study and
found that the AUC results of the feature selection method
used in this experiment were better. The useful features
selected by this method adequately consider the correlation
between features and targets and the redundancy between
features. When establishing the connection between the gene
and radiomic features, this study encountered that the data
of both gene and radiomics were not under the unified spa-
tial dimension, and there would be some errors if this study
performed correlation analysis directly, so this experiment
used a neural network to operate on the unified spatial
dimension for both data and mapped them under the uni-
fied spatial dimension to enhance the readability of the data.

The advantages of this article were to predict gene attri-
butes using radiomic features and then determine the target
point; the second was to use neural network research
methods to map the two types of data in a unified space
through certain neuron operations to enhance the readabil-
ity and interpretability of the data. However, our research
also has some limitations. Due to the small number of sam-
ples of gene expression and CT radiomics, this may limit the
effectiveness of the display of related information between
genes and radiomics. Therefore, future research should
increase the number of samples and improve feature extrac-
tion algorithms to find more radiomic features and establish
models for early prediction of multiple diseases and then
develop recurrence monitoring strategies for patients.

5. Conclusion

In this study, this study first clustered multiple gene modules
using WGCNA to mine hub genes that were highly correlated
with CRLM. Secondly, radiomic features were extracted from
CT-enhanced data, and feature selection was performed by a
combined LASSO and RFE feature selection method to screen
out radiomic features with better discrimination. Since the two
types of features were not in the same space, a neural network
was used to map the two sets of features into the same space.
Finally, Spearman’s correlation analysis was performed to find
the radiomic features that were correlated with the gene mod-
ules. The experimental results showed that there was indeed a
significant correlation between radiomic features and gene
features. This study was expected to provide help for the non-
invasive prediction of CRLM disease.
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